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Abstract. This paper is addressed to economic problems for which many different so-
lutions (models) can be proposed. In such situation the ensemble approach is a natural
way to improve the final prediction results. In particular, we present the method for the
prediction improvement in multi-agent environment based on the multivariate decompo-
sitions. As a decomposition method we present the smooth component analysis. The
resulting components are classified as destructive and then removed or as constructive
and then recomposed to create final forecast. The classification of the components is
based on the theoretical analysis of MSE error measure. The robustness of the method
was validated based on energy load data from Polish power system.
Keywords: Ensemble methods, Multivariate decompositions, Smooth component anal-
ysis, Agent based modeling

1. Introduction. The term model plays an important role in sciences, but the meaning
and the scope of modeling depends on the specific application areas, schools or even the
authors. The common feature linking these different approaches towards model definition
is the awareness that the model presents only a given perspective of the real phenomenon
and it is considered only as useful analytical representation of the given problem. In this
sense we can find out that each real process or phenomenon may be represented by a few
different models. It seems that one of the fundamental challenges facing both academics
and practitioners is to develop an effective method to combine information coming from
different theoretical approaches. In particular, this refers to the quantitative results.
The advantages of models aggregation are particularly evident in case of agent systems,
machine learning or data mining models, what in fact involves all approaches that are
based on mathematical methods of data exploration [8,16]. Let us bear in mind that
although the ensemble methods are currently popular research area, the aggregation of
different outcomes with a completely different methodological approaches is not obvious.
Most of the existing aggregation methods such as boosting, bagging, or stacked regression
require quite restrictive assumptions about the parameters, and the structure of the results
and variables distributions as well [3,9]. In most cases, aggregation concerns models of the
same structure or even the same models but estimated on other subsets of the training
data.

In this paper we develop the approach based on blind signal separation methods in a
multi-agent environment. In this concept, we focus rather on the physical meaning and
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interpretation of the data (variables) than on their formal mathematical properties. We
assume that the results generated by different intelligent agents possess certain physical
components that disrupt the prediction. These components may be related to the inaccu-
racy, inadequacy or noisy input data, but they can also be the result of improper models
specification or wrong learning algorithm choice. As a result, we can assume that the
results are the combination of certain constructive and, from the other side, destructive
components which are responsible for the prediction errors. Therefore, separation and
then elimination of these destructive components should bring prediction improvement
[22].
For this purpose we apply smooth component analysis to find the latent components

[22] and in the next step we classify them as destructive or constructive. For this task we
propose analysis of second order statistics with mean square error criterion (MSE). The
validation of this approach is performed based on practical experiment with energy load
prediction from Polish market [13].

2. Agent Based Modeling for Prediction Improvement. Agent-based systems have
attracted much attention in recent years because of its promise as a new paradigm for
designing, creating and implementing systems that operate in distributed, complex or
very dynamic environments. The basic units of an agent based systems are agents, which
are considered to be autonomous and adaptive. That means there is no control over their
behavior and they can react to changes in the environment. Each agent in a multi-agent
system represents a specific set of problem solving skills and experience and as a whole they
perform better for a given problem solving. The idea of agent is better realized within the
framework of complex adaptive systems (CAS) [2]. CAS is a complex system of interacting
units, which include goal-directed units, that is, units that are reactive and that direct
at least some of their reactions towards the achievement of built-in or evolved goals [23].
This broad definition enables agents to be entities ranging from active data-gathering, and
decision-making with sophisticated learning algorithms to passive units with no cognitive
functions assigned. A modern market oriented economy is an example of a CAS, consisting
of a collection of autonomous agents interacting in various market contexts. In this stream
an agent based modeling (or agent-based computational economics) can be distinguished
[18,23] which is the computational approach to study economic processes as dynamic
systems consisting of interacting agents. Therefore, this concept has motivated researchers
to adopt it for the study of several electricity market issues. Some authors have concerned
agent based models for examining electricity consumer behavior at the retail level, e.g.,
[17,19] or for analyzing distributed generation models, e.g., [12,20].
In this paper, we focus on an application of the ensemble approach (information ag-

gregation) to prediction improvement. The approach is especially suited for complex and
dynamic problems such as energy load prediction.
The problem of information aggregation and synthesis gathered from data sources arises

in artificial intelligence very often. An example may be an artificial expert system that
is responsible to conclude from the knowledge of human experts on a specific topic (a
disease diagnosis, a portfolio choice, weather prediction, etc.). The pieces of information
provided by experts are represented in a formal language and the point is to merge them
into standardized database of unique knowledge. The artificial agents are driven by the
concept of taking the best possible decisions and therefore they can act as the information
sources or information processing units. The recent field of information fusion concerns
how to aggregate individual information into a collective one. Therefore, we will consider
how to combine the knowledge of several intelligent agents with application of smooth
component analysis and MSE decomposition. In particular, we focus on short term load
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forecasting which plays an important role in the formulation of economic, reliable and
secure strategies for the power system. The proposed prediction improvement approach
is defined in multi-agent framework, in which we can distinguish various types of intelligent
agents to perform different tasks [1].

The data retrieval agents (or data mining agents) are the units to communicate with
source data and perform data retrieval and data pre-processing taking into account the
algorithms used later on. Based on the data specification obtained from the user the data
retrieval agents will maintain its interaction with the sources to collect all the data related
to historic load and any additional information, e.g., weather forecasts. In general, this
kind of agents will be responsible for the preprocessing of the most relevant data for the
training and testing of artificial neuron networks (ANNs), fuzzy logic techniques or expert
systems.

Intelligent agents. This kind of agents will use for instance, ANNs, knowledge based
systems or fuzzy logic techniques to perform the following tasks:

(1) To generate a set of ANNs trained over different time windows;
(2) To aggregate the information from the ANN models using smooth component analysis

and MSE error decomposition.

This system will do the same reasoning that is provided by intuitive forecasting of electrical
load but it will be reduced to a couple of formal steps. In this approach, a variety of well-
tuned models will be available in the form of models library and be accessed by the system
to make the most relevant forecast. In order to make the forecasting system more robust
to change in the environment, we use multiple agents for final forecast. Therefore, we
distinguish N adaptive forecasting agents called intelligent agents which are represented
by diverse multilayer perceptron (MLP) artificial neural networks. Such agent oriented
architecture can result in forecast improvement. In particular, this is the focus of this
paper.

Interface Agent. This adopted approach requires also an additional interface agent
for communication with the other agents and the end users. It allows activities such as
presenting the output or reporting differences between forecasts and the actual values.
The final answer will be synthesized based on integrating the resultant outputs acquired
from intelligent agents for an overall solution for load prediction problem. The information
sharing among different intelligent agents allows the system to produce a better forecast.

In this work, we use agent-based modeling approach as a computational method that
enables to create, analyze, and experiment with models composed of agents that interact
within the environment [18]. Therefore, proposed prediction approach is defined in multi-
agent framework with no distinction to specific agent platform or architecture. It is the
specific problem which determines the structure of the environment for agents’ application
and affects the way in which agents interact or communicate.

3. The Framework for Ensemble Method. In this paper, we assume that after learn-
ing various intelligent agents represented by neural network models we have a set of pre-
diction results. For simplicity, in further consideration we assume that our models results
xi and target p are centered. In practice, it means that before models integration we
remove mean values from prediction results and target, and after integration we add this
values.

We collect particular prediction results xi, i = 1, . . . ,m, in one multivariate variable
x(k) = [x1(k), . . . , xm(k)]

T . Now we assume that prediction results xi(k) is a mixture of
the latent components: constructive ŝj(k) is associated with the predicted variable, and
destructive sj(k) is associated with the inaccurate and missing data, imprecise estimation,
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distribution assumptions, etc. We assume the relation between observed prediction results
and latent components to be represented as

x(k) = As(k), (1)

where s(k) = [ŝ1(k), . . . , ŝi(k), si+1(k), . . . , sm(k)]
T , and matrix A ∈ Rm×m represents the

mixing system. The relation (1) stands for decomposition of prediction results xi into
latent components matrix s and mixing matrix A. Our aim is to find s and A, reject
its destructive part (replace signals sj(k) with zero) and next to mix the constructive
components back to obtain improved prediction results:

x̂(k) = Aŝ(k) = A[ŝ1(k), . . . , ŝi(k), 0i+1, . . . , 0m]
T . (2)

The crucial point of the above concept is proper A and s estimation. This problem
can be described as Blind Signal Separation task [5,10,20] which aims to find such matrix
W = A−1 that

s(k) = Wx(k). (3)

The BSS methods explore different properties of data like: independence [4,5,10], decor-
relation [5], sparsity [15], smoothness [5,22], and non-negativity [14]. In this paper, we
focus on Smooth Component Analysis (SmCA) what is adequate for data with temporal
structure. Smooth component analysis is a method for the smooth components identifica-
tion in a multivariate variable [5,22]. For N -observation signals with temporal structure
we propose a following smoothness measure

P (s) =

1
N

N∑
k=2

|s(k)− s(k − 1)|

max(s)−min(s) + δ(max(s)−min(s))
, (4)

where symbol δ(.) means zero indicator function – valued at 0 everywhere except 0, where
the value of δ(.) is 1. Measure (4) has straightforward interpretation: it is maximal when
the changes in each step are equal to range (maximal possible change during one period),
and is minimal when data are constant. The possible values vary from 0 to 1. Zero
indicator δ(.) term is introduced to avoid dividing by zero.
The components are taken as linear combination of signals xi and should be as smooth

as possible. Our aim is to find such matrix W = [w1, w2, . . . , wn] that for s = Wx we
obtain s = [s1, s2, . . . , sm]

T where s1 maximizes P1(s1) so we can write

w1 = argmax
||w||=1

(P (wTx)). (5)

Having estimated the first k−1 smooth components, the next one is calculated as least
smooth component of the residual obtained in Gram-Schmidt orthogonalization [7]:

wk = argmax
||w||=1

(
P

(
wT

(
x−

k−1∑
i=1

sis
T
i x

)))
, (6)

where si = wT
i x, i = 1 . . . k. As the numerical algorithm for finding wn we can employ

the conjugate gradient method with golden search as a line search routine. The algorithm
outline for initial wi(0) = rand, pi(0) = −gi(0) is as follows:
1. Identify the indexes l for extreme signal values:

wk = argmax
||w||=1

(
P

(
wT

(
x−

k−1∑
i=1

sis
T
i x

)))
, (7)

lmax = argmax
l∈1...N

wT
i (k)x(l), (8)
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lmin = argmin
l∈1...N

wT
i (k)x(l). (9)

2. Calculate gradient of P (wT
i x):

gi =
∂P (wT

i x)

∂wi

=

N∑
l=2

∆x(l) · sign(wT
i ∆x(l))−P (wT

i x) · (x(lmax)− x(lmin))

max(wT
i x)−min(wT

i x) + δ(max(wT
i x)−min(wT

i x))
, (10)

where ∆x(l) = x(l)− x(l − 1).
3. Identify the search direction (Polak-Ribiere formula [7])

pi(k) = −gi(k) +
gT
i (k)(gi(k)−gi(k−1))

gT
i (k−1)gi(k−1)

pi(k − 1), (11)

and calculate the new weights:

wi(k + 1) = wi(k) + α(k) · pi(k), (12)

where α(k) is found in golden search.
The above optimization algorithm should be applied as a multi-start technique with

random initialization.
The orthogonalization process (6) after identification of each component ensures that

components are ordered by their smoothness with correlation matrix given by:

Rss = E
{
ssT

}
= D, (13)

whereD is a diagonal matrix. The property (7) will be explored for destructive component
identification where prediction is scored by MSE criterion.

4. Extreme Value Distribution Preprocessing for SmCA. The main disadvantage
of the measure (4) is its high sensitivity to the outliers due to minimum and maximum
value in denominator. To avoid this problem and to make the measure more robust, we
can apply the estimation based on the generalized extreme value distribution (GEVD).

In this section, we present the basic properties of generalized extreme value distribution
GEVD and our contribution to the smoothness measurement. We show that the smooth-
ness value estimated directly from a signal is less effective, than estimated from the signal
regularized by the extreme value distribution. We show also that in some cases the reg-
ularization influences the smoothness measure much more than simple scaling. There
are signals, e.g., heavy tailed, with high probability that each particular observation will
change the extremes a lot, and therefore the smoothness measure (4), too. It would be
possible to stabilize the measure (4), using not necessarily empirical but rather repre-
sentative extreme values. Therefore, we propose to estimate the representative extremes
using the extreme value distribution [6,11]. The probability density function f(z) of the
generalized extreme value distribution with the location parameter µ, the scale parameter
σ, and the shape parameter γ 6= 0 is represented by

f(z) =
1

σ

(
1 + γ

z − µ

σ

)−1− 1
γ

exp

(
−
(
1 + γ

z − µ

σ

)−1/γ
)
, (14)

for 1 + γ z−µ
σ

> 0, where γ > 0 (Type II) or γ < 0 (Type III). For γ = 0 (Type I) GEVD
is

f(z) =
1

σ
exp

(
− exp

(
z − µ

σ

)
− z − µ

σ

)
. (15)

From the method of moments we can estimate

µ =
σ̄
√
6

π
(16)
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and

σ = z̄ − 0.5772µ (17)

where z̄ and σ̄ are the sample mean and standard deviation, respectively.
Consequently, we can propose the algorithm for smoothness estimation in signal sαi

which is our main contribution to the GEVD approach, defined as follows:

1. From the signal, generate the bootstrap samples and calculate their min’s z;
2. Assume z’s are realizations of f(z) distribution and fit GEVD with µ− as the location

parameter for minimums;
3. For maximums calculate the location parameter µ+ of f(−z), respectively;
4. Regularize the signal sαi to sαregi by correction of outliers to range [µ−, µ+];
5. Calculate the smoothness measure P (s) for regularized signal.

5. Destructive Components Identification. The MSE is one of the most popular
criteria for model scoring. In our case we can describe MSEi for each xi as

MSEi = E{(p− xi)
2}, (18)

where p is target variable. According to our assumptions the xi can be expressed as linear
combination of the latent components, which leads us to

MSEi = E


(
p−

m∑
j=1

aijsj

)2
 = E

{
p2 +

m∑
j=1

m∑
l=1

aijailsjsl − 2p
m∑
j=1

aijsj

}
. (19)

After SmCA the latent components are decorrelated, that is, E{sisj} = 0, so

MSEi = σ2
p +

m∑
j=1

(
a2ijσ

2
sj
− 2aijρp,sj

)
, (20)

where σ2
p = E{p2}, σ2

sj
= E{s2} and ρp,sj = E{psj}.

Presented MSEi calculation for xi prediction explains what happens after elimination
of aijsj from xi for every j = 1, . . . ,m. Namely, if the condition

σ2
sj
≤

2ρp,sj
aij

, (21)

holds, we can expect reduction of MSEi by value

ϑij = a2ijσ
2
sj
− 2aijρp,sj . (22)

Therefore, the value ϑij can be used for choosing the component sj that is responsible
for the highest MSEi reduction.
The whole framework, starting from data retrieval and including agents modeling phase

with smooth components analysis and destructive components identification is presented
in Figure 1.
Here, we can distinguish various types of intelligent agents performing different tasks

in proposed approach, that is, data retrieval agents, interface agent and in particular,
intelligent agents. The latter ones are the subject of our approach, thus generating robust
in dynamic environment to produce a better load forecast. In our case, proposed multi-
agent environment may be viewed as the box with a group of intelligent agents inside.
The subsequent elements of the input sequences are supplied to the environment, where
they become available for all agents. Each agent itself may analyze the incoming data
and produce individual predictions and for each agent an artificial neural network may
be used as a basic mechanism to trace signal regularities for time series prediction.
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Figure 1. Multi-agent aggregation process with SmCA and destructive
components removal

Figure 2. Yearly, weekly and daily load data covering year 1997 (vertical
axis shows normalized load and horizontal axis shows subsequent observa-
tions)

6. Practical Experiment. To verify the validity of the concept, we used the data from
Polish power system. The data set included 86400 observations (hourly data) covering
time span of 1988-1998 years. Figure 2 presents an hourly load demand for the year 1997,
a given week of 1997 and a given day of 1997.

In agent-based modeling approach the system consists of a set of intelligent agents that
encapsulate the behaviors of various individuals that make up the system. In our paper,
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intelligent modeling agents are made using artificial intelligence properties thus possessing
some aspects which are capable of flexible autonomous action to meet their objectives.
Therefore, we distinguish N adaptive forecasting agents called intelligent agents which
are represented by diverse multilayer perceptron (MLP) artificial neural networks. In
particular, we build six neural networks with different learning methods (delta, quasi-
Newton, Levenberg-Marquard) to forecast hourly energy consumption in Poland in next
24 hours. The available variables to create the forecast included energy demand from the
last 24 hours and calendar variables such as month, day of the month, day of the week,
and holiday indicator. The Test1 data set (43200 observations) is used to estimate the
decomposition matrices W , A and to calculate the expected values of MSE reduction ϑij.
In the final phase we use Test2 data set (43200 observations excluded from the previous
analysis) to calculate the MSE reduction obtained after physical elimination of particular
components.
The quality of the neural models on the Test1 data set is presented in Table 1.
The smooth components analysis applied to the prediction results from the Test1 data

gives A, W and the components presented in Figure 3.
The smoothness P (sj) for identified signals is presented in Table 2.
According to (12) for each model xi, i = 1, . . . , 6 and for each signal sj, j = 1, . . . , 6, we

calculated expected level of MSE reduction ϑij, see Table 3. In particular, the component
s1 is constructive, because its elimination would increase the MSE of each model. The
component s5 is destructive; therefore, we conclude that its elimination would decrease

Table 1. MSE of the neural models on the Test1 data set

MLP,
28:11:1,

28:11:1,
28:10:1, 28:11:1, 28:12:1, 28:13:1,

Learning
Quasi-

Delta
Levenberg- Levenberg- Levenberg- Levenberg-

Newton Marquard Marquard Marquard Marquard
MSE [×105] 5,76 5,96 6,55 6,52 6,46 6,40

Figure 3. Smooth components obtained on the Test1 data (vertical axis
shows the value of the components and horizontal axis shows subsequent
observations)
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Table 2. Signal smoothness P (sj) calculated on the Test1 data set

Component s1 s2 s3 s4 s5 s6
P (sj) 0,0287 0,0293 0,0363 0,0371 0,0405 0,0649

Table 3. Expected MSE reduction ϑij calculated on the Test1 data set.
Positive values denote value of MSE reduction possible to be obtained after
elimination of sj from xi.

ϑij
28:11:1,

28:11:1,
28:10:1, 28:11:1, 28:12:1, 28:13:1,

[×105]
Quasi-

Delta
Levenberg- Levenberg- Levenberg- Levenberg-

Newton Marquard Marquard Marquard Marquard
s1 −58,19 −58,47 −58,33 −58,31 −58,36 −58,44
s2 −9,72 −9,15 −8,04 −8,08 −8,07 −8,09
s3 0,05 0,1 0 0 0,05 0,08
s4 0,04 0,08 0,06 0 0,03 0
s5 0,82 0,45 0 0 0 0,04
s6 0,02 0,13 0,03 0,03 0,03 0

Table 4. Quality of the primary models on the Test2 data set

MLP,
28:11:1,

28:11:1,
28:10:1, 28:11:1, 28:12:1, 28:13:1,

Learning
Quasi-

Delta
Levenberg- Levenberg- Levenberg- Levenberg-

Newton Marquard Marquard Marquard Marquard
MSE [×105] 7,61 8,08 5,33 5,22 5,75 5,75

Table 5. Positive values denote MSE reduction obtained after physical
elimination of component sj from prediction xi on the Test2 data set

∆MSEij
28:11:1,

28:11:1,
28:10:1, 28:11:1, 28:12:1, 28:13:1,

[×105]
Quasi-

Delta
Levenberg- Levenberg- Levenberg- Levenberg-

Newton Marquard Marquard Marquard Marquard
s1 −58,66 −64,25 −59,78 −59,2 −60,49 −61,2
s2 −6,97 −9,13 −10,62 −10,67 −10,24 −10,11
s3 0,22 0,43 −0,03 0,03 −0,1 0,29
s4 0,47 0,76 −0,23 0,13 0,36 0,07
s5 1,83 1,44 −0,02 0,01 −0,13 −0,26
s6 −0,07 −0,49 −0,05 −0,05 −0,07 −0,01

the MSE of each model. In this case, what is worth mentioning, rejection of component s5
reduces the MSE error by 14.2% ((0,82×105)/(5,76×105) = 0, 142) for agent represented
by MLP 28:11:1 Quasi-Newton model, and by 7,8% ((0,45×105)/(5,76×105) = 0, 078) for
agent represented by MLP 28:11:1 Delta.

In Table 4, we present the quality of the models on the Test2 data.
We decomposed Test2 data set using W matrix estimated on Test1 data set. Then we

physically eliminated the components and mixed the signals back using A. In Table 5, we
can observe obtained MSE reduction (∆MSEij). In this case, rejection of component s5
reduced the MSE error by 24.1% ((1,83×105)/(7,61×105) = 0, 241) for agent represented
by MLP 28:11:1 Quasi-Newton model, and by 18,9% ((1,44×105)/(8,08×105) = 0, 189)
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Figure 4. Expected reduction ϑij versus obtained values ∆MSEij: a) for
every (xi, si) combination, b) for the case with positive ϑij values

for agent represented by MLP 28:11:1 Delta. We also reported that in case of particu-
lar models we could observe that rejection of a given component resulted in worsening
the prediction. In particular, this was the case with MLP using nonlinear Levenberg-
Marquard algorithm for optimization. Such primary models prepared on Test2 data were
quite well tuned, that is, they gave quite low MSE errors even before any postprocessing.
Next, in Figure 4 we present observed ∆MSEij in comparison to the expected ϑij. This

practical experiment proved validity of the concept of MSE reduction. In particular, we
observed correlation between ϑij and ∆MSEij at the level of 0.99.

7. Conclusions. In this paper, we considered the integration of the information gen-
erated by different intelligent modeling agents using smooth components analysis. For
the MSE criterion we presented the theoretical background for efficient classification of
the latent components. The results from the experiment confirmed the rationality of the
approach.
We mainly focused on the results decomposition based on smooth component analysis,

but the above identification method can be addressed to wide area of data exploration
models, including simulations or machine learning systems. In particular, presented ap-
proach can be applied in trading systems, where the techniques that can automatically
identify the fundamental determinants of the stock market are needed. Unfortunately,
these factors are often hidden or mixed with noises. Therefore, a fundamental problem
in financial market modeling is to estimate the main trends and to separate the general
market dependencies from the individual behavior of a given financial instrument. This
leads directly to the issue of data decomposition and interpretation of the underlying
hidden components which correspond to the research presented in this paper.
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