International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 1, February 2014 pp. 101-113

EFFECTIVE GRAPH REPRESENTATION SUPPORTING
MULTI-AGENT DISTRIBUTED COMPUTING

ADAM SEDZIWY

Department of Applied Computer Science

AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Krakéw, Poland
sedziwy@agh.edu.pl

Received December 2012; revised April 2013

ABSTRACT. The parallel processing is an effective approach to solving those high com-
plexity problems which may be represented as a set of independent or loosely coupled
subproblems. In the latter case, however, the critical factor for a computation time is an
overhead generated by communication among particular subtasks. The decomposition of
a graph-based computational problem allows transforming it into a set of subproblems to
be processed in parallel. A decomposition method should guarantee a good performance of
parallel computations with respect to communication and synchronization among agents
managing a distributed representation of a considered system. In this paper we present
the novel method of a decomposition, reducing coupling among subproblems and thus
minimizing a required cooperation among agents. Comparison and performance tests are
also included.

Keywords: Graph, Slashed form, Distributed computing, Multi-agent system, Lighting
computations

1. Introduction. Application of multi-agent systems in such domains as smart grid
systems or distributed information processing enforces using solutions based on scalable,
dependable and computationally effective formal models. Such models have to support
decomposability (required for achieving the scalability) and, on the other side, efficient
cooperation of agents.

Graph-based formal models are appropriate for such purposes and provide a flexible and
widely used modeling framework for solving various types of problems, either dynamic
or static, in such areas as system specification, software generation or task allocation
control [7, 13]. The limitation for their applicability is the time complexity of parsing
or membership problems. It may be overcome, however, by using distributed computa-
tional paradigm or by decreasing an expressive power of a graph grammar if possible.
GRADIS (GRAph DIStributed) multi-agent environment designed to perform such dis-
tributed graph transformations was presented in [8, 11].

Multi-agent systems are used in computer aided design (CAD) related problems in the
automotive industry [2], in constructional tasks [18], collaborative systems [12] or the
adaptive design [10]. The domain lying on the border of CAD and control problems is
large-scale intelligent lighting [14]. Large-scale intelligent lighting (abbrev. LaSIL) prob-
lem consists of two subproblems. The first one is designing a distribution of lighting
points in an urban area in such a way that values of given lighting parameters (lumi-
nance, threshold increment and so on) meet compulsory standards and, on the other side,
exploitation costs generated by a power consumption are minimized [15]. The second sub-
problem is designing a smart, adaptive lighting control system supported by distributed
sensors, working in the mode of a weak real time system. Such a system may be a part

101

102 A. SEDZIWY

of a smart grid solution (see Green AGH Campus [16]). The similar problem, namely
computer simulation of an adaptive illumination facility was solved using environment
descriptions based on cellular structures (Situated Cellular Agents and Dissipative Mul-
tilayered Automata Network) [1]. The weakness of this approach, however, is the limited
applicability to problems formulated above.

LaSIL problems are characterized by the high computational complexity of underlying
computations. Solving the first LaSIL subproblem (i.e., setting up an optimal distribu-
tion of lamps) is a compound of multiple nonlinear multidimensional and multiobjective
optimization tasks. In the second phase (i.e., lighting control) optimizations which follow
environmental changes are performed. The crucial constraint of this phase is a limited
system adaptation time. Note that the second phase is perpetual.

As the lighting computations may be broken into separate (or weakly coupled in over-
lapping areas) local tasks, the first step to be done is assigning an appropriate repre-
sentation to a problem. The graph formalism seems to be the most convenient one for
solving LaSIL due to its correspondence with the problem structure and the mentioned
capability of modeling system architecture and dynamics implied by changes of an ac-
tual environmental state. Fragmentation of a problem’s graph representation into a set
of smaller subtasks precedes a multi-agent system deployment, which enables a parallel
problem solving.

In the paper we introduce the slashed representation model which replaces the formalism
of RCGs (Replicated Complementary Graphs) [9] used in the GRADIS environment. Such
replacement is possible because the specificity of LaSIL problem eliminates the need for
replicating fragments of subgraphs. The slashed representation, unlike RCG approach,
does not support replication but reduces and simplifies a cooperation between agents and
thereby improves a system performance and dependability. The novelty of the approach
is that each shared element (so called dummy node) is common for exactly two subgraphs
and does not depend on a decomposition structure. The consequences of this fact are
discussed in detail in Section 6.

The article is organized as follows. In Section 2 the concept of replicated complemen-
tary graphs is sketched. Section 3 introduces the notion of the slashed form of a graph
and the related algorithms. Section 4 describes Incorporate procedure for a slashed repre-
sentation: execution time of this procedure may generate significant contribution to the
total computation time. Section 5 presents the performance comparison for RCG and
slashed representations, and the analysis of the performance of the FIPA (Foundation for
Intelligent Physical Agents) compliant multi-agent system performing exemplary photo-
metric computations. Section 6 contains the discussion on an effectiveness issue. Final
conclusions are presented in Section 7.

2. Related Work — Replicated Complementary Graphs. The Replicated Comple-
mentary Graphs (RCG) concept enables a decomposition of a centralized graph model
of a system into a set of subgraphs (so called complementary graphs) with replication of
some fragments of those graphs. Decomposition is based on a recursive splitting of a cen-
tralized graph. Split procedure may be described as follows. A given graph G is divided
into two subgraphs Gy, G in such a way that nodes which are shared by G; and G5 (so
called border nodes) are replicated together with edges connecting them with other border
nodes common for both subgraphs. Borders between RCGs obtained by a decomposition
of a centralized graph may change in a result of incorporating one or more border nodes
by agents maintaining particular complementary graphs. The detailed description of In-
corporate procedure for that approach may be found in [11]. In certain circumstances the
replication of a given fragment may be performed instead of incorporating it, for example

EFFECTIVE GRAPH REPRESENTATION 103

(1.2)

(b) (c)

FIGURE 1. (a) G in the centralized form. The dotted line marks planned
borders of decomposition, (b) {G1, Gy, G3} — the complementary form of
G, (c) the complementary form of G after incorporating (—1, 1) into Gi.

in the case when an agent needs to know a neighborhood of a given vertex and no changes
are made on that neighborhood. That results in a lower complexity expressed in a number
of exchanged messages.

The exemplary graph and its replicated complementary form are shown in Figure 1.
The RCG form of G has only one border node shared by all subgraphs (node indexed
with (—1,1) in Figure 1(b), marked with the double circle). Nodes (1,1), (1,3) belonging
to GGy are replicated and attached to G5 together with the connecting edge and two edges
incident to the vertex indexed with (—1,1). They are labeled with R in Gj.

Figure 1(c) presents the complementary form of G' (shown in Figure 1(b)) after incor-
porating (—1,1) into G3. Performing that operation required locking replicas of (—1,1)
together with adjacent nodes: (1,1), (1,3), (2,1), (2,3), (3,1), (3,3). After completing
the operation the reindexation of corresponding nodes was made.

3. Slashed Form of Centralized Graph. The concept of the slashed form of a central-
ized graph aims at reducing coupling among subgraphs (generated by border nodes) in a
distributed representation and thereby simplifying operations performed by maintaining
agents in a distributed environment. The basic idea of that approach is splitting edges
rather than the multiple replication of existing nodes of a centralized graph as it was
made in RCG environment. The formal definitions are presented below.

Definition 3.1. (XY, %€, A)-graph is a triple G = (V, E, p) where V is nonempty set of
nodes, E C V x (X¢ x A) x V is a set of directed edges, p : V. — X" is a labeling
function, XV and ¢ denote sets of node and edge labels respectively and A is a set of edge
attributes. We denote the family of (XY, %3¢, A)-graphs as G.

Definition 3.1 modifies the (X7, ¥¢)-graph notion (see [9]): we change the edge structure
from V' x X¢x V to V x (£¢x A) x V in order to store all required data in edge attributes.
These data include slashing details (e.g., geometric coordinates) but also problem specific
information (e.g., architectural details of adjacent buildings). (X, X¢)-graph definition
can be also extended, e.g., by introducing an attributing function for nodes, but such an
extension does not impact further considerations so it will not be considered here.

Definition 3.2 (Slashed form of G). Let G = (V,E,¢) € G. A set {G;} of graphs is
defined as follows.
e Gi=(Vi, Ei, ;) € G and V; = C;UD;, C;ND; = 0, where C; is a set of core nodes,
D, denotes a set of dummy nodes and ¢; = ¢|v,,
o |J,Ci =V where C;, C; are mutually disjoint for i # j,
o Vv e D;3AW' € D; (i # j) such that v’ is the replica of v; Vv € D; deg(v) =1,

104 A. SEDZIWY

e Ve € F; : e is incident to at last one dummy node.

An edge incident to a dummy node is called a border edge. The set of all border edges
in Gy is denoted as E?. A set E¢ = E; — E? is referred to as a set of core edges of G;.
Let M = X¢ X A, then a set {G;} as defined above is referred to as a slashed form of
G, and denoted G, iff following conditions are satisfied.

1. VG¢ = (Ci, B¢, ¢il¢,), 3H; € G+ H; =~ G¢ (a denotes an isomorphic mapping between
graphs) and H;, H; are disjoint for i # j.

2. 3f : M? — M — a bijective mapping ¥(e,e') € E! x EV (i # j) such that (i)
e = (xe,mv) €C; x M x Dy, e = (v',m',y,) € D; x M x Cj, (ii) v' is a replica of
v:3Ale;; = (x,me,y) € E such that z, = a(z), y. = a(y) and f(m,m') = me. e;; is
called a slashed edge associated with replicated dummy nodes v, v'.

3. Ve = (z,m,y) € E: (i) Ale. € E for some i, such that e. = a(e) or (i) I (v,v") €
D; x Dj for some 1, j, such that e is a slashed edge associated with v and v'.

G; € ¢ is called o slashed component of G.

Note that f mapping recovers labeling/attributing data of a slashed edge basing on a
labeling/attributing of given border edges.

Remarks. (i) To preserve the clarity of images we neglect the attributing/labeling of
graph edges in figures. (ii) A border edge incident with a dummy vertex v will be denoted
as e,. Similarly, a border edge incident with a dummy node indexed with an index id will
be denoted as e;q4.

One can slash a core edge e = (z,m,y) € G to a pair of border ones e; = (z,m,d),
ey = (d, ma,y) in such a way that a dummy node d refers to the same physical entity as
x does. In particular when G and d represent points of R? or R?® space. Thus, using a
slashed representation does not generate additional geometric data related to a slashing
point.

Example 3.1. Let us consider the street area S (Figure 2) in which traffic is described by
the cellular automaton (CA). In a graph representation a street is modeled by an edge while
from a CA perspective one views S as a rectangular grid ([17]). To ensure consistency of
those two representations one has to encode a geometric structure of S as a graph edge
attribute. Assuming that the considered street has the rectangular shape with no holes, and
that coordinates of corner cells are given by vectors P; (i =1,...,4), an edge e = (x,m, y)
describing S may be characterized by

1 1
T = §(P1 +Py), y= §(P2 +P;3), X°xA3m= (0., {P1,P2,P3,Py}),

where o, is some edge label. To parallelize computations performed on CA we will decom-
pose grid by slashing it together with its “dual” (i.e., graph) representation. To do this we
select two points (Sq,Ss) corresponding to the related dummy node. Thus we obtain the
following border edges associated with respectively CAy and CAs which replace CA:

€1 = (x,ml,d), €y = (da m27y)7
where d = %(Sl + 82)7m1 = (017 {Ph 817 827P4})7m2 = (027 {817P27P37 SQ}) and 01, 02

are some arbitrary edge labels.

In Figure 3 the centralized and the slashed form of the given graph G are shown.
Core nodes are marked as circles and dummy ones as squares. The following indexing
convention is used for slashed components (see Figure 3(b)). A core node index has the
form (i, k) where i is a unique, within ¢, identifier of a slashed component G; and k is a
unique, within G}, index of this node. A dummy node index has the form (-1, k), where
k is a globally unique identifier of a node. Additionally, a subscript r denotes a reference

EFFECTIVE GRAPH REPRESENTATION 105

P Sz P
CA, | CA,
i
R S1)

F1GURE 2. The rectangular street area & and slashing points S;,S,. CA;
and CA, denote cellular automata ascribed to relevant areas.

FIGUrE 3. (a) Graph G, (b) @ representation

to a slashed component (or its maintaining agent) hosting a replica of a given dummy
node. Using such a subscript allows for immediate localization of a replica. To simplify
the notation subscripts will be neglected within the text, unless needed. Note that a
dummy vertex and its replica share a common index and differ in reference subscripts
only: (=1,k),, (=1,k),.

Definition 3.2 introduces the formal background for decomposition of a graph belonging
to G but it is poorly applicable in a practical use. Switching between centralized and
slashed representation is enabled by two algorithms, Split and Merge, which are introduced
below.

Algorithm 1: Split(G, V)
input : G =(CUD,FE, ¢)— graph to be decomposed, V, C €' — a subset of the set
of core nodes
output: ¢ = {G, G} where G; = (C; U D, E;, ¢;)
begin
Cy «— V.. Dy +— all dummy nodes from D, adjacent to V, in G;

1
2
3 FE, — all edges connecting nodes from C| U Dy in G;

4 1 "1'5|C-‘1UD1:

5 Cy —V =V, Dy — all dummy nodes from D, adjacent to C' —V, in G;
6 E5 « all edges connecting nodes from CsU D5 in G

7 P2 "1:|C-‘2UD2:

8 Eoonn < all edges from E connecting V, and C' — V, in G

9

foreach Edge ¢ = (x,m..y) € Eopnn do
10 Create dummy node » and its replica v'; Set pq(v), pa(0'):
11 (m,m’) «— f~Hme); ey« (x,m,v0), ey «— (', m/ y) Y
12 Dl — Dl LJ {l} E1 — El LJ {Elv}l_ Dg — DQ L {2:"}; Eg — EQ LJ {61‘:};
13 end

14 return {G, Go}

Split. It is assumed that G = (C U D, E,p) € G is given, where C' is a set of core
nodes, D denotes a set of dummy ones and V., C C. Initially, for G representing a

106 A. SEDZIWY

main graph, D = (). Algorithm 1 presents splitting G € G into two slashed components
G1, Gy (i.e., & = {G1,G3}) according to the given set V. of core nodes. To obtain a
deeper decomposition, the Split procedure has to be applied recursively on GG. The time
complexity of Algorithm 1 is O(|E|) = O(]C U D|?). In a result of performing the Split
procedure on GG; a new component is produced. Replicas of dummy vertices which have
been moved from G; to this new component have to be requested to change references of
hosting components in their indices.

Merge. Having a slashed form of G, & = {G,Gs, ..., Gy}, one can reassemble a central-
ized representation, (G. It may be accomplished by iterative calls of the Merge procedure
described by Algorithm 2 which matches replicas of particular dummy nodes and corre-
sponding border edges. The time complexity of Algorithm 2 is O(|E|) = O(|C' U D]?).

Algorithm 2: Merge(G,.G))
input : G;.G; - slashed components G; = (C; U D;, E;., ;) to be merged
output: (;; — graph obtained as a result of merging input ones

1 begin
2 Deemmen — Ay e D; ' € Dy v is the replica of v};
3 D;’om?non — I't‘ph(“d.b (:)f D;__’Oﬂl?n(_ﬂl ill (;fj:
Bl al . COTNITLOT COTNITLON Y .
4 (xin(in(.-J, D;J H(Dz‘*Di)U(DJ‘*Dj)

5 E;; « (E; — {Edges of G; incident to Doy U (E; —

{Edges of G incident to D" 1)

“I:U — ("f:? U ‘Tjj) C'ij'UD”:-

for e, = (v,m,v) € Ej e = (v',m',y) € E; where v’ is the replica of v ' do
L me «— f(m,m'); E;; — E;; U{(2,me,y) }s

9 end
10 return G;; = (C;; U Dy, By . 045)

4. Incorporate Procedure for Slashed Representation. Incorporate procedure is the
most frequently performed operation in an agent system being considered. For this reason
its efficiency impacts strongly on the overall system performance. A slashed component’s
border consisting of all its dummy nodes, may be shifted by calling Incorporate on a
given border edge e, incident with a dummy vertex v. It is accomplished by matching
v and its replica v' being an endpoint of a border edge e, in another component and
recovering an underlying edge form e, and e,,. Thus exactly one core node and possibly
some dummy ones are attached to a given component. Figure 4 presents the slashed form
of some G' and the change in ¢ implied by incorporation of the border edge e, ;) by
GGy which will be called an initiating component. Let us consider this example in detail.
The operation Incorporate(G;, e,) for G; and the border edge e, incident with the dummy
node v = (—1, 1)y consists of following steps:

1. Get the replica of v, namely v = (—1,1);, localized in G5 (as referenced by the
subscript of the v’s index).

2. Attach the core node u indexed by (2,1), neighboring v/, to G; and reindex u to
(1,3) (for the compliance with the indexation in G1).

3. Attach to Gy all border edges incident to u. Let us assume WLOG that a border edge
eq = (u,m,d). Two scenarios are possible. In the first one a dummy vertex d (in the
example d indexed with (—1,2)) has a replica d’' in an initiating graph. In that case

le, = (v,m,z) and e, = (y,m',v’) if e is directed inversely.

EFFECTIVE GRAPH REPRESENTATION 107

FIGURE 4. (a) ¢ = {G1,G2,Gs}, (b) G after incorporating e(_1,1) by Gy

d, d' are removed and a corresponding slashed edge e is recovered (in Figure 4(b)
e = ((1,3),me,(1,2))). In the second scenario d does not match any dummy vertex
in an initiating graph and it is attached together with e; to an initiating graph. Note
that e; may not be split because an edge belonging to a slashed component may be
incident with at last one dummy node.

4. Split all edges connecting u with other core nodes (see splitting in Algorithm 1, line
9 and next). Resultant dummy vertices are attached to the initiating graph together
with incident edges. The edge e = ((2,2),me, (2,1)) shown in Figure 4(a) has been
split, resultant e_ 5 = ((—1,5),m, (1, 3)) has been attached to G (note that u was
reindexed previously) and e/_, 5 = ((2,2),m’,(—1,5)) remains in G».

Incorporate(Gy, ,) procedure execution has one phase only. Let us assume that v’ is a
replica of v and ¢ is a core node being the neighbor of v'. To perform Incorporate(Gy, €,,)
an initiator agent (say Ap) sends a commit request to a responder agent (say A;) to gather
c vertex and its neighborhood (which may contain newly created dummy nodes). A; may
either supply requested nodes/edges or reject a request (a response is locked) if one or
more of requested nodes/edges are already locked by some other initiators. If A, was
replied with a requested subgraph then it sends update requests to agents maintaining
replicas of all dummy vertices which just have been attached to Go. Ag requests to update
references for replicas of those vertices. Note that references to those agents are known to
Ag as they are included in dummy nodes’ indices. It is assumed that each agent keeps the
information where his particular dummy nodes were moved to. Hence, if an agent being a
recipient of an update message has not a dummy vertex replica ¢’ to be updated, because
u' node was previously moved to some other slashed component (G}, then it forwards
update request to the corresponding agent A, and informs Ay that a replica location
changed. In the case when a response from A; is locked A, repeats the operation with
a random delay.

The Incorporate protocol described above is more efficient compared with its form used
in the case RCG representations which acts according to the 2PC protocol semantics.

Figure 4(b) demonstrates an index update: after incorporating e(_q,1) by G the index
(—1,4), in slashed component G3 has changed to (—1,4);.

5. Performance Tests. To compare the effectiveness of RCG and slashed representa-
tions we conducted two tests. In the first one we compared both the number of messages
sent by agents during the operation of an optimization of a set of subgraphs and the final
number of produced subgraphs. For the better efficiency of a multi-agent system popu-
lated on this set and solving a LaSIL problem, a number of included subgraphs should be
low. In the second test we compared a convergence of the relaxation algorithm for both
approaches.

108 A. SEDZIWY

The goal of the third test was investigating effectiveness of the computations based on
slashed representation with respect to CPU resources.

Multi-agent system architecture. The multi-agent system used in tests consisted of
two types of agents. Operational Agent (OA) was responsible for recursive decomposition
of a problem into smaller subproblems and, when the required subproblem size had been
reached, making the photometric calculations. Algorithm 3 presents a life cycle of an OA.
It may be noted that each OA is capable of creating new OAs when it finds that its graph
order exceeds some arbitrary value. A decomposition method used in the algorithm is the
simple bisection but other schemes may be also used.

Algorithm 3: OALifeCycle(&)
input: & — graph maintained by OA

1 begin
2 while Number of core vertices in G > mazimum acceptable number of core
vertices in a problem do

3 N, «+ number of core vertices in G

4 k=%

5 H « subgraph (slashed component) of & such that H has at last &k core
vertices;
G+— G- H:
Create new Operational Agent on H: // starting OALifeCycle (H)

// on newly created DA

8 Compute the average illuminance on each street represented in G

9 Report results to the Registry Agent:

10 Terminate vourself:

11 end

Registry Agent’s (RA) goal was gathering the results received successively from partic-
ular OAs. The supplementary capability which enables an RA to resolve a problem of
missing results (caused by OAs’ failures) may be easily added to a Registry Agent. It
may be achieved by creating extra OAs assigned to subgraphs for which result data were
lost.

Number of messages and subgraphs. In the first test, the optimization objective
was achieving equally sized subgraphs (see [11]). In both cases the following relazation
method was applied.! If a given subgraph G, has an optimal size then no action is
undertaken. Otherwise some neighboring subgraph G} is selected and incorporated into
(; and next, the resultant G! is split into GY, G} such that |V (GY)| =~ |V (G}.)| (Figure
5). Updating messages are sent by a maintaining agent while executing incorporate and
split operations.

The technical details of the test are the following. First, the random 2000-node IE-
graph G (see [4]) was generated as an input for the relaxation process performed for
both approaches (i.e., for RCG and slashed forms). Next, for each representation, G' was
decomposed into subgraphs having not more than 3 nodes/core nodes and, in the sequel,
the relaxation was performed. The subgraph target size for the system self-optimization
process was set to 30 &= 5. The process was interrupted when the ratio of optimized
subgraphs reached 90%. Then M,,; — a total number of messages sent by the agent system

!The relaxzation described here is inspired by the numeric method of solving the BVP for the stationary
temperature distribution V2T = 0: in both cases we iteratively compute an average of values ascribed to
a given element and neighboring ones.

EFFECTIVE GRAPH REPRESENTATION 109

P Qf@))
&9 @*@

FIGURE 5. The relaxation method concept: an agent maintaining the graph
G selects G (at left), then averages both sizes by moving some vertices
from Gg to Gl.

TABLE 1. Test results

Parameter RCG Slashed
Variability range (Zyer) [8571,204274] [5819,19165]
Averaged number of sent messages (M.,’) 24106 7902
Average final number of agents (Q*") 84.4 37.7
Standard deviation for Q*9 (o) 1.5 1.4

Cumulative percentage
100 -

zg —RCG N
20 ---Slashed
60
50
40
30
20
10 Number of messages [x1000]
1] Db
1 11 21 31 41 51 61 71 81 91 101
(a) (b)

FIGURE 6. (a) Cumulative frequency distribution for total numbers of
updating messages sent in optimization process, (b) OpenStreetMap of
Dubrovnik, Croatia,

was recorded. Such a single test pass was repeated 1000 times and following statistics
were calculated: cumulative frequency distribution for M;,, averaged number of sent
messages M9 = % ZZJ\LI Miot,i, where N = 1000, and the variability range I, = [n1, n2]
for Mo, where n; = min; M,,; and ne = max; My, ;. Table 1 shows results obtained
for both representations. The cumulative frequency distributions (normalized to 100%)
for M, generated for both RCG and slashed forms are presented in Figure 6(a). This
chart shows for a given number of messages m, what percent of all test passes, produced
a total number of messages less than or equal to m. The test described above shows that
even for sparse graph structures like [E-graphs the average number of sent messages was
reduced by 3.05.

The average final number of agents was computed as Q*Y = % vaz | @i, where Q;
is a final number of agents for an ith test pass. Additionally standard deviation o was
calculated while testing each representation. The results given in Table 1 show that the
number of agents in the RCG underlaid multi-agent system is 2.2 times higher than that
for the slashed one.

110 A. SEDZIWY

Convergence. To compare the convergence of the relaxation algorithm for both graph
representations, the Dubrovnik city map was used as the test case (Figure 6(b)). Similarly
as in the first test, the goal was decomposing centralized graph Gp,, corresponding to
the selected map into equally sized subgraphs, where the target size was set to 20 + 4.
The order of Gpy, was |V| = 4105 and the size |E| = 4547. Such a decomposition is
the preliminary action for LaSIL problems, prior to the optimizing or controlling tasks
which are performed on resultant subgraphs. The test showed that for the RCG data
model the system cannot be optimized. After about 5 iterations the ratio of optimized
subgraphs stabilizes around the average 5 = 55.4% and fluctuates with the standard
deviation o = 3.4 (the acceptance threshold for the optimization was set to 90% for both
representations). For the slashed form the ratio of optimized subgraphs reached 91.9% in
310 iterations.

Speedup. In this test we measure the total time of computations (i.e., computations
for entire considered urban area) in dependence on the number of concurrently running
threads (N;). As the test case we use a multi-agent system making photometric compu-
tations. The detailed background of the test may be sketched by means of the following
three logical layers.

Graph layer. As previously the area was given as the OSM map of an urban space (the city
of Rome, Figure 7). The map (or precisely, its layer related to roads) was transformed to
the graph (2631 nodes, 2888 edges) which was recursively decomposed by the multi-agent
system into the slashed form. The recursion was stopped when a subgraph contained not
more than 30 core vertices.

Agent layer. This tier was described at the beginning of this section. From a test per-
spective it should pointed out that only one thread is associated with each agent, either
OA or RA.

Calculation layer. The goal of computations was calculating the average illuminance of
each street belonging to the given area. Computations were made in compliance with
relevant standards (European standards EN 13201:3).

The multi-agent system was implemented on JADE which is FIPA compliant agent
framework [3, 6]. The speedup test was performed on the eight-core processor AMD X8
FX-8150 (one thread per core).

An input for a single test pass was the number N; of threads which were allowed to
run concurrently. An output value was the time T'(N;) required to complete photometric
computations for the given city area. To smooth the fluctuations of results related to non

FIiGUrRE 7. Part of Rome, Italy, whose graph representation was processed
in tests (source: OpenStreetMap)

EFFECTIVE GRAPH REPRESENTATION 111

w
o

8

~
o

3

8

w
o

AVERAGE COMPUTATION TIME [sec]
u
o

L)
o

=
o

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NUMBER OF CONCURRENT THREADS

Ficure 8. Computation time as the function of the number of concurrent
threads. Particular series correspond to different N, of decomposition.

N
o

"]
8

g

~
8

@
8

]
8

w
8

]
8

AVERAGE NUMBER OF AGENTS
Y
8

8

0 © m
W w w m m m m m m — -
0
n L] n n [=] (=3 (=1 [=] [=3 o [=] o o (=3 o [=] o [=]
- o~ m L3 =] =3 =] (=] =] =] (=] (=] o =1 =] =] (=] (=
- o0 wn M~ o - m n ~ a - o n r~
- - - - - ~ o] o~ ~

MAX SLASHED COMPONENT SIZE

FIGURE 9. Average number of agents as the function of maximum subgraph size

deterministic system behavior such a single test pass was repeated n = 5 times and the
average time Tg,,(N;) = %ZL T;(NV;) was taken as a final output for a particular Nj.
This procedure was applied repeatedly for various values of the maximum subgraph order
N. (defined as a number of core vertices in a subgraph) assumed for a decomposition: the
system behavior was tested for N, € {5,10,...,50,100,200,...,2700}.

Figure 8 presents results obtained for selected N, values. As it could be expected
for small subgraphs, the minimum time was reached for the number of threads equal to
the number of processor’s cores. With increasing N, a number of concurrent calculating
agents (threads) decreas so speedup effect is either weak or absent. It is visible as flattening
of corresponding charts (e.g., for N, = 2700). The relation between N, and the average
number of agents is shown in Figure 9. It may be seen that for some 500 < N(fhmh"ld < 600
the number of agents falls below 8. It means that for the decomposition with N, >
Nthreshold ot all processor’s cores are used so the speedup effect will be limited to the
actual number of active ones.

6. Discussion. Let us compare formally the complexities of Incorporate operations in
both cases, for RCG and slashed representations. In RCG approach each border node is
shared by at least two and at last k graphs, where k is the total number of complementary
graphs (maintaining agents). For this reason an operation of incorporating a single border

112 A. SEDZIWY

node implies cooperation among k agents. Note that such a cooperation requires simul-
taneous locking border nodes belonging to k (in the worst case) RCGs and their neighbor
vertices. Together it makes O(d-k) nodes in the worst case, where d is a maximum degree
of a node belonging to G. If any node cannot be locked then the entire operation fails. A
locking considered above is required for granting an exclusive access to those nodes to an
incorporating agent. From the statistical point of view that requirement may get difficult
to satisfy with an increasing number of agents, k. On the other side retrying a procedure
execution generates a message exchange overhead in an agent system.

In the case of a slashed representation of a graph, a completion of Incorporate requires
cooperation with one agent only and locking at last p dummy nodes and ¢ core edges
where p+ ¢ < d and d is a maximum degree of a node belonging to GG. In the other words
it is constant with respect to a number of agents.

For the RCG approach an estimated number of updating messages sent by an incor-
porating agent to other agents is O(d - k?). In the slashed representation case it equals
O(d), i.e., it is constant with respect to a number of agents.

Estimations presented above show that using the slashed representation of G' simplifies
and improves efficiency of the Incorporate operation by reducing a number of cooperating
agents from O(k) to 2, a number of locked nodes/edges from O(d - k) to O(d) and a
number of updating messages from O(d - k%) to O(d) compared with RCG model.

7. Conclusions. Applicability of an agent system for distributed processing, in partic-
ular in massive lighting computations is strongly dependent on its efficiency. The first
contribution to the reduction of the overall computing time is brought by the processing
parallelization. The second factor strongly impacting the performance of a multi-agent
system is the inter-agent cooperation.

The approach introduced in this paper allows reducing the complexity of distributed
operations based on cooperation among agents, preserving the sufficient expressive power
for a problem description. It is achieved by changing the conception of graph borders
and thereby reducing a number of exchanged messages. Also the complexity of Incorpo-
rate procedure has been reduced significantly. Such an approach does not support the
replication but in the case of the LaSIL problem this feature may be neglected.

Acknowledgment. The paper is supported from the resources of Alive & KIC-ing
project.

REFERENCES

[1] S. Bandini et al., Self-organization models for adaptive environments: Envisioning and evaluation
of alternative approaches, Simulation Modelling Practice and Theory, vol.18, no.10, pp.1483-1492,
2010.

[2] S. Baumgart et al., PLUG: An agent based prototype validation of CAD-constructions, The Inter-
national Conference on Information and Knowledge Engineering, 2006.

[3] Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org.

[4] M. Flasinski, On the parsing of deterministic graph languages for syntactic pattern recognition,
Pattern Recognition, vol.26, no.1, pp.1-16, 1993.

[5] L. De Floriani and B. Falcidieno, A hierarchical boundary model for solid object representation,
ACM Trans. on Graph., vol.7, no.1, pp.42-60, 1988.

[6] Java Agent Development Framework (JADE), http://jade.tilab.com.

[7] L. Kotulski, Supporting software agents by the graph transformation systems, Lecture Notes Com-
puter Science, vol.3993, pp.887-890, 2006.

[8] L. Kotulski, GRADIS — Multiagent environment supporting distributed graph transformations, Lec-
ture Notes in Computer Science, vol.5103, pp.644-653, 2008.

EFFECTIVE GRAPH REPRESENTATION 113

[9] L. Kotulski, On the control complementary graph replication, Models and Methodology of System

Dependability, Monographs of System Dependability, vol.1, pp.83-95, 2010.

[10] L. Kotulski and B. Strug, Distributed adaptive design with hierarchical autonomous graph transfor-
mation systems, Lecture Notes in Computer Science, vol.4488, pp.880-887, 2007.

[11] L. Kotulski and A. Sedziwy, GRADIS — The multiagent environment supported by graph transfor-
mations, Simulation Modelling Practice and Theory, vol.18, no.10, pp.1515-1525, 2010.

[12] L. Xue et al., Multi-agent architecture for collaborative CAD system, ICCSIT, pp.7-11, 2008.

[13] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation: Vol.I,
Foundations, World Scientific Publishing Co., 1997.

[14] A. Sedziwy and L. Kotulski, Solving large-scale multipoint lighting design problem using multi-agent
environment, Key Engineering Materials, vol.486, 2011.

[15] A. Sedziwy and M. Kozienn-Wozniak, Computational support for optimizing street lighting design,
Complez Systems and Dependability, Advances in Intelligent and Soft Computing, pp.241-255, 2012.

[16] T. Szmuc, L. Kotulski, B. Wojszczyk and A. Sedziwy, Green AGH campus, Proc. of SMART-
GREENS’12, pp.159-162, 2012.

[17] J. Was, Crowd dynamics modeling in the light of proxemic theories, Proc. of the 10th International
Conference on Artifical Intelligence and Soft Computing: Part IT, ICAISC’10, pp.683-688, 2010.

[18] N. Yabuki et al., A cooperative design environment using multi-agents and virtual reality, Cooperative
Design, Visualization, and Engineering, Lecture Notes in Computer Science, vol.3190, pp.96-103,
2004.

