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Abstract. This paper presents a mathematical model of elastic curve for simply sup-
ported beams subjected to a concentrated load located anywhere along length of beam
considering the bending and shear deformations, i.e., the equation of displacements and
also the equation of slope for tangents to the elastic curve are presented. The traditional
model of elastic curve used for simply supported beams subjected to a concentrated load
does not consider the shear deformations. Also a comparison is made between the tradi-
tional model and the proposed model with respect to the maximum displacement of beam
to observe the differences. Besides the effectiveness and accuracy of the model developed
in this paper, a significant advantage is that the displacements and slopes are calculated
at any length of the beam using the mathematical formulae.
Keywords: Elastic curve, Simply supported beams, Concentrated load, Maximum dis-
placement, Bending and shear deformations

1. Introduction. Structural analysis is the study of structures such as discrete systems.
The theory of the structures is essentially based on the fundamentals of mechanics with
which are formulated the different structural elements. The laws or rules that define the
balance and continuity of a structure can be expressed in different ways, including: partial
differential equations of continuous medium three-dimensional space; ordinary differential
equations, or various theories of beams, or simply the algebraic equations for a discrete
structure [1].

Structural analysis can be addressed using three main approaches [2]: a) the tenso-
rial formulation (Newtonian mechanics and vectorial), b) the formulation based on the
principles of virtual work, c) the formulation based on classical mechanics [3,4].

In regards to the conventional techniques of structural analysis of beams and rigid
frames to obtain the displacements and slopes of the tangents to the elastic curve, the
common practice considers only the bending deformations [5,6].

Recently, a method of structural analysis for statically indeterminate beams and rigid
frames has been developed, and the method takes into account the bending deformations
and shear to generate a system of equations in function of rotations and displacements
[7-9]. Also a moment-distribution method to consider a new variable was presented, and
this variable is the shear deformation [10]. A mathematical model to obtain the fixed-end
moments of a beam subjected to a uniformly distributed load and also to a triangularly

41
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distributed load taking into account the shear deformations was developed [11,12]. A
mathematical model of elastic curve for simply supported beams subjected to a uniformly
distributed load taking into account the shear deformations was presented [13].

This paper presents a mathematical model of elastic curve for simply supported beams
subjected to a concentrated load located anywhere along length of beam taking into
account the bending and shear deformations. Also a comparison is made between the
traditional model and the proposed model with respect to the maximum displacement of
beam to observe the differences.

2. Proposed Mathematical Model. A deformed structure member is presented in
Figure 1, and it shows the difference between the Timoshenko theory and the Euler-
Bernoulli theory: in first “θz” and “dy/dx” do not coincide necessarily, while in the
second these are equal [7-13].

Figure 1. Deformation of a structure member

The main difference between the Euler-Bernoulli theory and the Timoshenko theory is
that in the first the relative rotation of the section is approximated by the derivative of
vertical displacement; this is an approximation valid only for long members in relation
to the dimensions of cross section, and then it happens that due to the fact that shear
deformations are negligible in comparison with the deformations caused by moment. On
the Timoshenko theory, which considers the deformation due to shear, and is valid for
short members and long members, the equation of the elastic curve is given by the complex
system of equations:

G

(
dy

dx
− θz

)
=

Vy

As

(1)

E

(
dθz

dx

)
=

Mz

Iz

(2)

where: G = shear modulus, dy/dx = total rotation around axis “Z”, θz = rotation
around axis “Z”, due to the bending, Vy = shear force in direction “Y ”, As = shear area,
dθz/dx = d2y/dx2, E = modulus of elasticity, Mz = bending moment around axis “Z”,
Iz = moment of inertia around axis “Z”.

Deriving Equation (1) and substituting into Equation (2), it is arrived at the equation
of the elastic curve including the effect of shear stress:

d2y

dx2
=

1

GAs

dVy

dx
+

Mz

EIz

(3)
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Equation (3) is integrated to obtain the rotation in anywhere:

dy

dx
=

Vy

GAs

+

∫
Mz

EIz

dx (4)

Figure 2 shows the beam “AB” subjected to a concentrated load located anywhere
along the length of the beam “P” and simply supported at their ends.

Figure 2. Beam “AB” subjected to a concentrated load

The beam of Figure 2 is analyzed to find shear force and moment anywhere of the beam
on axis “x” is:

To 0 ≤ x ≤ a:

Vx = −P (L − a)

L
(5)

Mx =
P (L − a)x

L
(6)

To a ≤ x ≤ L:

Vx =
Pa

L
(7)

Mx =
Pa(L − x)

L
(8)

where: L = beam length, Vx = Vy, and Mx = Mz.
We analyze for 0 ≤ x ≤ a.
By substitution of Equations (5) and (6) into Equation (4), we obtain:

dy

dx
= −P (L − a)

GAsL
+

P (L − a)

EIzL

∫
(x)dx (9)

These two equations must be integrated independently and not in the combined form,
because the boundary conditions for the slope related to the bending deflections and shear
are different in where the concentrated load is applied.

• Shear deformations:

dy

dx
= −P (L − a)

GAsL
(10)

The slope is the same in the segment 0 ≤ x ≤ a. Therefore, dy/dx = θs1:

θs1 = −P (L − a)

GAsL
(11)
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Equation (10) is integrated to obtain the displacements as follows:

ys1 = −P (L − a)

GAsL
x + C1 (12)

The boundary conditions are considered; when x = 0 and y = 0, we obtain C1 = 0.
Then Equation (12) is presented:

ys1 = −P (L − a)

GAsL
x (13)

• Bending deformations:

dy

dx
=

P (L − a)

EIzL

∫
(x)dx (14)

Equation (14) is integrated to find the rotations:

dy

dx
= θf1 =

P (L − a)

EIzL

(
x2

2
+ C2

)
(15)

Substituting x = a, into Equation (15) to obtain the rotation dy/dx = θfa1, where the
concentrated load is localized, this is:

θfa1 =
P (L − a)

EIzL

(
a2

2
+ C2

)
(16)

Equation (15) is integrated to find the displacements as follows:

yf1 =
P (L − a)

EIzL

(
x3

6
+ C2x + C3

)
(17)

The boundary conditions are considered; when x = 0 and y = 0, we obtain C3 = 0.
Then Equation (17) is presented:

yf1 =
P (L − a)

EIzL

(
x3

6
+ C2x

)
(18)

Substituting x = a, into Equation (18) to find the displacement y = yfa1, where the
concentrated load is localized, this is:

yfa1 =
P (L − a)

EIzL

(
a3

6
+ C2a

)
(19)

We analyze for a ≤ x ≤ L.
Equations (7) and (8) are substituted into Equation (4), and this is presented:

dy

dx
=

Pa

GAsL
+

Pa

EIzL

∫
(L − x)dx (20)

• Shear deformations:

dy

dx
=

Pa

GAsL
(21)

The slope is constant in the segment a ≤ x ≤ L. Therefore, dy/dx = θs2:

θs2 =
Pa

GAsL
(22)

Equation (21) is integrated to obtain the displacements as follows:

ys2 =
Pa

GAsL
x + C4 (23)
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The boundary conditions are considered; when x = L and y = 0, we obtain C4 =
−Pa/GAs. Then Equation (23) is presented:

ys2 =
Pa

GAsL
x − Pa

GAs

(24)

• Bending deformations:

dy

dx
=

Pa

EIzL

∫
(L − x)dx (25)

Equation (25) is integrated to find the rotations:

dy

dx
= θf2 =

Pa

EIzL

(
Lx − x2

2
+ C5

)
(26)

Substituting x = a, into Equation (26) to find the rotation dy/dx = θfa2, where the
concentrated load is localized, this is:

θfa2 =
Pa

EIzL

(
La − a2

2
+ C5

)
(27)

Equation (26) is integrated to obtain the displacements, because there are unknown
conditions for rotations; this is as follows:

yf2 =
Pa

EIzL

(
Lx2

2
− x3

6
+ C5x + C6

)
(28)

The boundary conditions are considered; when x = L and y = 0, we obtain C6 =
−L3/3 − C5L. Then Equation (28) is presented:

yf2 =
Pa

EIzL

[
Lx2

2
− x3

6
− L3

3
− C5(L − x)

]
(29)

Substituting x = a, into Equation (29) to find the displacement y = yfa2, where the
concentrated load is localized, this is:

yfa2 =
Pa

EIzL

[
La2

2
− a3

6
− L3

3
− C5(L − a)

]
(30)

Equations (16) and (27) are equalized, because bending rotations must be equal at the
point x = a, where the load is applied to find the constant “C5” in function of “C2”; this
is:

C5 = C2
(L − a)

a
− aL

2
(31)

Equations (19) and (30) are equalized, because bending displacements must be equal
at the point x = a, where the load is applied and subsequently the Equation (31) is
substituted in this equation to find the constant “C2”; this is:

C2 =
a(a − 2L)

6
(32)

Equation (32) is substituted into Equation (31) to find the constant “C5”:

C5 = −(a2 + 2L2)

6
(33)

Equation (32) is substituted into Equation (15) to obtain the bending rotations any-
where of the segment 0 ≤ x ≤ a:

θf1 =
P (L − a)

EIzL

[
x2

2
+

a(a − 2L)

6

]
(34)
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Total rotation “θt1”anywhere of the segment 0 ≤ x ≤ a, this is:

θt1 = θs1 + θf1 (35)

Substituting Equations (11) and (34) into Equation (35) is:

θt1 = −P (L − a)

GAsL
+

P (L − a)

EIzL

[
x2

2
+

a(a − 2L)

6

]
(36)

And if we substituted [7-13]:

Ø =
12EIz

GAsL2
(37)

where “G” is obtained as follows:

G =
E

2(1 + ν)
(38)

where: Ø is form factor, and ν is Poisson’s ratio.
Then, Equation (37) is substituted into Equation (36); this is:

θt1 = −P (L − a)L

12EIz

{
Ø − 12

L2

[
x2

2
+

a(a − 2L)

6

]}
(39)

If shear deformations are neglected (Ø = 0) into Equation (39), the rotation is presented
[14-17]:

θt1 =
P (L − a)

EIzL

[
x2

2
+

a(a − 2L)

6

]
(40)

Equation (32) is substituted into Equation (18) to obtain the bending displacements
anywhere of the segment 0 ≤ x ≤ a:

yf1 =
P (L − a)

EIzL

{
x3

6
+

[
a(a − 2L)

6

]
x

}
(41)

Total displacement “yt1” anywhere of the segment 0 ≤ x ≤ a, this is:

yt1 = ys1 + yf1 (42)

Substituting Equations (13) and (41) into Equation (42) is:

yt1 = −P (L − a)

GAsL
x +

P (L − a)

EIzL

{
x3

6
+

[
a(a − 2L)

6

]
x

}
(43)

Now substituting the form factor of Equation (37) into Equation (43) is presented:

yt1 = −P (L − a)L

12EIz

{
Øx − 12

L2

[
x3

6
+

a(a − 2L)x

6

]}
(44)

Therefore, Equation (44) is the elastic curve of beam subjected to a concentrated load
localized anywhere of the member considering the bending deformations and shear of the
segment 0 ≤ x ≤ a.

If shear deformations are neglected (Ø = 0) into Equation (44), the displacement is
presented [14-17]:

yt1 =
P (L − a)

EIzL

[
x3

6
+

a(a − 2L)x

6

]
(45)

Equation (33) is substituted into Equation (26) to obtain the bending rotations any-
where of the segment a ≤ x ≤ L:

θf2 =
Pa

EIzL

[
Lx − x2

2
− (a2 + 2L2)

6

]
(46)
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Total rotation “θt2” anywhere of the segment a ≤ x ≤ L, this is:

θt2 = θs2 + θf2 (47)

Substituting Equations (22) and (46) into Equation (47) is:

θt2 =
Pa

GAsL
+

Pa

EIzL

[
Lx − x2

2
− (a2 + 2L2)

6

]
(48)

Substituting the form factor of Equation (37) into Equation (48) is presented:

θt2 =
PaL

12EIz

{
Ø +

12

L2

[
Lx − x2

2
− (a2 + 2L2)

6

]}
(49)

If shear deformations are neglected (Ø = 0) into Equation (49), the rotation is presented
[17]:

θt2 =
Pa

EIzL

[
Lx − x2

2
− (a2 + 2L2)

6

]
(50)

Equation (33) is substituted into Equation (29) to obtain the bending displacements
anywhere of the segment a ≤ x ≤ L:

yf2 =
Pa

EIzL

{
Lx2

2
− x3

6
− L3

3
+

(a2 + 2L2)

6
(L − x)

}
(51)

Total displacement “yt2” anywhere of the segment a ≤ x ≤ L, this is:

yt2 = ys2 + yf2 (52)

Substituting Equations (24) and (51) into Equation (52) is:

yt2 =
Pa

GAsL
x − Pa

GAs

+
Pa

EIzL

{
Lx2

2
− x3

6
− L3

3
+

(a2 + 2L2)

6
(L − x)

}
(53)

Now substituting the form factor of Equation (37) into Equation (53) is presented:

yt2 =
PaL

12EIz

{
Øx − ØL +

12

L2

[
Lx2

2
− x3

6
− L3

3
+

(a2 + 2L2)

6
(L − x)

]}
(54)

Therefore, Equation (54) is the elastic curve of beam subjected to a concentrated load
localized anywhere of the member considering the bending deformations and shear of the
segment a ≤ x ≤ L.

If shear deformations are neglected (Ø = 0) into Equation (54), the displacement is
presented [17]:

yt2 =
Pa

EIzL

[
Lx2

2
− x3

6
− L3

3
+

(a2 + 2L2)

6
(L − x)

]
(55)

2.1. Rotation angles in supports. The rotation angles at the ends of the beam are
obtained by substituting x = 0 into Equation (39) and x = L into Equation (49):

θA = −P (L − a)L

12EIz

{
Ø − 12

L2

[
a(a − 2L)

6

]}
(56)

θB =
PaL

12EIz

{
Ø +

12

L2

[
L2

2
− (a2 + 2L2)

6

]}
(57)

If shear deformations are neglected (Ø = 0) into Equations (56) and (57), the rotations
at the supports are [17]:

θA =
Pa(L − a)(a − 2L)

6EIzL
(58)
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θB =
Pa (L2 − a2)

6EIzL
(59)

The rotation angles are functions of the position of the load and reach their maximum
values when it is located near the midpoint of the beam. In this case of rotation angle
“θA”, the maximum value of the angle is obtained by differentiating Equation (56) with
respect to “a”:

dθA

da
=

PL

12EIz

Ø − P

6EIzL

(
3a2 − 6aL + 2L2

)
(60)

Subsequently Equation (60) is made equal to zero to obtain the position of the load as
follows:

a =

(
3 −

√
3 + 1.5Ø

)
L

3
(61)

If shear deformations are neglected (Ø = 0) into Equation (61), the position of the load
is presented [17]:

a =

(
3 −

√
3
)
L

3
(62)

Substituting Equation (61) into Equation (56) is presented:

θA max = −PL2 (Ø + 2)3/2

18
√

6EIz

(63)

If shear deformations are neglected (Ø = 0) into Equation (63), the maximum rotation
is shown [17]:

θA max = −
√

3PL2

27EIz

(64)

2.2. Maximum deflection in beam. The maximum deflection in beam “ymax” occurs
where the deflection curve has a horizontal tangent. If the load is to the right of the
midpoint, i.e., if a > L − a, this point is on the left side of the load. We can locate this
point, equaling the slope given by the Equation (39) to zero and solving for the distance
“x”, and now we denote “x1”. In this way we obtain the following equation:

x1 =

√
a(2L − a)

3
+

ØL2

6
(65)

If shear deformations are neglected (Ø = 0) into Equation (65), the deflection curve
has a horizontal tangent [17]:

x1 =

√
a(2L − a)

3
(66)

Substituting Equation (65) into Equation (44) is determined the maximum deflection:

ymax = −P (L − a) [L(4a + ØL) − 2a2]
3/2

18
√

6EIzL
(67)

If shear deformations are neglected (Ø = 0) into Equation (67), the maximum deflection
is shown [17]:

ymax = −P (L − a) (2aL − a2)
3/2

9
√

3EIzL
(68)

Now, if the load is to the left of the midpoint, i.e., if a < L − a, this point is on the
right side of the load. We can locate this point, equaling the slope given by the Equation
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(49) to zero and solving for the distance “x”, and now we denote “x1”. In this way we
obtain the following equation:

x1 = L −
√

(L2 − a2)

3
+

ØL2

6
(69)

If shear deformations are neglected (Ø = 0) into Equation (69), the deflection curve
has a horizontal tangent [17]:

x1 = L −
√

(L2 − a2)

3
(70)

Substituting Equation (69) into Equation (54) is determined the maximum deflection:

ymax = −Pa [L2(Ø + 2) − 2a2]
3/2

18
√

6EIzL
(71)

If shear deformations are neglected (Ø = 0) into Equation (71), the maximum deflection
is shown [17]:

ymax = −Pa (L2 − a2)
3/2

9
√

3EIzL
(72)

2.3. Special case (the load is located in the center of the beam). An important
special case occurs when the load “P” acts on the midpoint of the beam (a = 0.5L).
Then, we obtain the following results with Equations (39), (49), (44), (54), (56) and (57),
respectively. And substituting x = 0.5L into Equation (44) or (54) is found maximum
deflection:

θt1 = −P [L2(2Ø + 3) − 12x2]

48EIz

(73)

θt2 =
P [24Lx − L2(9 − 2Ø) − 12x2]

48EIz

(74)

yt1 = −Px [L2(2Ø + 3) − 4x2]

48EIz

(75)

yt2 = −P [4x3 − 12Lx2 + L2x(9 − 2Ø) + L3(2Ø − 1)]

48EIz

(76)

θA = −PL2(2Ø + 3)

48EIz

(77)

θB =
PL2(2Ø + 3)

48EIz

(78)

ymax = − PL3

48EIz

(1 + Ø) (79)

If shear deformations are neglected (Ø = 0) into Equations (73), (74), (75), (76), (77),
(78) and (79) [17]:

θt1 = −P (L2 − 4x2)

16EIz

(80)

θt2 =
P (8Lx − 3L2 − 4x2)

16EIz

(81)

yt1 = −Px (3L2 − 4x2)

48EIz

(82)

yt2 = −P (4x3 − 12Lx2 + 9L2x − L3)

48EIz

(83)
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θA = − PL2

16EIz

(84)

θB =
PL2

16EIz

(85)

ymax = − PL3

48EIz

(86)

3. Application. A steel beam is presented to obtain: 1) The maximum rotations in
support “A” and where the load is localized to produce the maximum rotation; 2) The
maximum deflections and its localization, when the load is applied in a = 0.25L, a = 0.50L
and a = 0.75L. By the traditional model (bending deformations are considered) and the
proposed model (bending deformations and shear are considered), the used beam profile
is W24X94 and the beam length varies from 3.00 to 10.00m; the profile properties are:

P = 49.05 kN
E = 20019.6 kN/cm2

A = 173.12 cm2

Ac = 78.25 cm2

I = 105469 cm4

ν = 0.32
The shear modulus by Equation (38) is obtained:

G =
E

2(1 + ν)
=

20019.6

2(1 + 0.32)
= 7583.182 kN/cm2

Equation (37) is used to find the form factor. The maximum rotation in support “A”
by Equation (58) is obtained, and by Equation (62) is found where the load is localized
for traditional model, and for proposed model by Equation (56) is found the maximum
rotation in support “A” and by Equation (61) is obtained where the load is localized. The
maximum deflection by Equation (72) is obtained, and its localization by Equation (70)
is found for traditional model and for proposed model by Equation (71) is found and its
localization by Equation (69) is obtained, when a < L − a. When the load is located in
the center of the beam, the maximum deflection by Equation (86) is found for traditional
model and for proposed model by Equation (79) is obtained. The maximum deflection by
Equation (68) is obtained and its localization by Equation (66) is found for traditional
model, and for proposed model by Equation (67) is found and its localization by Equation
(65) is obtained, when a > L − a.

Table 1 presents the results of maximum rotations and Figure 3 shows the behavior of
the maximum rotations with respect to length of the beam for the traditional model and
the proposed model. Table 2 shows the results of maximum displacements and Figure
4 presents the behavior of both models for a = 0.25L. Table 3 presents the maximum
displacements and Figure 5 shows the behavior of the two models for a = 0.5L. Table
4 shows the maximum displacements and Figure 4 presents the behavior of both models
for a = 0.75L.

4. Results. Table 1 shows the maximum rotations in support “A”, the proposed model
(the bending and shear deformations are considered) is greater with respect to traditional
model (the bending deformations are considered) in all cases, the largest difference exists
in L = 3.00 m of 38.06% and the smallest difference occurs in L = 10.00 m of 3.22%,
and where the load is localized to produce the maximum rotation, and the traditional
model is greater with respect to proposed model in all cases, the largest difference exists
in L = 3.00 m of 18.12% and the smallest difference occurs in L = 10.00 m of 1.47%.
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Table 1. The maximum rotations “θA max”

L
a θA max × 104

(m)
(m) (rad)

TM PM TM/PM TM PM PM/TM

3 1.2679 1.0734 1.1812 −1.34 −1.85 1.3806

4 1.6906 1.5413 1.0969 −2.38 −2.88 1.2101

5 2.1132 1.9925 1.0606 −3.73 −4.21 1.1287

6 2.5359 2.4347 1.0416 −5.36 −5.85 1.0914

7 2.9585 2.8715 1.0303 −7.30 −7.78 1.0658

8 3.3812 3.3048 1.0231 −9.54 −10.02 1.0503

9 3.8038 3.7358 1.0182 −12.07 −12.55 1.0398

10 4.2265 4.1652 1.0147 −14.90 −15.38 1.0322

Figure 3. Maximum rotations “θA max”

Table 2 presents the maximum deflections, when a = 0.25L, the proposed model is
greater with respect to traditional model in all cases, the largest difference exists in
L = 3.00 m of 40.66% and the smallest difference occurs in L = 10.00 m of 3.43% and
the distance “x1” is greater than the traditional model with respect to proposed model in
all cases, the largest difference exists in L = 3.00 m of 17.83% and the smallest difference
occurs in L = 10.00 m of 1.46%.

Table 3 shows the maximum deflections, when a = 0.5L, the proposed model is greater
with respect to traditional model in all cases, the largest difference exists in L = 3.00 m
of 47.33% and the smallest difference occurs in L = 10.00 m of 4.26% and the distance
“x1” is equal for two models.
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Table 2. The maximum deflection “ymax” for a = 0.25L

L
x1 ymax

(m)
(m) (cm)

TM PM TM/PM TM PM PM/TM

3 1.3229 1.1227 1.1783 −0.0091 −0.0128 1.4066

4 1.7639 1.6101 1.0955 −0.0216 −0.0264 1.2222

5 2.2049 2.0804 1.0598 −0.0423 −0.0482 1.1395

6 2.6459 2.5414 1.0411 −0.0730 −0.0801 1.0973

7 3.0869 2.9970 1.0300 −0.1160 −0.1242 1.0707

8 3.5279 3.4490 1.0229 −0.1732 −0.1825 1.0537

9 3.9688 3.8986 1.0180 −0.2465 −0.2570 1.0426

10 4.4098 4.3465 1.0146 −0.3382 −0.3498 1.0343

Figure 4. Maximum deflection “ymax” for a = 0.25L and a = 0.75L

Table 4 presents the maximum deflections, when a = 0.75L, the proposed model is
greater with respect to traditional model in all cases, the largest difference exists in
L = 3.00 m of 40.66% and the smallest difference occurs in L = 10.00 m of 3.43% and
the distance “x1” is greater in the proposed model with respect to traditional model in
all cases, the largest difference exists in L = 3.00 m of 11.94% and the smallest difference
occurs in L = 10.00 m of 1.13%.

5. Conclusions. This paper presents a mathematical model of elastic curve for simply
supported beams subjected to a concentrated load located at anywhere along length of
the beam taking into account the bending deformations and shear. The mathematical
technique presented in this research is very adequate to obtain the deflections in anywhere
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Table 3. The maximum deflection “ymax” for a = 0.50L

L
x1 ymax

(m)
(m) (cm)

TM PM TM/PM TM PM PM/TM

3 1.5000 1.5000 1.0000 −0.0131 −0.0193 1.4733

4 2.0000 2.0000 1.0000 −0.0310 −0.0392 1.2645

5 2.5000 2.5000 1.0000 −0.0605 −0.0708 1.1702

6 3.0000 3.0000 1.0000 −0.1045 −0.1169 1.1187

7 3.5000 3.5000 1.0000 −0.1660 −0.1805 1.0873

8 4.0000 4.0000 1.0000 −0.2478 −0.2643 1.0666

9 4.5000 4.5000 1.0000 −0.3528 −0.3714 1.0527

10 5.0000 5.0000 1.0000 −0.4840 −0.5046 1.0426

Figure 5. Maximum deflection “ymax” for a = 0.50L

of beam subjected to a concentrated load, since it presents the mathematical equation of
elastic curve.

The maximum deflections by the traditional model (bending deformations are consid-
ered) are lower in all cases, with respect to the proposed model (bending deformations
and shear are considered). This condition implies that we must take into account the
maximum deflections permitted by building regulations, because in some situations it
could be presented which does not meet the standards set by these codes.

In any type of structure, the shear forces and bending moments are present; therefore,
the bending and shear deformations appear. Then, the proposed model (the bending
and shear deformations are considered) is more appropriate for structural analysis and is
also more suited to the actual conditions with respect to the traditional model (bending
deformations are considered).
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Table 4. The maximum deflection “ymax” for a = 0.75L

L
x1 ymax

(m)
(m) (cm)

TM PM TM/PM TM PM PM/TM

3 1.6771 1.8773 1.1194 −0.0091 −0.0128 1.4066

4 2.2361 2.3899 1.0688 −0.0216 −0.0264 1.2222

5 2.7951 2.9196 1.0445 −0.0423 −0.0482 1.1395

6 3.3541 3.4586 1.0312 −0.0730 −0.0801 1.0973

7 3.9131 4.0030 1.0230 −0.1160 −0.1242 1.0707

8 4.4721 4.5510 1.0176 −0.1732 −0.1825 1.0537

9 5.0312 5.1014 1.0140 −0.2465 −0.2570 1.0426

10 5.5902 5.6535 1.0113 −0.3382 −0.3498 1.0343

The mathematical model presented in this paper is applied only for simply supported
beams subjected to a concentrated load located at anywhere along the length of the beam.
The suggestions for future research may be: 1) when is presented another type of load;
2) when the cross-section of the beam is variable.
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