International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 1, February 2014 pp. 115-132

A MARKET-BASED APPROACH TO THE DYNAMIC
RECONFIGURATION PROBLEM OF SERVICE-BASED SYSTEMS

ROMINA TORRES"? AND HERNAN ASTUDILLO'

!Departamento de Informética
Universidad Técnica Federico Santa Maria
Av. Espana 1680, Valparaiso, Chile
{romina; hernan }@inf.utfsm.cl

2Facultad de Ingenieria,
Universidad Andres Bello
Quillota 980, Vina del Mar, Chile
romina.torres@unab.cl

Received December 2012; revised April 2013

ABSTRACT. Modern complex distributed systems are built as service-based systems (SB
Ss), composed of Web services, which are discovered and bound (most of the time) during
runtime to handle the dynamic nature of Web service offerings. As far as we know, all
reconfiguration approaches assign to SBSs’ owners the responsibility to identify, select
and compose services that satisfy their reconfiguration needs. In practice, SBSs are not
omniscient regarding potential service providers’ partners or offer trade-offs; thus, in
most (or all) cases, service compositions to reconfigure SBSs are suboptimal. This ar-
ticle describes the market-based service reconfiguration (MBSR) approach, where service
providers and requesters are software agents and reconfigurations naturally arise from
the interaction of them. We implement MACOCO++, a multi-agent reference imple-
mentation to configure and reconfigure SBSs; the studied SBSs yield systematically better
reconfigurations, and the prototype scales up well regarding both, complezity and num-
ber of concurrent service requests. Our results show that using an agent-based market
metaphor yields better, fairer service agreements for requesters without needing a central
(and possibly unfeasible) component with global knowledge.

Keywords: Web services, Service-based systems, Service discovery, Service composi-
tion, Imperfect information, Multi-agent systems

1. Introduction. The service oriented architecture paradigm (SOA) drastically changed
the way people make software from building systems from scratch to building them by
composing distributed and heterogeneous pre-built services capable of fulfilling their func-
tional and non-functional requirements (F'Rs and NF Rs respectively) [1]. Web services
(WS) [2] are one of the most popular techniques for building versatile distributed systems
[3]. According to the W3C!, a Web service is a software system designed to support in-
teroperable machine-to-machine interaction over a network. It has an interface described
in a machine-processable format descriptor. Other systems interact with the Web service
i a manner prescribed by its descriptor using messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards [2]. A Web
service is an abstract notion (declaring their functionalities) implemented by a concrete
piece of software [2].

Service-based systems (SBSs) can be defined as flexible processes composed of abstract
Web services [4], where typically the needed (abstract) services are bound to concrete ones

thttp://www.w3.org/

115

116 R. TORRES AND H. ASTUDILLO

at design and/or deploy time. Under a closed-world assumption [5] (where the boundary
between systems and the environment is known and unchanging), these design-time ser-
vice compositions are valid architectural configurations during runtime. Unfortunately,
the dynamic nature of the services [5], where services become unavailable due to context
changes, are withdrawn by their providers or drop their quality of service (by internal rea-
sons or by being overloaded due to the growing demand of requesters) makes design-time
configurations invalid during runtime requiring SBSs reconfigure their services frequently
in order to keep satisfied the requirements. Dynamic reconfiguration is the process of
making changes to an executing system without requiring that the system be temporar-
ily shut down [6]. Typically, SBSs implement reconfiguration using (1) a requirements
monitoring component that decides when a reconfiguration is needed and (2) a reconfig-
uration module capable of discovering, selecting and composing the proper services from
a Universe of functionally-equivalent services only distinguishable by their non-functional
properties (known NP-hard problems [7]). The frequency and how the reconfiguration
process is applied (manual or automatic) depend on the internal policies of each system.

As far as we know, all the current approaches addressing the problem of obtaining
architectural configuration replacements are request-driven. They delegate the responsi-
bility to create configurations to requesters, who are not omniscient regarding the service
providers’ private information about offering trade-offs or partners affinity. Service offer-
ings are rigid, there is no space for agreements negotiations, and then typically requesters
are forced to accept the providers’ conditions. Thus, in most (or all) cases, service com-
positions to reconfigure SBSs are suboptimal reconfigurations from the point of view of
requesters.

In this article, we propose a market-based service reconfiguration (MBSR) approach
that distributes the responsibility to obtain the reconfiguration replacements to service
providers. The strategy of our proposal is to tackle the passive nature of the service
providers during the discovery and composition processes. Services become active enti-
ties in a highly competitive and collaborative environment (the “service market”). They
become aware of the SBSs’ reconfigurations needs and organize themselves to propose
reconfiguration alternatives. They compete with functionally-equivalent services in terms
of their non-functional properties (e.g., price, response time, to name a few). They col-
laborate with other functionally-complementary services to create joint proposals. And,
finally, they are willing to negotiate those negotiable aspects of their proposals with SBSs
requesters, making from the point of view of requesters, agreed final proposals fairer than
initial ones.

The remainder of this article is organized as follows: Section 2 presents the previous
related work; Section 3 describes the MBSR approach; Section 4 describes MACOCO++,
a prototypical implementation of MBSR using a multi-agent system; Section 5 describes
simulation experiments conducted to validate our assertions; and Section 6 points out
directions of future work, summarizes and concludes.

2. Related Work. The Web service architecture (WSA) [2] describes three possible im-
plementations of the service discovery component: registry, index or peer-to-peer (P2P).
In the registry and index implementations, service providers just publish their services’
descriptors into registries (e.g., UDDI?), specialized open catalogues (e.g., Seekda®) or sim-
ply into the Web (e.g., Google') and wait passively to be discovered by service requesters.
In the P2P implementation, the central index or registry of previous implementations is

2UDDI: Universal Description, Discovery and Integration of Web services
3http:/ /webservices.seekda.com/
*http:/ /www.google.com

MARKET-BASED RECONFIGURATION APPROACH 117

distributed between each service node. Then, each service provider help requesters on
finding the proper service providers by broadcasting requests to all their service node
neighbors. However, services are still passive entities of the discovery and composition
processes, resulting in suboptimal configurations because requesters are not aware of the
internal tradeoffs of the providers neither of the current affinity between them. Then, this
approach allows to explore the solution space but they are incapable of exploiting it.

From the point of view of the adaptive systems [8] (where reconfiguration is performed
each time there is enough evidence that the current configuration is violating the re-
quirements), most (if not all) used techniques to obtain an architectural configuration are
assuming that they have perfect information. Unfortunately, on the one hand, the current
degree of change of the service market [5] makes almost impossible to maintain updated
an all-known discovery service Agency, and on the other hand, always there is informa-
tion that services cannot make public (e.g., their reserved price or their internal rules to
manage their own businesses). To allow processes become flexible and adaptive, Ardagna
and Pernici [4] proposed monitoring beforehand the services to be used at each process
step in order to determine if there are better alternatives in the market (thus adding
overhead to the system). The configuration or service composition problem was formal-
ized by Ardagna and Pernici [4] as a mixed integer linear programming problem where
optimization techniques are used to solve it. Unfortunately, compositions are obtained
using a request-driven approach, where service providers are not involved (they are reg-
istry entries), and then they make decisions using incomplete information. The MOSES
framework [9] supports QoS-driven runtime adaptation of service-oriented systems, which
is needed when the QoS variability of services is not controlled by their providers, but
can be affected by the variable demand that services are attending. They are gathering
QoS information of services, but again services are not represented in this scheme and
therefore, they are obtaining suboptimal configurations. Baresi and Guinea [10] proposed
two languages to enrich BPEL processes with self-supervision capabilities, doting BPEL
processes (a special kind of service-based systems) of monitoring and recovery strategies to
adapt themselves during runtime to service violation agreements. However, again, services
are just passive entries in registries, probably with incomplete or outdated information.
The same problems can be found in the works of Filieri et al. [11] and Calinescu et al.
[12]. The highly changing degree of the service market that was identified by Baresi et
al. [5], makes almost impossible to maintain updated an “all-known” registry. There are
several proposals from the biological-inspired algorithms area, where creating flexible and
adaptive service-based systems is typically focused on the core service composition prob-
lem [13] (e.g., Ant Colony Optimization, Genetic Algorithm, Evolutionary Algorithms
and Particle Swarm Optimization), but they have the same problem: they assume that
they have updated and complete information about the services. Thus, obtain suboptimal
alternatives.

Maamar et al. [14] published the first proposal where multi-agent was used to allow
service compositions to arise from the inherent interaction of agents representing them.
Different from our approach, they focus specially on deploying the service composition
using agents. We instead focus on obtaining plausible architectural configurations (ser-
vice composition) to implement resilient service-based distributed systems given technical
specifications of software architects but without delegating the execution to agents. They
do not address how to exploit the current solution space as our proposal that allows
collaboration between service agents (e.g., creating a virtual organization) or negotiation
(between service and requester agents, e.g., to obtain a fairer agreement for the requester).
Tong et al. [15], have proposed a service agent model, which integrates web services, soft-
ware agents and ontologies. First, assuming that is possible to have a common ontology

118 R. TORRES AND H. ASTUDILLO

between services, they build a dependency graph, where the nodes are services and they
are connected if and only if there is an output from one service that is the input of an-
other. Second, each node is represented by an agent that can “speak” in the common
language that customers use (using domains ontologies). Similar to our approach, when
a customer specifies a request, an agent is created that broadcasts this request to all the
provider agents. Then, each agent analyzes alternative paths over the graph. If they can
consume the input, they try to find paths over the graph “cooperating” with other agents
in order to produce the expected output. Unfortunately, the obtained service composi-
tions or reconfiguration alternatives are suboptimal solutions from the point of view of
requesters because they cannot negotiate with providers, the agreements conditions.

Norman et al. [16] and later, Kota et al. [17], have used virtual organizations to create
and maintain service compositions against a dynamic, open and competitive environment.
Norman et al. [16] applied this approach to mobile service provisioning, and Kota et al.
[17] extended this last proposal adding it autonomic capabilities to any kind of agent
organizations. Both approaches, similar to the previous discussed works [14, 15], use the
multi-agent approach to determine the service composition, to run it, and to adapt it
(if it is not fulfilling its objectives). The novelty of the proposal of Kota et al. [17] is
that they transfer to the virtual organizations the capability to determine if they need
to adapt themselves or not according to the failure records of their members. However,
in these proposals there is no room for negotiation. It is important to notice that both,
requesters and providers have for each non-functional property a desired and reserved
value. Typically, there is an inverse relation between the desired and reserved values of
providers and requesters (e.g., for the price property, on the one hand, requesters would
like to pay the minimal price as possible, and on the other hand, providers would like to
sell at the highest possible price). Anyway, when providers bid a request, they tend to
propose for each requested property a value as closer as possible to their desired value.
Thus, agreements obtained between providers and requesters tend to be suboptimal from
the point of view of the requesters because the latter are forced to accept or reject but
not to negotiate.

Zulkernine and Martin [18] proposed a trusted negotiation broker framework where a
requester agent can negotiate with several providers using a specification model. Accord-
ing to the negotiation preferences of each agent, the negotiation broker selects the most
appropriated negotiation strategy for each agent. During this process, agents can update
the parameters of negotiation in order to reflect the current conditions of them (e.g., re-
source availability). However, this proposal does not ensure fairer agreements to all their
participants, and it allows that some can take advantage from others. It is only applicable
to service discovery process but typically SBSs’ reconfigurations are service compositions.

3. Towards a Market-Based Service Reconfiguration Approach. In the classical
service discovery model proposed in the WSA [2], on the one hand, service providers make
available their service descriptions and, on the other hand, requesters retrieve Web ser-
vice resources descriptions capable of implementing their requirements using a discovery
service. However, in this model, service providers do not (and they should not) publish
all the information needed about them to support requesters to discover a closer optimal
set of services. For instance, which is the minimal price to accept a deal, which are the
preferred providers to collaborate where they can obtain a lower cost, what are their trade-
offs between the different quality attributes, to name a few. If they would make public
this private information, they could expose themselves to situations where others could
take advantage from them. The service discovery model proposed in the WSA does not
support providers to adapt their offerings according to each specific situation. Therefore,

MARKET-BASED RECONFIGURATION APPROACH 119

service requesters (in our particular case SBSs) using the WSA are obtaining subopti-
mal reconfiguration alternatives because they are using only the incomplete information
which is available in registries. Moreover, the information could be obsolete. Thus, the
reconfiguration alternatives built by service requesters would be, potentially, better, if the
available information would improve.

Our proposal is the market-based service reconfiguration (MBSR) approach, which
transfers the responsibility to create (or maintain) these reconfigurations from the re-
questers to providers. We build a service market metaphor where service providers become
aware of both, (1) the service reconfigurations needed by the SBSs and, (2) the service
providers that are potential collaborators. Both, service requesters and providers, are
wrapped as autonomous entities, whose goals are, to obtain (closer optimal) reconfigura-
tions and to be selected, respectively. To this aim, we dote these entities of collaborative
and competitive behaviors, in order for service providers to be able to both, create coali-
tions with complementaries providers and, relax their offerings when it is convenient (e.g.,
to be selected over their competitors or to guarantee fair agreements to requesters). We
implement the service discovery model proposed in the WSA as a Blackboard component
following a publisher-subscriber architecture: the Agency. The Agency has different top-
ics (one for each functional capability provided by services). Providers subscribe their
services into one or several topics according to their provided capabilities. Let PA, SA
and RA be the autonomous entities representing the service provider, a specific service
of a service provider, and a service requester respectively shown in Figures 1 and 2. It
is important to notice that in this paper, we focus in the special case that SA are SBSs.
Thus, Figures 1 and 2 show explicitly a SBS as a RA to exemplify our approach to
support the dynamic reconfiguration of SBS using the MBSR approach.

The MBSR, approach starts when a SBS (service requester) has detected that the cur-
rent architectural configuration (service composition) no longer satisfies its requirements.
As step (1) in Figure 1 shows, the SBS publishes a call for tendering indicating which
functional categories and non-functional constraints (/N F'Cs) are required (“the request”)

PA PA

Fa, P L : {3)eva|q’iate

|] :’ A (4)Call for partners
T T (publish)

fajevaluate '_:- -

* % |
B el -p = T
- s TR * . "
! - - 'S
i % o -
]
I
i

A (1))Call for tendering
| (plublish)
Blackboard ~get—T— SBS

gt ': * =3 g Agency
Vg 2 = et
1%, =
. RA RA
PA : i
? interact —-pks=
Service provider ¢ — - | Service requester |

FiGure 1. The initial stage of the MBSR approach: the service market
organizing itself to create reconfiguration proposals to SBS requesters

120 R. TORRES AND H. ASTUDILLO
PA PA (11)acceptProposal PA 11)acceptProposal
- 17)bld I]: * 4 (10)notify *
10]Ro '
(Gjevaﬁﬁfe’ 1‘()\6 (8)evaluate (fy. A
6)evaluat 9)negotiate “\(17)createvo
oun®- D
[6} aN ,
\{;\ O @ -7 “+ . (13)subscribe
oy s Y- O
el __‘ - : re . _".--."
'-'. e .'-; o Blackboard 585 A" S Blackboard SBS
= *_- o Agency i T I Agency .

PA ‘ RA | (RA PA RA | | RA
Service .provider interact Service r-equester Service \provider * —Interact_ Service Féquester
(a) Stage 2 (b) Stage 3

PA PA PA PA
Ao S ™
- {(?4)Nobid (19)notify g . ——
- ax it W (14) bid puau |
i @ o SRS ‘ (16) negotiate
(14) bid BT TR
% : (4)bid | O N - i (16 negotiate |
BASE - | b . (15)evaluate - 4D { s |
S s Blackboard SBS i . Blackboard ~ SBS
: ' Agency & Agency (17)re-evaluate
PA . RA RA PA ' RA RA
Service ..r.hrovider — interact Service r_eduester Service .pmvider i —interact Service requester
(c) Stage 4 (d) Stage 5

FicURrE 2. The following stages of the MBSR approach: the service market
organizing itself to create reconfiguration proposals to SBS requesters

into the Blackboard. Service providers subscribed to the specific topics are notified (step
(2) notify in Figure 1). Different from the requester-driven approaches, in the MBSR
approach services organize themselves to create the reconfigurations to satisfy SBSs’ re-
quests: (1) they analyze how well they satisfy them (step (3) evaluate in Figure 1), (2)
they search for partners to create coalitions to satisfy complex requests (step (4) call for
partners in Figure 1) and, also (3) they are willing to negotiate their proposals with the
requesters (e.g., the price). When a provider calls for partners, it behaves like a requester,
then we represent it in Figure 1 as SAg. The Blackboard after receiving the request from
S Ag, it sends notifications to those services subscribed to the functional topics demanded
by SAg (step (5) notify in Figure 2(a)). Each potential partner SA evaluates the new
request (step (6) evaluate in Figure 2(a)) and then it decides if bid or not to the SAg
(step (7) bid/no bid in Figure 2(a)). Then, SAg evaluates the coalitions’ proposals (step
(8) evaluate in Figure 2(a)) and negotiates coalitions’ terms with their offerers (step (9)
negotiate in Figure 2(b)). Each SA knows its PA; then during the negotiation each SA
may ask to its PA to accept or reject coalition given the agreed conditions (steps (10)
and (11) in Figure 2(b), notify and accept/reject respectively). SAp re-evaluates and
selects the partners creating a service coalition or a virtual organization VO [16] (step
(12) createVO in Figure 2(b)). VOs are reusable, they are also autonomous entities, and
their members can still perform independent operations. V' Os subscribe themselves to

MARKET-BASED RECONFIGURATION APPROACH 121

the Blackboard as any other service entity (step (13) subscribe in Figure 2(b)) encour-
aging their reuse by SBSs needing similar reconfigurations. A RA may receive several
proposals from different V' Os or a single SA entity (step (14) bid/no bid in Figure 2(c)),
then it evaluates each proposal according to its own utility function (step (15) evaluate
in Figure 2(c)) and it may decide to negotiate with some of them according to its private
information and business rules given by its PA (step (16) negotiate in Figure 2(d)), re-
evaluates the proposals (step (17) re-evaluate in Figure 2(d)) and it grants the contract
(if it applies) to one of the offerers (typically to the higher re-ranked proposal) (step (18)
grant in Figure 2(d)). Providers and requesters representatives (humans or code clients
according to [2]) are notified of the agreed contract (step (19) notify in Figure 2(d)).
Thus, the reconfiguration could be applied manually or automatically depending on the
specific rules of each SBS.

4. MACOCO++: A Multi-Agent Reference Implementation of the MBSR
Approach. In this section we present the multi-agent component composition frame-
work, MACOCO++, which implements the MBSR approach by using a multi-agent sys-
tem (MAS). A MAS is composed of multiple interacting agents (in this case we wrap
RAs, PAs and SAs as software agents), where agents [19] are computer systems capable
of both, autonomous action (decision making to achieve their goals) and interaction with
other agents (cooperation, coordination and negotiation) [20].

In the following subsections we explain how a SBS build a reconfiguration request,
how service agents organize themselves to propose alternatives, and how the SBSs can
negotiate with proposals’ providers to obtain fairer agreements. Figure 3 shows the main
components of MACOCO++ that will be used trough the different stages.

4.1. Building the request. In this subsection we explain how a SBS that is imple-
menting their requirements (Regs) (F'Rs as well as their NFCs) with an architectural
configuration (C') obtains a reconfiguration from the service market (when appropriate).
MACOCO++ provides a functional taxonomy and nine non-functional constraints. Then,
when a SBS needs from MACOCO++ a reconfiguration, its requirements must be speci-
fied in such a way that MACOCO++ “understands them”. For instance, assuming that
the Regqs of a specific SBS are the followings:

update
ST :
notify/update —(| Xy VI (D s]
7 NPA T sy sa gt i oy rf o g =
: L'v-r-l- sa f | RA S K
| AgentContainer ~— - S Ak =9 '.:
subscribe/notify : Vi
T 1 1
ublish R
Blackboard B o |
[}
: 1
11
Agent new !
wrapper ——> FaEtcry L
Agency Market
registefProvider .
& i lregister‘jervice publishRequest
I interact
———> Service provider > Service requestor
|

F1GURE 3. Main components of MACOCO++

122 R. TORRES AND H. ASTUDILLO

" Givenan email address and a zipcode
____ senditsstate and city byemail

e Translate -
zipcode to state

— —and city— -

Send email

+
; +

i + il
" ", Easy to use
reliable o

il

g /\ documentation
o Response
reliability %

latency I

FIGURE 4. Goal-oriented analysis of Regs

e Its F'Rs are “When a user enters his/her email address and a zipcode, he/she expects
to receive an email with the corresponding city and state to that code”.

e Its NF' Rs are related with the performance of the system, and in this case “highly
reliable” and “fast”.

e And other constraints are that the system must be a SBS where services are easy to
integrate for the developers.

The first task is to transform Regs into S (the specification model) disambiguating the
requirements by specifying them in terms of functional categories and numerical NF'C's
according to specific metrics.

Figure 4 shows the process of transformation from Reqs to S. The F'Rs of Reqs are
divided into SRy and SRy. By each one, NFCs are specified. Non-functional constraints
must be verifiable, then they must be specified using a specific metric and a desired and a
reserved numerical value. The desired value (D) represents the best case and the reserved
value (R) represents the minimal acceptable case. Typically desired values are public but
reserved ones are (and should be) not. Proposals with closer values to the desired values
of the requesters will be higher ranked. Figure 4 shows the following:

e SR, is requiring a single or composite service capable to send_email with (1) a
response time in the best case or D lesser than 150 and in the worst case or R at
most 200 ms, (2) a latency with D lesser 5% and R at most 10%, and, (3) a reliability
with D greater than 95% and R at least 80%.

e SR, is requiring a single or composite service capable to return the city and state
given a zip code with (1) a reliability with D greater than a 95% and R not lesser
than 80% and (2) a degree of how well documented is, of D at least a 95%, and R
never lesser than 50%.

It is better if the services are free of charge (D = 0 dollars) but it is possible to pay as
maximum 5 dollars by each one (R =5). MACOCO++ provides a user interface as Figure
5 shows, where is possible for SBSs’ owners to select the specific functional categories
codes corresponding to each functional sub-requirement (analogously with the NFC's).
MACOCO++ also allows to assign different degrees of importance to differentiate F'Rs
as well as to differentiate NF'C's. Figure 6 shows a XML representation of the example
presented at the beginning of this section.

MARKET-BASED RECONFIGURATION APPROACH 123

4.2. Publishing the request. As Figure 3 shows, MACOCO++ exposes the endpoint
publishRequest to SBSs in order that they can publish their reconfiguration needs. Assum-
ing that SBSs” owners specify S in terms of functional categories and constraints known
by MACOCO++, S is internally represented in MACOCO++ as a multi-attribute utility
function used to assess the satisfaction of the different configuration proposals received
by self-organizing providers as follows:

eval(S(C)) : ivi (i w“’i}é(c[l’i](C’))) I(C,SR)) (1)

where {vy,...,v;,...,vr} is the set of relative importance of each software requirement
SRy {w™ . whl w1 s the set of relative importance of each quality constraint
[of the software requirement 7; C' is the reconfiguration under evaluation; I(C, SR;) is the
indicator function that returns 1 if there is a service s € C providing the functionality
required to satisfy SR; or 0 if not; ¢"(C) is a function that returns (if it applies) the
current measurement value of the non-functional property [of the service s € C' providing
the functionality 7; the function &(cl*!) is a function which evaluates the degree of satis-
faction of the current measurement (returned by the previous function) to the model S
that depends on the R and D values provided by the architect. How &(cl"") is calculated
depends on the type of property regarding if higher values are more desirable than lower
ones. For instance, reliability is a “more is better” property and price is a“less is better”.
Algorithm 1 explains how §(cl") is calculated in the two different cases.

As Figure 3 shows, when a requester, in this case SBS publishes a request in MA-
COCO++, the Market receiving this request asks to the Wrapper wraps the request into
a requester agent (RA). The Agent Factory component creates the RA in the AgentCon-
tainer. Once the RA is in the AgentContainer, it publishes the request in all the relevant
functional topics of the Blackboard component. Then, the Blackboard component notifies
all the S As that belong only to those functional topics. The steps 1 to 9 of Algorithm 2
summarize the publication of the request.

4.3. Deciding what to offer and make a bid. Steps 10 to 40 of Algorithm 2 summarize
this subsection. Each, notified SA evaluates in which percentage satisfies the request, in

Logged as: romina.torres@gmail.com g

Menu Market Id: 1
. Deadline: 5 minutes
&" Description: test
New Requirement
[Sub Functional Requirement]
H Keyword: zip city country Weight: High Category: 12915
List Requirements
[metrics]
ull , : :
— Metric Weight Desired: Reserved Worst Best Negotiable?
Ve Siisien Response time 3] (High |4 221108 26.3804 o s=e

FIGURE 5. Web client to support requesters to build their requests

124 R. TORRES AND H. ASTUDILLO

=7xml version="1.0" encoding="utf-8"7=
<request>
<identification=
<marketID=l</marketID=
<clientId>2</clientId=>
zdescription=Description should be here ...=/description=
<fidentification=
=deadline unit='minutes'>1l</deadline=
=callbackEndpoint=mailto:default/=/callbackEndpoint=
<fr=
=subFr weight='H'=
<keywords=send email</keywordss=
=nfr=
<metric id='1l"' weight="'H' negotiable='false' cut='1l's
<reservedvalue=200</reservedvalue=
zdesiredValue=15B0</desiredValue=
</metric=
<metric id='4' weight='H' negotiable='false' cut='0"'>
zreservedialue=B80=/reservedValue=
<edesiredValue»85</desiredValue>
</metric=
<metric id='11"' weight="H' negotiable='true' cut='0'=
<reservedValue=5</reservedialues
=desiredValue=B=/desiredValue>
</metric=
=fnfr=
«/subFr=
<subFr weight='H'>
=keywords=zipcode city state</keywords=
=nfr=
<metric id='4' weight='H' negotiable='false' cut='1'=>
zreservedialue=B80=/reservedValue=
<edesiredValue»85</desiredValue>
</metric=
<metric id='9"' weight="H' negotiable='false' cut='0'=
<reservedvalue=58</reservedValue=>
=desiredValue=B5=/desiredValue>
</metric=
<metric id='11"' weight="H' negotiable='true' cut='0"'>
=reservediValuesS=/reservedValue>
edesiredValue=@</desiredValue>
=/metrics
</nfr=
</subFr=
=/ fr=
</request>

FIGURE 6. Example of a request

Algorithm 1 How the value of 6(c/") is calculated

1: if R < Db which means ¢ is a “more is better” type of constraint then

o if ¢y, < R
21 §(clbily = ¢ erl=ml if Rlbi < (il < pli]
1 if clbil > plbil
where ¢l is the current value provided by the potential candidate
3: else
0 if ¢l > RIbi]
i i1 _ 0] . i i i
4 oMy = ¢ Hor=e if DI < (il < Rl
1 if clbd < plbil
5: end if

order to decide to make a bid alone or not. If it satisfies the request, at least on A% of
the required functionality goals, it can bid directly. If not, but it satisfies at least on a
B% (where B < A), it may call for partners using the Blackboard component. By each
not satisfied sub-request k, the SA is supported by K dedicated RAZ4 (see steps 19 to 22
of Algorithm 2) to find the appropriated partners to fulfill those parts of the request that
are not fulfilled by itself (where K is the number of subparts of the requests which are not
supported by SA). Potential SAs of each sub part k of the request are notified in order
that a S'A is willing to create a coalition to build a collaborative proposal. The caller S A
waits until its deadline is reached (where this deadline must be much lower than the global

MARKET-BASED RECONFIGURATION APPROACH 125

Algorithm 2 Market-based service reconfiguration approach

Require: Given the Blackboard component with N functional topics.
Require: Given M services wrapped as service agents (SA) subscribed to topics of the Blackboard.
Require: Let tx and ty be the maximum time that the service requestor and an internal supporting
service requestor is willing to wait to get a solution respectively.

Require: Let A and B be parameters (with A > B) to regulate if SAs bid alone or not.
: The service requestor publishes the Requestx
: The Agent Factory wraps the Requestx into the agent RAx.
:fori=1toi=1 (where I < N) do

RAx publishes a call for tender at time 7" on the topic ¢ of the Blackboard.

for | =1 to | = M; (where M; is the number of SA subscribed to the topic ¢) do

The Blackboard notifies each SA; the Requestx

end for
end for
: RAx wait until T + tx is reached.
10: fori=1toi=1do
11: for | =1tol = M,; do

SR I i o

Ne]

12: S A; evaluates itself how much (sat;) is satisfying the Requestx.

13: if sat; > A% then

14: S A; proposes an offer O as a single provider to RAx

15: else

16: if sat; > B% then

17: if SA; decides to create a VO (it could decide not due to its internal state) then

18: The SA; identifies the K subparts of the Requestx which are not addressed by it.

19: for k=1to k= K do

20: The Agent Factory creates a supporting service request agent RA,?A’ to support S A4;
on the selection for partners for the subpart k& not addressed by it.

21: The RA,fA’ publishes a call for tender in the respective (not addressed) topic of the

Blackboard suspending itself until the deadline T +t¢y is reached (where ty = tx * %)
22: end for

23: while currentTime < (T + ty) do

24: All supporting agents RA? Al wait.

25: end while

26: for k=1to k=K do

27: RAfA’ recovers from its queue the received offers by potential partners, evaluates
them using the utility function presented in Equation (1) and selects the highest
ranked.

28: RA,?A’ notifies each selected SA.

29: end for

30: end if

31: if SA; decides to make a bid as a VO (it could decide not due to its internal state) then

32: The Agent Factory creates VO4 associating partners selected by RAS4:.

33: The VO®4t proposes an offer O as a VO to RAx

34: end if

35: end if

36: end if

37: end for

38: while currentTime < (T +tx) do

39: RAx waits

40: end while

41: RAx recovers the offers from its queue and evaluates them using the function in Equation (1).

42: if RAx has the negotiation feature activated then

43: See negotiation, in Subsection 4.4

44: end if

45: it creates a contract C'x between the RAx and the providers of the higher ranked offer.
46: end for

126 R. TORRES AND H. ASTUDILLO

deadline of the RA). Steps 26 to 29 of Algorithm 2 show how the partners are selected.
After the RA reaches its deadline, it recovers the received offers (from single providers
or VOs) and ranks them according to its utility function. If the agent is not wiling to
negotiate, a contract is created between the RA and the providers of the selected offer
(see step 45 of Algorithm 2). If not, next Subsection 4.4 explains how the negotiation is
carried out by using a slightly different version of the Zeuthen strategy.

4.4. Negotiating proposals to obtain for RAs fairer agreements. After the RA
received and evaluated the proposals, it can negotiate with SA or VO bidders those
aspects which are negotiable. MACOCO++ supports negotiation between requesters and
offerers agents [21]. MACOCO++ implements a negotiation strategy (slightly modified
version of the Zeuthen strategy) that allows RAs to get fairer agreements. Typically,
S As propose offers which maximize their utility using their “desired” values for all the
properties. Unfortunately for RAs, there is no mechanism to reverse this, letting RAs no
choice but to accept or reject these offers. MACOCO++ allows RAs to negotiate with the
best n offerers by sending them (single SAs or VOs) a counteroffer proposing to modify
the terms of the proposals (from the desired values of the offerers to values closer to the
desired values of the requesters) for those aspects which are negotiable for both parts.
To force that the negotiation starts, the RA sends its preferred deal (according to the
Zeuthen strategy) with risk = 1 in order to force the offerer to concede (if it does not
accept the deal in the first place). Algorithm 3 shows the setup of the negotiation process.

Algorithm 3 RAx setting up the negotiation with the n best offers

Require: The n higher ranked offers before negotiation
1: fori =1toi=mndo
2: RAx calculates its preference vector Rx such that Prx < argmaxp, Ux (Pr). At the beginning
the vector Prx is set up with the desired values of the requester.
3: RAx proposes as a counteroffer to offerer i Prx
4: end for

At each round of the negotiation process, the agent receiving the counteroffer (service
or request agent) evaluates the utility that it would obtain by accepting the proposal of
the counterpart. By simplicity, in this work we are assuming the utility function of RAs
is exactly inverse to the utility function of SAs. For instance, requesters prefer to pay the
lower possible price for a product while the providers prefer to sell it at the highest price.

We modified the original Zeuthen strategy in order to remove the imperative need of
other agents to have to know private information of the other agents, in this case to
know the utility function of the others. At each negotiation round, each agent calculates
its own risk, and informs it to the counterpart; in this way, the other can compare and
decide if it is its turn to concede or not. Each agent calculates its own utility with the
offer of the counterpart, and also measures its risk. It compares the known risk of the
counterpart and its own. The one with less risk should concede just enough so that it
does not have to concede again in the next round. Then, the agent which concedes must
determine how much it should concede. Instead of using the original mechanism of the
Zeuthen strategy that demands that agents know the utility function of each other, we
use a simple heuristic that basically adds 10% of the difference between reserved and
desired values to all negotiable aspects (of course this parameters should be empirically
determined). In this way the concession is almost always sufficient to invert the risks and
force the other agent to concede on the next round. Then, the offers are sent and a new
negotiation round starts again. If the concession is not enough to invert the risks, the
other agent simply sends the same offer or the previous negotiation forcing the counterpart

MARKET-BASED RECONFIGURATION APPROACH 127

Algorithm 4 Slightly modified version of the Zeuthen-monotonic-concession protocol

1: Agent j proposes Pr;
2: if Agent j accepted or refused offer Pr; then
3: Close negotiations and calculate U;(Pr;) if ACCEPT_PROPOSAL; otherwise stay with conflict

deal.

4: end if

5: if UZ(PI‘J) Z UZ(PI‘Z) then

6: Accept Prj, send ACCEPT_PROPOSAL. Close negotiations.

7: end if

8: risk; + U'(Prr]i)(;frfii)(f’r])

9: if risk; < risk; then

10: if all ¢; = R; then

11: no new offer can be made, send REJECT_PROPOSAL. Close negotiations and stay with conflict

deal.
12: else
13: calculate Pr; < Pr} which concedes a little for each negotiable aspect moving a shorter step
from desired to reserved values
14: while ¢; < R; if R; > D;; or ¢; > R; if R; < D; do
15: add (or substract, depending the metric) 10% of the difference between R; and D; to new
offer ¢}

16: end while

17: calculate new risk;(Pr})

18: send new Pr} with risk;(Pr})

19: end if
20: else
21: no need to concede, send same offer Pr;
22: end if

23: wait for counteroffer or an ACCEPT_PROPOSAL or REJECT_PROPOSAL
24: goto Step 1

to re-evaluate and to propose a new offer. If no new offer can be made (meaning the agent
reaches all its reserved values), it ends the negotiations with a conflict state. Algorithm
4 summarizes the negotiation procedure. The convergence of the Zeuthen strategy is
guaranteed, as well as the final agreement is guaranteed to be individually rational and
Pareto optimal. Even when in this work all agents are implementing the same negotiation
strategy, agents could implement differently their negotiation behavior.

4.5. Granting the contract. After the negotiation ends, the RA grants the contract
to the new higher ranked proposal (see step 45 of Algorithm 2). Then, RA sends AC-
CEPT_PROPOSAL and REJECT_PROPOSAL messages to the selected service or VO
agents, which in turn notifies their PAs (using the Notifier component of MACOCO++
not showed as main component in Figure 3).

4.6. Dynamically reconfiguring SBSs. SBSs have the responsibility of monitoring the
compliance of the current C' to their Regs, in order to trigger a dynamic reconfiguration
(replacing C' by C") when appropriated. On those cases, SBSs can publish their Regs to
MACOCO++ in order to get at design time an initial configuration and during runtime
(by republishing) a proper replacement.

5. Validation. Previous version of MACOCO prototype was implemented over Netlogo
4.1°, and further details can be found in [22]. Currently, MACOCO is the core component
of the MBSR approach. It has been migrated from Netlogo to JADES. Figure 3 shows

Shttp://ccl.northwestern.edu/netlogo
Shttp://jade.tilab.com/

128 R. TORRES AND H. ASTUDILLO

the main components of MACOCO++. All the public functionalities of these modules
are exposed as Web services. Over JADE, we have built the Blackboard component which
is a publisher-subscriber component extending the current yellow pages agent of JADE.
Although MACOCO has the capability to build a service market from an existent open
catalog. We performed our experiments over a public and published dataset (QWS),
which has over 2500 WSDL-based Web services, each one with numerical measurements for
nine QoS metrics. This dataset was generated in 2008; according to our latest certification
tests, at 2012 only 1451 Web services from the original set are still operative, so we are
using only that subset. All the components, including the Web client® (see Figure 5) to
support service requesters on submitting valid requests were tailored to the structure of
these services and metrics. The Market component was exclusively prepared to maintain
this service market during runtime, where a script was built to register these services
using the services of MACOCO++. In order to support negotiation and reconfiguration
against a changing service market, service metadata was synthetically augmented and
changes were introduced randomly.

All experiments presented in the following subsections were executed with a Dell Vostro
1400, Core 2 Duo T5470 (1.6Ghz, 2MB L2 Cache, 800MHz FSB), 2GB DDR2 667Mhz of
RAM and 60GB 5400RPM SATA of hard drive.

5.1. First experiment: from virtual organizations to Web service configura-
tions. This experiment tested the capacity of the service agents of MACOCO++ to or-
ganize themselves to serve complex requests comprised by more than one sub-functional
requirement. We measure the number of new V' Os created as response to these requests,
the reusing degree of current VOs when similar requests are published, and as usual,
meantime and percentage of failed requests (request which were not satisfied). However,
we start showing how the example introduced in Subsection 4.1 is solved with the MBSR
approach.

Getting back to our example, we had a request comprised of two subparts, each one
with one F'R and multiple N F'Cs. These two sub-requirements are functionally classifiable
in the functional topics 10012 (“send email”) and 103/4 (“return city and state given
a zipcode”). Then, the Agent Factory creates the request agent RAy, who publishes
its request into the topics 10012 and 10344. The subscribed SAs to these topics are
notified. The SA1000001 S TOpiCmon and SA1000002 S Topi010344, which were notiﬁed,
evaluate separately the request, determining that each one only satisfies the request on
a 50%. SAiooo001 decides to bid (according to its internal state); it starts a process to
find partners in order to create a virtual organization that allows it to maximize the
satisfaction of the current request. Because it asked to create a virtual organization, a
new request agent RAy is created by the Agent Factory. The RAy publishes the sub-
request in the Topicigzas. S A1goooo2 Subscribed to this topic, receives the notification and
decides to bid because it fulfills 100% of the request. RAy waits until the deadline is
reached and then recovers all the offers and ranks them according to its utility function.
Assuming the highest ranked offer was received by S A1g00002, S A1000001 decides to create
a virtual organization with it, sending it an ACCEPT_PROPOSAL message. Besides,
it sends to the other offerers a REJECT _PROPOSAL message. The VO is registered
and wrapped immediately as a virtual organization agent (VO) that represents it to find
similar requests which could be satisfied reusing the same services in the future. Then,
the S Ajgoo001 desists to bid alone, empowering by the VO recently created to bid jointly
the request. The agent RAx reaches its deadline, recovers the offers and assuming the

Thttp:/ /www.uoguelph.ca/~qmahmoud/qws
8http://dev.toeska.cl/broker

MARKET-BASED RECONFIGURATION APPROACH 129

TABLE 1. Second experiment’s results

id | minimal % | total time [min] | agents | #VOs | contract
R1 10% 10.171 43 20 yes
R2 10% 10.187 158 78 yes
R3 10% 10.409 67 65 yes
R4 40% 10.303 17 11 yes

highest ranked offer is the one received by the VO, it selects the VO and a contract is
created between the request agent and the two component agents, members of the VO.

We used four requests with different number of functional sub-requirements as well
as varying number of non-functional properties, which are indicated as metrics in the
table: {1, response time}, {2, availability}, {3, throughput}, {4, successability}, {5,
reliability}, {6, compliance}, {7, best practices}, {8, latency} and {9, documentation}.
The possible values for weights are low, medium and high ({L, M, H} respectively). The
test cases are the following:

e R1: {<13310,H,{<1,H>,<2,H>,<5L>}><13392,H,{<4,H><9M> <7,M>}>
<13400,H,{<2,M>,<9,M>,<8 M>}>}

e R2: {<13304,M,{<5H>}><13302,H,{<3,H>}> <13395,L . {<2,L>}>}

e R3: {<13293,H,{<2,H>}><13294,L,{<2,L>}>}

e R4: {<13297 H,{<1,H>}> <13318,H,{<1,H>}> <13321,H,{<1,H>}> <13311,L,{<1,H>}>
<13296,L,{<1,H>}>}

These test sets are executed twice: the first run allows to evaluate the system per-
formance when agents generate virtual organizations to create reconfigurations, and the
second run allows to compute the VO’s reuse factor.

Table 1 shows the results. A service agent can bid if it satisfies at least a 10% (parame-
ters B =10% and A = 100%) of the functional requirement in the first three requests and
at least a 40% (parameters B = 40% and A = 100%) in the last request. It is important
to notice we are not varying the coverage percentage of the number of non-functional
requirements. That means that for a service to satisfy the functional requirement’s cover-
age, it must fulfill the 100% of the non-functional requirements. The time that an agent
waits for bids, as well as the time an agent waits for partner proposals are set up to 10
minutes. Then, the total elapsed time cannot be less than 10 minutes; otherwise, there
would be no time for the new VOs to make an offer. In the fourth column, the number
of agents that try to create a coalition are shown. Due to the fact that the request R1 on
the one hand, has more constraints for each subpart and, on the other hand, the number
of subparts is three, it is more difficult for a single S A to fulfill it completely (moreover, in
this experiment we set the constraints’ coverage at 100%) and even to fulfill the minimal
threshold (B = 40%). Thus, only 43 SAs are asking to create coalitions because when
the number of constraints is greater than one, the number of potential agents to serve
it decreases. From the 43 coalition requests, only 20 V' Os are created. The request R2,
having the same number of sub requirements than R1 but a lower number of constraints,
provokes in the service market that a greater number of agents try to satisfy it. At least
there are 158 candidates that satisfy at least one subpart of the request (with at least
the 100% of the constraints satisfied). From these 158 only 78 create VOs. R3 has only
two subparts and the parameter. Only 67 decide to create VOs, where most of them
conclude with the creation of the VOs. Finally, the request R4 has five subparts, then
agents satisfying only partially subparts of this request, cannot bid alone (A = 100%) and

130 R. TORRES AND H. ASTUDILLO

TABLE 2. Re running second experiment

id total time [min] | #VOs | contract
R1-rerun 0.384 20 VO VO
R2-rerun 0.201 78 VO VO
R3-rerun 0.441 65 VO VO
R4-rerun 0.153 11 VO VO

TABLE 3. Virtual organization members and their ranking for the four requests

id | subreql | subreq2 | subreq3 | ranking
R1 | 122886434 | 136234335 | 90647582 1
R2 | 169192081 | 96268196 0.537037
R3 | 44881460 | 66815769 1
R4 | 99374147 | 166716168 | 101062406 1

neither can ask for partners (B = 40%). Then, the number of agents capable of creating
coalitions is reduced to 17, where only 11 creating a VO.

Table 2 shows the results of re-run for the second experiment. This time we have set
up by default the deadline only in 10 minutes but the real elapsed time between the time
when the request was published and the time when the offer of the winner VO arrives in
the SA’s offer queue was lesser than one minute. However, the deadline of 10 minutes was
reached (as it was set up) and on the 100% of the requests the VO were selected again,
obtaining a V' O’s reuse factor of 1. In Table 3 we present the ranking obtained by the
virtual organizations that won the tendering by each request.

5.2. Second experiment: negotiating the price. We have synthetically added the
price to the QWS dataset. We calculate a price which is directly proportional to the QoS.
For each functional category and for each quality aspect we classified the services in five
quality levels. Depending on which level the service belongs to, it gains points (between 1
and 5, where 1 is the worst level and five the best). Potentially, for each category, the best
service could gain 45 points and the worst service could gain 9 points. Then, we calculate
the corresponding price. In this experiment only the price aspect has been marked as a
negotiable aspect.

The aim of this experiment is to assess how the negotiation process ensures, to SBSs
to obtain fairer agreements. We set n to 1. Given the initial agreement, customers and
providers negotiate the agreement using the modified Zeuthen strategy [21]. Table 4
shows the results. The first column indicates the id of the test case and the second the
R and D price of the RA. The third column shows the initial and final utility of the
RA and the fourth one shows the same for the SA. The last three columns show the
overhead in seconds produced by the negotiation process, the number of rounds in which
the negotiation converges to fair agreements and the variation of price from initial to final
one. In seven of the ten cases the negotiation was successful. For instance in the test
#1 the RA chose the offer of the SA offered to it to 42. Then, we forced the negotiation
making the RA to send a counteroffer to the SA and after 7 rounds the utility of the
RA increases a 14% with an overhead of almost 1 second. Of course, the utility of the
provider SA drops from 1 to 0.85. The price which starts from the 42 drops to 39.3 which
is not exactly the ideal price of the RA but was a fair agreement for both. Now, three of
the ten cases the utility remained the same, then there was not negotiation, because the
RA does not need to negotiate because it has what it asks.

MARKET-BASED RECONFIGURATION APPROACH

TABLE 4. Overhead versus fairer agreements

131

test PrRA[R,D] URAI—F USAI—F (@) [S] #I‘OUHdS PI"[,F

1 [462-384] [0.80.94 [1085 07 7 [42-39.3]
2 [50-42] (0.91-0.91] [1-0.98] 2.1 14 [40-39.2]
3 [83-69] (0.82-0.82] [1-0.975] 0.7 3 [60-58]
6 [78-65] (0.97-0.98] [1-0.98] 05 5 [66-64.6]
7 [71-59] (0.98-0.98] [1-0.967] 1.2 5 [56-54.4]
10 [47.5-39.6] [0.81-0.9] [1-09] 1.4 8 [44-42]

TABLE 5. Overhead produced by negotiation with several providers at the

same time
#Counterparts Overhead [s] #rounds with each offerer Total of rounds
1 0.78 (51 5
3 1.47 {3,5,9} 17
5 3.4 {3,4,5,5,5} 99
10 4.2 {3,3,3,4,4,4,4,5,7,8} 45

5.3. Third experiment: overhead versus fairness. The aim of this experiment is
to show how the overhead increases as n (the number of offerers with which the client
negotiates) increases (see Table 5). We perform this experiment with one request at a
time.

The application scales. It is safe to encourage clients to allow their representing agents
to negotiate with several offerers at the same time.

6. Conclusions. This article addresses the dynamic reconfiguration problem of SBSs
by using a distributed approach to obtain service compositions mitigating the problem
of imperfect information of requester-driven approaches. The proposed MBSR. approach
extends the current Web services discovery model with active entities (agents representing
service requesters and providers) and a virtual service market. MBSR agents are immersed
in a multi-agent system, where potential configurations arise from the market, triggered
by request agents that just publish a call for tendering on it and wait for bids. Bids
emerge from service agents, which organize themselves by competing or collaborating to
maximize the requests’ satisfaction. Depending on the internal rules of agents, request
agents can also negotiate with bidders to obtain fairer agreements to finally grant the
contract (typically to the best offerers). Our approach avoid that SBSs are forced to
accept offers just as providers dictate. We have used a negotiation strategy that allows
to obtain fairer agreements to both (service providers and requesters but specially to
requesters) as we proposed in [21].

By wrapping services and requesters as agents and reassigning the discovery responsi-
bility from requesters to services we effectively could mitigate the imperfect information
problem that requester-centered approaches experience at the moment of creating con-
figurations. The MBSR approach allows services themselves to create closer optimal
reconfigurations because services become aware of themselves, of others like them and of
what requesters need.

Acknowledgment. This work is partially supported by projects VirtualMarket (Fondef
CA12i10380), UTFSM-DGIP 24.12.50, and CCTVal (Basal FB0821).

132 R. TORRES AND H. ASTUDILLO

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, Service-oriented computing: State of
the art and research challenges, Computer, vol.40, no.11, pp.38-45, 2007.

[2] D. Booth, H. Haas and F. McCabe, Web services architecture, World Wide Web consortium, Tech.
Rep., http://www.w3.org/TR/ws-arch/, 2004.

[3] Z. Zheng, Y. Zhang and M. R. Lyu, Distributed QoS evaluation for real-world Web services, IEEE
International Conference on Web Services, pp-83-90, 2010.

[4] D. Ardagna and B. Pernici, Adaptive service composition in flexible processes, IEEE Trans. on
Softw. Eng., vol.33, no.6, pp.369-384, 2007.

[5] L. Baresi, E. D. Nitto and C. Ghezzi, Toward open-world software: Issue and challenges, Computer,
vol.39, no.10, pp.36-43, 2006.

[6] J. Hillman and I. Warren, An open framework for dynamic reconfiguration, Proc. of the 26th Inter-
national Conference on Software Engineering, pp.594-603, 2004.

[7] C. Zhang, R. N. Chang, C.-S. Perng, E. So, C. Tang and T. Tao, QoS-aware optimization of
composite-service fulfillment policy, IEFE SCC, pp.11-19, 2007.

[8] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D. S. Rosenblum and A. L. Wolf, An architecture-based approach to self-adaptive software, IEEE
Intelligent Systems, vol.14, no.3, pp.54-62, 1999.

[9] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti and R. Mirandola, MOSES: A
framework for QoS driven runtime adaptation of service-oriented systems, IEEE Trans. on Software
Eng., vol.38, no.5, pp.1138-1159, 2012.

[10] L. Baresi and S. Guinea, Self-supervising bpel processes, IEEE Trans. on Software Eng., vol.37,1n0.2,
pp-247-263, 2011.

[11] A. Filieri, C. Ghezzi and G. Tamburrelli, A formal approach to adaptive software: Continuous
assurance of non-functional requirements, Formal Aspects of Computing, vol.24, pp.163-186, 2012.

[12] R. Calinescu, C. Ghezzi, M. Kwiatkowska and R. Mirandola, Self-adaptive software needs quantita-
tive verification at runtime, Commun. ACM, vol.55, no.9, pp.69-77, 2012.

[13] L. Wang, J. Shen and J. Yong, A survey on bio-inspired algorithms for web service composition,
CSCWD, pp.569-574, 2012.

[14] Z. Maamar, S. K. Mostefaoui and H. Yahyaoui, Toward an agent-based and context-oriented ap-
proach for web services composition, IEEE Trans. on Knowl. and Data Eng., vol.17, no.5, pp.686-
697, 2005.

[15] H. Tong, J. Cao, S. Zhang and M. Li, A distributed algorithm for web service composition based on
service agent model, IEEFE Trans. on Parallel Distrib. Syst., vol.22, no.12, pp.2008-2021, 2011.

[16] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D. Nguyen,
V. Deora, J. Shao, W. A. Gray and N. J. Fiddian, Agent-based formation of virtual organisations,
Knowledge-Based Systems, vol.17, no.2-4, pp.103-111, 2004.

[17] R. Kota, N. Gibbins and N. R. Jennings, Decentralized approaches for self-adaptation in agent
organizations, ACM Trans. on Auton. Adapt. Syst., vol.7, no.1, pp.1:1-1:28, 2012.

[18] F. H. Zulkernine and P. Martin, An adaptive and intelligent SLA negotiation system for web services,
IEEFE Trans. on Services Computing, vol.4, pp.31-43, 2011.

[19] M. Wooldridge and N. R. Jennings, Intelligent agents: Theory and practice, Knowledge Engineering
Review, vol.10, no.2, pp.115-152, 1995.

[20] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons, Inc., New York, NY,
USA, 2001.

[21] R. Torres, D. Rivera and H. Astudillo, Web service compositions which emerge from virtual organiza-
tions with fair agreements, Proc. of the 6th KES International Conference on Agent and Multi-Agent
Systems: Technologies and Applications, pp.34-43, 2012.

[22] R. Torres, H. Astudillo and E. Canessa, MACOCO: A discoverable component composition frame-
work using a multiagent system, International Conference of the Chilean Computer Science Society,
pp.152-160, 2010.

