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Abstract. This paper concerns with the problem of robust sampled-data H∞ control for
active suspension systems subjected to saturated control input. By using the nature of the
sector nonlinear condition, the saturation of the systems’ control input is modeled, which
is commonly occurred in the practical systems due to the actuator composed by elastic
elements. A passenger dynamic is considered in modeling the suspension system wherein
the uncertainties aroused from uncertain passengers are assumed to be a polytopic type.
Output feedback control strategy is adopted by constructing an output matrix since the
measurements of body acceleration and body deflection are unavailable. The controller
design is then cast into a convex optimization problem with linear matrix inequalities
(LMIs) constraints. An application example is given to illustrate the effectiveness of the
developed controller design scheme.
Keywords: Sampled-data, Suspension control performance, Saturation

1. Introduction. Vehicle suspension system has attracted much attention in the past
decades since it plays an important role in ride comfort, vehicle safety, road damage min-
imisation and overall vehicle performance [1, 2, 3, 4]. The main objective of the suspension
control system is to improve the ride comfort, and keep the suspension stroke within an
acceptable level through isolating from road noise, bumps, and vibrations, etc. However,
these requirements are generally at odds, the problem of tuning suspension system then
involves finding a right compromise. In general, passive suspension which fully depends
on traditional springs and dampers only satisfies some essential requirements, whereas
semi-active/active suspension systems allow designers to balance those objectives along
with the road profile by using an external power supply. In recent years, many studies
have been focused on H∞ semi-active/active suspension control [5, 6, 7, 8, 9, 10, 11].

Most of the literature available on control input saturation focuses on limiting the
control input voltage to guarantee the suspension system safety by using a method of
contractive invariant ellipsoid [8, 12, 13]. Few authors have dealt with the problem of
nonlinear saturation of the electro-hydraulic mechanism, which is a common occurrence
in practical systems, which motives us to do further researches in this study.

The human body dynamic is introduced in modelling process [13, 14] of the active
suspension control system to reflect the reality more closely; however, the following two
aspects should be considered for designers: 1) Not all the state variables are available,
such as the deflection and velocity of passengers. Apparently, the state feedback control
strategy cannot be used any more; 2) The system becomes uncertain due to the changeable
passengers. The observer-based control method is adopted in [15] where the uncertainty
item Aθ is modeled in the observer; however, it is unreasonable due to the unknown
parameter used in the observer. Therefore, how to utilize the available measurements
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reasonably to meet the performance requirements of the suspension system is a meaningful
work, which is another motivation of our present study.
The remainder of the paper is organized as follows. The problem formulation is given

in Section 2. The controller design according to the technical indices of suspension con-
trol performances is presented in Section 3. Section 4 provides the design results and
simulations. Finally, the study’s findings are summarized in Section 5.
Notation: Rn denotes the n-dimensional Euclidean space; Rn×m is the set of real n×m

matrices; I is the identity matrix of appropriate dimensions; ‖·‖ stands for the Euclidean
vector norm or spectral norm as appropriate. The notation X > 0 (respectively, X < 0),
for X ∈ Rn×n means that the matrix X is a real symmetric positive definite (respectively,
negative definite). The asterisk ∗ in a matrix is used to denote term that is induced by
symmetry.

2. Problem Formulation. To develop a more precise model for the active suspension
system, biodynamic model established by Wei and Griffin [16] is considered. A 3-DOF
quarter-car vertical suspension model is shown in Figure 1, where the human body is
separated by two parts according to biodynamic responses, that is, the buttocks and legs
part and the upper part, which are interconnected by a spring and a damper. As shown
in Figure 1, mh1 is the masse of the upper part of a seated man and mh2 is the mass of the
buttocks and legs together with the seat cushion; m

′
s is the sprung mass, which represents

the car chassis; mu is the unsprung mass, which represents the wheel assembly; zh, zs and
zu are the displacements of the corresponding masses; kh and ch stand for the damping
and stiffness of the components inside human body, respectively; ks and cs represent the
suspension stiffness and damping coefficient, respectively, and kt and ct model the tyre
stiffness and damping, respectively.

Figure 1. Vibration model of seat suspension system
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Dynamic equations of the active seat suspension system with consideration of human
bodies are expressed as

muz̈u = ks(zs − zu) + cs(żs − żu)− kt(zu − zr)− ct(zu − zr) + u

msz̈s = kh(zh − zs) + ch(żh − żs)− ks(zs − zu)− cs(żs − żu)− u

mh1 z̈h = −kh(zh − zs)− ch(żh − żs)
(1)

where ms = mh2 +m
′
s.

Define the state variables as follows:

x1(t) = zh(t)− zs(t), human body deflection
x2(t) = zs(t)− zu(t), suspension deflection
x3(t) = zu(t)− zr(t), tyre deflection
x4(t) = żh(t), human bodies velocity
x5(t) = żs(t), sprung mass velocity
x6(t) = żu(t), unsprung mass velocity

Then the state-space equation of the active seat suspension model is given by

ẋ(t) = Ax(t) +Bσ(u(t)) +Bωω(t) (2)

with consideration of the actuator saturation, where the state vector x(t) = [x1(t) x2(t)
x3(t) x4(t) x5(t) x6(t)]

T , and the road disturbance ω(t) = żr(t), σ(u(tk)) = sign(u(t))min
{umax, |u(t)|} denotes the control input with a sector nonlinear saturation, and then the
system matrices in Equation (2) can be obtained by

A =



0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

− kh
mh1

0 0 − ch
mh1

ch
mh1

0
kh
ms

− ks
ms

0 ch
ms

− cs+ch
ms

cs
ms

0 ks
mu

− kt
mu

0 cs
mu

− cs+ct
mu

 ,

B =
[
0 0 0 0 − 1

ms

1
mu

]T
Bω =

[
0 0 −1 0 0 − ct

mu

]T
3. Robust Controller Design. In this section, we aim to design a controller such that
the active seat suspension system meets the following performances:

(1) Body acceleration z1 satisfies a prescribed level of H∞ performance for road distur-
bance, which is one of the most important performance indices of active suspension
system and wildly used for ride comfort. From (2), one can obtain

z1(t) = C1x(t) (3)

where C1 =
[
− kh

mh1
0 0 − ch

mh1

ch
mh1

0
]
, then this performance can be expressed by

‖z1‖2 < γ2‖ω‖2 (4)

(2) The maximum allowable stroke of the suspension zsu should be taken into account
since it is related to the ride comfort and the safety of the vehicles structure. The
requirement can be described by

|zsu(t)| = |z2(t)| ≤ z2max (5)
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where z2(t) = C2x(t) and C2 = [0 I 0 0 0 0].
Since the body deflection x1(t) and the body velocity x4(t), in practice, are unmeasur-

able, the state feedback for the suspension system with consideration of body dynamics is
not suitable any more. Here, we select some measurable states x2(t), x3(t), x5(t), x6(t) of
the suspension system in (2) as the system’s output. The the output y(t) is then expressed
by

y(t) = Cx(t) (6)

where C =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.
So far, the robust suspension controller of the system (2) can be designed by a way

of output feedback control, by which the complicated designing process and computation
can be avoided. It follows

u(t) = Ky(t) (7)

where K is the controller gain to be designed.

Remark 3.1. The suspension deflection and tyre deflection can be easily measured by
using suitable displacement transducer; the sprung and the wheel velocities in vertical di-
rection can be obtained by integrating the sprung and wheel acceleration signal respectively,
which can be measured by accelerometer straightforwardly.

It should be point out that the mass of the passenger is uncertain due to the difference
among the passengers. Then the dynamic (2) with consideration of the uncertainties can
be further expressed by

ẋ(t) = A(α)x(t) +B(α)σ(u(t)) +Bωω(t) (8)

z1(t) = C1(α)x(t) (9)

where the matrices A(α), B(α) and C1(α) are constrained within the polytope = given
by

= ,
{
Θ(α)|Θ(α) =

r∑
i=1

αiΘi;
r∑

i=1

αi = 1, αi ≥ 1

}
(10)

and Θi , (Ai, Bi, C1i), r is the number of polytope vertices, and α = {α1, · · · , αr}T is the
polytope coordinate vector.

Remark 3.2. Polytope-based method is used to describe the uncertainty arouse from the
different passengers in suspension system in this study, which is better than the one in
[13] expressed by

A(t) = A+∆A(t), ∆A(t) = LF (t)E

where L and E are known constant real matrices of appropriate dimensions, and F (t) is
an unknown matrix function with Lebesgue-measurable elements satisfying F T (t)F (t) ≤ I,
because the uncertainty aroused from the different passengers does not vary over time when
the passenger is certain.

It is assumed that the measurable state variables of the suspension system are sampled
and hold at instant tk. Then the suspension system can be rewritten as

ẋ(t) = A(α)x(t) +B(α)σ(u(tk)) +Bωω(t), tk ≤ t ≤ tk+1 (11)
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Defining d(t) = t− tk, we have

tk = t− (t− tk) = t− d(t), tk ≤ t ≤ tk+1 (12)

It leads to

u(tk) = KCx(t− d(t)) tk ≤ t ≤ tk+1 (13)

The following definition will be used to in deriving results.

Definition 3.1. [17] A nonlinearity ψ : Rm 7→ Rm is said to satisfy a sector condition if

(ψ(v)− L1v)
T (ψ(v)− L2v) ≤ 0, ∀v ∈ Rr (14)

for some real matrices L1, L2 ∈ Rr×r, where L = L2 − L1 is a positive-definite symmetric
matrix. In this case, we say that belongs to the sector [L1, L2].

Assume there exist the diagonal matrices H1 and H2 such that 0 ≤ H1 < I ≤ H2, then
the saturation function σ(u(tk)) in Equation (11) can be written as

σ(u(tk)) = H1u(tk) + ψ(u(tk)) (15)

where ψ(u(tk)) is a nonlinear vector-valued function which satisfies a sector condition with
L1 = 0 and L2 = H, in which H = H2 −H1, i.e., ψ(u(tk)) satisfies:

ψT (u(tk))(ψ(u(tk)−Hu(tk))) ≤ 0 (16)

Then for presentation convenience, the closed-loop system can be expressed as

ẋ(t) = A(α)ξ(t) (17)

where A(α) = [A(α) B(α)H1KC 0 B(α) Bω], and ξ(t) = [xT (t) xT (t − d(t)) xT (t −
h) ψT (u(tk)) ω

T (t)]T .
Before providing the solution to the problem of active seat suspension control, we recall

the following useful lemmas.

Lemma 3.1. [18] For any constant matrix R ∈ Rn, R > 0, scalar 0 ≤ d(t) ≤ h, and
vector function ẋ : [−h 0] → Rn such that the following integration is well defined, then
it holds that:

−h
∫ 0

t−h

ẋT (t)Rẋ(t) ≤

 x(t)
x(t− d(t))
x(t− h)

T −R ∗ ∗
R −2R ∗
0 R −R

 x(t)
x(t− d(t))
x(t− h)

 (18)

Lemma 3.2. [17, 19] Let Y0(ξ), Y1(ξ(t)), · · · , Yp(ξ(t)) be quadratic functions of ξ(t) ∈ Rn

Yi(ξ(t)) = ξ(t)TTiξ(t), i = 0, 1, · · · , p, (19)

with Ti = T T
i . Then, the implication

Y0(ξ(t)) ≤ 0, · · · , Yp(ξ(t)) ≤ 0 =⇒ Y0(ξ(t)) ≤ 0 (20)

holds if there exist κ1, · · · , κp > 0 such that

T0 −
p∑

i=1

κ−1
i Ti ≤ 0 (21)
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Theorem 3.1. The sampled-data active suspension system (11) with a consideration of
actuator saturation is said to be asymptotically stable and meets the suspension perfor-
mance (4)-(5), if there exist P > 0, Q > 0, and R > 0 such that Φ(α) ∗ ∗

P Ā(α) −PR−1P ∗
C1(α) 0 −I

 < 0 (22)

[
−νP ∗
C2 −I

]
< 0 (23)

where

Φ(α) =


PA(α) + A(α)TP +Q−R ∗ ∗ ∗ ∗
CTKTHT

1 B(α)TP +R −2R ∗ ∗ ∗
0 R −Q−R ∗ ∗

B(α)TP κHKC 0 −κI ∗
BωP 0 0 0 −γ2I


Ā(α) =

[
hA(α) hB(α)H1KC 0 B(α) hBω

]
C1(α) =

[
C1(α) 0 0 0 0

]
Proof: Choose a Lyapunov functional candidate for the system (17) as

V (t) = xT (t)Px(t) +

∫ t

t−h

xT (s)Qx(s)ds+ h

∫ 0

−h

∫ t

t−h

ẋT (v)Rẋ(v)dvds (24)

Then we have

V̇ (t) = 2xTPA(α)ξ(t) + xT (t)Qx(t)− xT (t− h)Qx(t− h)

+ h2ẋT (t)Rẋ(t)− h

∫ t

t−h

ẋT (s)Rẋ(s)ds
(25)

From Lemma 3.1, we have

zT1 (t)z1(t)− γ2ωT (t)ω(t) + V̇ (t) ≤ ξT (t)[Φ0(α) + h2AT (α)RA(α)]ξ(t)

+ zT1 (t)z1(t)− γ2ωT (t)ω(t)
(26)

where

Φ0(α) =


PA(α) + A(α)TP +Q−R ∗ ∗ ∗ ∗
CTKTHT

1 B(α)TP +R −2R ∗ ∗ ∗
0 R −Q−R ∗ ∗

B(α)TP 0 0 0 ∗
BωP 0 0 0 0


Recalling Equation (16), we have

ψT (u(tk))(ψ(u(tk)−HKCx(t− d(t)))) ≤ 0 (27)

which can be written as

ξT (t)Φ1(α)ξ(t) ≤ 0 (28)

where

Φ1(α) = M ∗N(α)

M =
[
0 0 0 I 0

]T
N(α) =

[
0 −κHKC 0 κI 0

]
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where κ > 0. Based on Schur complement and Lemma 3.2, it can be seen that Equation
(22) is a sufficient condition to guarantee Equation (27) and

zT1 (t)z1(t)− γ2ωT (t)ω(t) + V̇ (t) < 0 (29)

Under zero initial conditions, integrating both side of Equation (29) yields

0 < V (t) <

∫ t

0

[ωT (t)ω(t)− zT1 (t)z1(t)]dt (30)

from which ‖z1(t)‖2 < γ‖ω(t)‖2 can be easily obtained for all nonzero ω(t) ∈ L2[0,∞),
H∞ performance is then established.

Defining inf{(V (0) +
∫ t

0
[ωT (t)ω(t) − zT1 (t)z1(t)]dt} = ϑ, where ϑ = ν−1z22max(ν > 0),

we can obtain

xT (t)Px(t) < V (t) < V (0) +

∫ t

0

[ωT (t)ω(t)− zT1 (t)z1(t)]dt ≤ ϑ (31)

from Equation (29) and Equation (24).
Recalling the 2nd performance of the active suspension system listed in Section 2, we

have

‖xT (t)CT
2 C2x(t)‖2 < z22max (32)

Note that

‖xT (t)CT
2 C2x(t)‖2 = ‖xT (t)P

1
2P− 1

2CT
2 C2P

− 1
2P

1
2x(t)‖2 (33)

Combining it with (31), it leads to

‖xT (t)CT
2 C2x(t)‖2 < ϑλmax

(
P− 1

2CT
2 C2P

− 1
2

)
(34)

where λ(·) represents maximal eigenvalue. Obviously,

P− 1
2CT

2 C2P
− 1

2 < νI (35)

guarantees Equation (32) holds. By Schur complement, one can easily know that Equation
(35) is equivalent to Equation (23).

Theorem 3.1 gives the conditions to meet the design requirements for the active seat
suspension system under the saturated control input. However, the controller gain cannot
be obtained directly due to some nonlinear items existing in Equation (22) and Equation
(23). Next we will give a method to search the controller gain by a set of tractable LMIs.

Theorem 3.2. For given scalars ρ, γ, ν and h, the sampled-data closed-loop suspension
system (11) with consideration of the saturated control input is asymptotically stable and
meets the active suspension performance (4)-(5), if there exist X > 0, W > 0, Q̃ > 0,
R̃ > 0, and κ > 0 such that Φ̃i ∗ ∗

Ãi −2ρ2X + ρR̃ ∗
C̃1i 0 −I

 < 0 (36)

[
−νX ∗
C2X −I

]
< 0 (37)

CX =WC (38)
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Moreover, the controller parameter is given by K = YW−1, where

Φ̃i =


AiX +XAT

i + Q̃− R̃ ∗ ∗ ∗ ∗
CTY THT

1 B
T
i + R̃ −2R̃ ∗ ∗ ∗

0 R −Q̃− R̃ ∗ ∗
κ−1BT

i HY C 0 −κ−1I ∗
Bω 0 0 0 −γ2I


Ãi =

[
hAiX hBiH1Y C 0 hBi hBω

]
C̃1i =

[
C1iX 0 0 0 0

]
Proof: Recalling the definition of A(α), B(α) and C1(α), from Equation (22) we have

Γi =

 Φ̂i ∗ ∗
P Āi −PR−1P ∗
C1i 0 −I

 < 0, i ∈ R (39)

where

Φ̂i =


PAi + AT

i P +Q−R ∗ ∗ ∗ ∗
CTKTHT

1 B
T
i P +R −2R ∗ ∗ ∗

0 R −Q−R ∗ ∗
B(α)TP κHKC 0 −κI ∗
BωP 0 0 0 −γ2I


Āi =

[
hAi hBiH1KC 0 hBi hBω

]
C1i =

[
C1i 0 0 0 0

]
Note that

−PR−1P ≤ −2ρ2P + ρ2R (40)

It follows that

Γ̂i < 0, i ∈ R (41)

where Γ̂i is a substitution by replacing the item −PR−1P in Equation (39) with −2ρ2P +
ρ2R.
Defining P−1 = X, XQX = Q̃, XRX = R̃, KW = Y , J1 = diag{X,X,X, κ−1I, I,X,

I} and J2 = diag{X, I}, pre- and post-multiplying (41), (23) and their transposes, re-
spectively, together with Equation (38) we can obtain Equations (36) and (37) hold. This
completes the proof.
It is observed from Theorem 3.2 that Equations (36) and (37) are feasible problem of

LMIs; however, the equality constrain in Equation (38) is difficult to deal with. Now we
introduce the following algorithm to address this problem.
It is noted that Equation (38) is equivalent to

trace
[
(CX −WC)T (CX −WC)

]
= 0 (42)

It can be converted to the following optimization problem by using Schur complement
[

−εI ∗
WC − CX −I

]
< 0

ε→ 0

(43)

where the scalar ε is a small enough positive. Then the controller gain can be obtained
by (36), (37) and (43).
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Remark 3.3. In [20, 21], the output matrix C is assumed to be full rank; however, in this
study, C is not a square matrix. Although some intelligent optimization algorithm can be
used to find feasible solutions on continuous-time system with SOF control design, for the
sake of technical simplicity, we take the above algorithm to tackle this problem.

4. Application Example. The nominal values of the quarter-car model [8, 22] are listed
in Table 1. The proposed approach will be applied to design the controller for the active
suspension system.

The uncertainties of human body in Equation (11) can be expressed as

mh1 = 43.4(1 + θ), mh2 = 7.8(1 + θ)

where |θ| ≤ 0.1.
The following 3 different road profiles are considered to illustrate the effectiveness of

our proposed method.

a. Shock (see Figure 2(a)). Shock (Single bump) are discrete events of relatively short
duration and high intensity, for example, an isolated bump or pothole in an otherwise
smooth road surface. Such a disturbance can be described as [8]

zr(t) =

{
A
2

(
1− cos

(
2πV0

l
t
))
, 0 ≤ t ≤ l

V0

0, t > l
V0

where A is the height of the bump and l is the length of the bump. Here we choose
A = 0.06m, l = 5m, V0 = 4.5(km/h).

b. Zero-mean white noise as a disturbance ω(t) (see Figure 2(b)). It represents a case
of rough road profile.

c. Superposition of multi-nonlinear functions with different frequency (see Figure 2(c)).
It can be described as

zr(t) = 0.02 sin 2πt+ 0.001 sin 10πt+ 0.001 sin 16πt

by which one can analysis the influence on the suspension system with various fre-
quency.

Table 1. Nominal value of the quarter-car model

Model parameters Symbol Values Unit
Body mass mh1 +mh2 43.4+7.8 Kg
Body damping rate ch 1485 Ns/m
Body stiffness kh 44130 N/m
Sprung mass ms 972.2 Kg
Suspension stiffness ks 42719.6 N/m
Suspension damping rate cs 1095 Ns/m
Wheel assembly mass mu 113.6 Kg
Tyre stiffness kt 101115 N/m
Tyre damping ct 14.6 Ns/m

From the technical requirements of the active suspension system stated in Section 2, the
following technical parameters are taken: γ = 8, H = 1, H1 = 0.5, umax = 1600N, z2max =
0.03m and h = 10ms. From Theorem 3.2 together with its corresponding algorithm, we
can obtain the controller gain K = 105 × [1.3110 0.2109 0.2233 − 0.0399].



290 Y. WENG AND Z. CHAO

0 1 2 3 4 5
0

0.05

0.1

Time (s)

z
r

(a):   Shock

0 1 2 3 4 5
−0.1

0

0.1
(b):   Zero−mean white noise

Time (s)

ω
(t

)

0 1 2 3 4 5
−0.5

0

0.5
(c):   Superposition of functions

Time (s)

z
r

Figure 2. Three tyres of
road profile

0 1 2 3 4 5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time (s)

su
sp

en
si

on
 d

ef
le

ct
io

n 
(m

)

 

 
pasive
active

Figure 3. Suspension deflec-
tion under bump excitation
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Figure 4. Body acceleration
under bump excitation

0 1 2 3 4 5
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Time (s)

po
w

er
 o

f t
he

 a
ct

ua
to

r 
(N

)

Figure 5. Control force un-
der bump excitation

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

bo
dy

 a
cc

el
er

at
io

n 
(m

/s
2 )

 

 
pasive
active

Figure 6. Body acceleration
under white noise disturbance
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tion under white noise distur-
bance
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Figure 8. Body acceleration
under superposition of func-
tions

0 1 2 3 4 5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (s)

su
sp

en
si

on
 d

ef
le

ct
io

n 
(m

)

 

 
pasive
active

Figure 9. Suspension deflec-
tion superposition of functions

Next we will evaluate the control quantities from the following aspects: 1) Body ac-
celeration z1(t); 2) Suspension deflection z2(t). The responses of the active suspension
control system under isolated bump are plotted in Figures 4 and 5, from which it can be
seen that the better performance can be got in comparison with the passive mode wherein
no actuator is used to provide the active force. Under the disturbance of shock case, the
response of body acceleration converges to zero quickly with attenuation ratio around 6:1,
settle time around 1.5s and little overshot by using the designed controller subjected to
the nonlinear saturation shown in Figure 5. From Figure 4, one can see that the ride
comfort is greatly improved, and the safety can be guaranteed from Figure 3.

Figures 6 and 7 demonstrate the effectiveness of the designed controller for the suspen-
sion system under white noise disturbance from ground. The responses of body accelera-
tion and suspension deflection are shown in Figures 8 and 9, which illustrate the proposed
method can also lead to good control performances under the road profiles with differ-
ent frequencies, especially in 4-8Hz frequency range which is regarded as more sensitive
frequency range to human bodies in the vertical direction according to ISO-2631. From
Figures 6-9, one can be seen that the output feedback controller constrained by nonlinear
sector saturation can also meet the active suspension design requirements.

5. Conclusion. This paper has investigated sampled-data robust H∞ control of the ac-
tive suspension system. Based on the requirements of the control performance, such as
ride comfort, good handling, and bounded control force, the output feedback control strat-
egy is proposed due to some unavailable physical variables. The controller design is then
cast into a convex optimization problem with LMI constraints. Simulation results indicate
the designed controller can meet the requirements of the active suspension system against
different disturbances.
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