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Abstract. The method of fundamental solutions (MFS) is one of the boundary-type
meshless collocation methods for the solution of boundary value problems. By using
the fundamental solutions of governing equations, the solution to the partial differential
equation can be obtained based on the boundary points. In this paper, we investigate the
applications of the MFS together with the conditional number analysis to solve elliptic
problems with only partially accessible boundary conditions. The effective condition num-
ber is used to investigate the ill-conditioned interpolation system. A innovative simple
algorithm is proposed to solve such inverse problems. Compared with traditional results,
our numerical research shows that the new algorithm of the MFS is accurate, computa-
tionally efficient and stable for inverse problems with arbitrary geometry.
Keywords: Method of fundamental solutions, Boundary condition, Effective condition
number, Laplace equation

1. Introduction. Recent years have witnessed a research boom in the method of funda-
mental solutions (MFS) in dealing with science and engineering problems [1]. It can be
viewed as a variant of the boundary element method which uses the fundamental solution
of governing equation.

The applications of MFS for direct problems can be found in literature [2-4] and ref-
erences therein. For inverse problems, the MFS has been successfully applied to solve
inverse heat conduction problems [5-10]. Various Cauchy problems are also considered
by the MFS [11-17]. Young et al. [18] investigated the applications of the MFS together
with the conditional number analysis to solve inverse problems involving under-specified
and/or over-specified boundary conditions. Hon and Li [19] extended the application of
the MFS to determine an unknown free boundary of a Cauchy problem of parabolic-type
equation from measured Dirichlet and Neumann data with noises. Jin and Marin [20]
used the MFS to deal with inverse source problems associated with the steady-state heat
conduction. It is noted in [20] that the inverse source problem is transformed into a
fourth-order partial differential equation. Based on the MFS, Wang et al. [21] proposed
a new general scheme for inverse source identification problems. A comprehensive survey
is made in the MFS solution of inverse problems [22, 23]. The MFS has also been con-
sidered to solve inverse Stefan and static problems [24-28]. It is pointed that all previous
literature assumes that the accessible boundary should be over-specified.
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The purpose of the present paper is to apply the MFS for the direct solution of some
inverse problems associated with the Laplace equation. The MFS is employed to discretize
the equation, and the effective condition number is used to analyze the ill-conditioned
resulting matrix system. Interesting results for several numerical examples are presented
to show that additional boundary data and regularization techniques are not necessary
for inverse Laplace problems. The structure of the paper is as follows. In Section 2, we
briefly describe the inverse Laplace problem. The key idea of the MFS is described in
Section 3. Followed by Section 4, the effective condition number is introduced to scale the
interpolation system. Section 5 presents two benchmark numerical examples on piecewise
smooth domain and irregular smooth domain. Section 6 concludes this study with some
remarks.

2. Problem Description. Many steady-state engineering problems, such as ground wa-
ter and heat conduction in an isotropic homogeneous media, can be mathematically de-
scribed as

∇2u(X) =
∂2u

∂x2
+

∂2u

∂y2
= 0, X = (x, y) ∈ Ω, (1)

where u is the water head or a field potential to be solved, X is the spatial coordinate of
the problem and Ω is an open bounded physical domain.

For direct problems, certain boundary conditions should be given simultaneously on the
whole physical boundary ∂Ω. As is known to all, it is not always possible to get boundary
conditions from a closed boundary for many practical problems. More specifically, only
partial boundary conditions are accessible on Γ ⊂ ∂Ω. We consider the following certain
boundary condition

Bu(X) = ū(X), X ∈ Γ, (2)

where B is a linear operator defined on the accessible boundary Γ. ū(X) is the prescribed
boundary data at point X. We aim to determine the boundary condition on the rest part
of under-specified physical boundary Γ0 = ∂Ω − Γ.

For the above inverse problem, previous literature assumes that the other types of
boundary conditions are added on the accessible boundary Γ, i.e., the accessible boundary
Γ is over-specified. Here, we state that additional boundary condition is not necessary for
this kind of inverse problem. Traditional research concludes that it does not guarantee
the uniqueness of such inverse problem. However, our conclusion will be supported by
numerical investigations in Section 5.

3. The MFS. The MFS is first proposed by Kupradze and Aleksidze in 1964. It is a
versatile meshless numerical method to solve well-posed as well as ill-posed problems.
The fundamental theory of the MFS is to decompose the solutions of the boundary value
problems by the superposition of corresponding fundamental solutions with proper source
intensities. By the method of collocation through known augmented data on the boundary,
one can get the unknown parameters to be determined.

The general mathematical formulation of the MFS can be expressed by

uM(X) =
M∑
i=1

λiF (ri), (3)

where M is the total source point number, and λi (i = 1, . . . , M) are the unknown coeffi-
cients that are used to determine the values of the field variable. F (·) is the fundamental
solution or the free space Greens function of the Laplacian operator. r = ||X − Y || is
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the Euclidean norm distance between two points X and Y . The fundamental solution of
two-dimensional Laplace equation is written as

F (·) =
1

2π
log(r). (4)

To avoid the singularity of the fundamental solution F (·) at origin, the prescribed source
points are usually introduced on a ‘pseudo-boundary’ outside the computational domain.
The ‘pseudo-boundary’ can be a contour geometrically similar to the boundary contour
of the region under consideration or a circular contour [29]. For convenience, this paper
will consider the circular contour case.

The unknown coefficients λi (i = 1, . . . , M) are determined by the collocation method
using the known boundary data. By collocating Equation (3) on the prescribed boundary
data (2) at N collocation points, we are able to obtain a system of linear algebraic
equations. More specifically, we have

M∑
j=1

λjF (rij) = ū(Xi), Xi ∈ Γ, (5)

where i and j are the index of collocation points on Γ and source points on ‘pseudo-
boundary’ Γ′, respectively.

The above equations can be written in the following matrix system

Fλ = b, (6)

where F = F (rij) is an N × M interpolation matrix composed by the values of funda-
mental solutions for prescribed source and collocation points. The column matrix b can
be obtained from the known boundary conditions. In order to get a square matrix FNN ,
we choose equal numbers of collocation and source points.

Due to the global interpolation approach, the MFS produces a dense matrix system
when a large number of boundary collocation points are used. This will lead to the
ill-conditioned interpolation matrix FNN .

4. Condition of Interpolation System. The traditional condition number is consid-
ered to be a ratio of the largest and smallest singular values of the interpolation matrix
F . It only depends on the distribution and number of source and collocation points. In
practical applications, the boundary data b may be disturbed by some noise. Thus, the
whole interpolation system may be different. Clearly, we should not rely solely on the
traditional condition number to scale all practical ill-conditioned MFS systems.

As an alternative measurement index, the effective condition number (ECN) is intro-
duced to investigate the condition of the whole matrix system [30, 31]. This will be briefly
introduced in the subsequent content. Other types of effective condition number can be
found in [32-34] and references therein.

Based on the singular value decomposition, the matrix F can be decomposed into F =
UDV T . Here, U = [u1, u2, . . . , uN ] and V = [v1, v2, . . . , vN ] denote orthogonal matrices,
while the vectors ui and vi are the left and right singular vectors of F , respectively.
D = Diag(σ1, σ2, . . . , σN) and σi, 1 ≤ i ≤ N are the singular values of F .

To express the ECN, we consider a perturbed matrix system F (λ +△λ) = b +△b. We
can get

b =
N∑

i=1

αiui, △b =
N∑

i=1

△αiui. (7)

Let α = (b1, . . . , bN)T = U∗b and △α = (△b1, . . . ,△bN)T = U∗△b. The solution
can be expressed in terms of the inverse of F , i.e., λ = F−1b := V D−1UT b, △α =
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F−1△b. Assume p ≤ N is the largest integer such that σp > 0. We have D−1 =
Diag(σ−1

1 , . . . , σ−1
p , 0, . . . , 0).

Since U is orthogonal, we have

∥ λ ∥=

√√√√ N∑
i=1

(
αi

σi

)2

, ∥ △λ ∥=

√√√√ N∑
i=1

(
△αi

σi

)2

≤ ∥ △b ∥
σN

. (8)

For the traditional condition number Cond(F ), we get

∥ ∆λ ∥
∥ λ ∥

≤ Cond(F )
∥ ∆b ∥
∥ b ∥

. (9)

We can get the ECN by substituting (8) into the inequality (9)

ECN(F, b) =
∥ b ∥

σN

√(
β1

σ1

)2

+ · · · +
(

βN

σN

)2
. (10)

It is a new error bound for (6) and can be considered as an alternative replacement to
traditional condition number.

5. Numerical Examples. To support our conclusion, two benchmark examples are con-
sidered in the following part. The first example is based on a piecewise smooth domain
and the second one on an irregular smooth domain. In order to investigate the effect of
noisy boundary data to the MFS, the following random noise is added to the boundary
conditions

u = u(1 + δ). (11)

Here, δ = ε×Rand and ε is the level of noise in the boundary data. The MATLAB random
number generator ‘Rand’ is used to produce random numbers in [0, 1]. Differences between
traditional and current algorithms are shown in Table 1.

Table 1. Differences between traditional and current algorithms

Algorithm Traditional Current

Differences over-specified boundary normal boundary

Two step One step

5.1. Piecewise smooth domain. We consider a piecewise smooth domain Ω = {(x, y)|0
≤ x, y ≤ 1}, whose geometry configuration is shown in Figure 1. Only partially boundary
condition is accessible on Γ (The solid line with ‘.’ in Figure 1). We aim to recover the
boundary data in the rest part (The broken line in Figure 1). The following Dirichlet
boundary condition is considered

u(x, y) = excosy, (x, y) ∈ Γ. (12)

Since there exist investigations on the choice of source points [29, 35], we choose the source
points on the fictitious boundary Γ′ = {(r, θ)|r = 5,−π/4 ≤ θ < 5π/4} (The solid line
with ‘*’ in Figure 1). For convenience, all collocation points and source points are evenly
distributed in this paper. However, our conclusion holds for scattered distributed points.

In this example, we fix the boundary point number N = 16. For boundary conditions
with/without noise, Figure 2 shows the numerical results of Dirichlet boundary condition
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Figure 1. Schematic diagram of piecewise smooth domain
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Figure 2. Dirichlet boundary condition on under-specified x-axis for tra-
ditional algorithm (Left) and our algorithm (Right)

on the under-specified x-axis for traditional algorithm and our algorithm. From it we
see that numerical results are in good agreement with analytical solutions for noisy and
non-noisy boundary conditions for both traditional algorithm and our algorithm. Similar
results can be seen for the rest investigations, so the comparisons are not presented in the
following parts.

Corresponding to Figure 2, we illustrate the errors between analytical and numerical
results in Figure 3. The absolute errors between analytical and numerical results without
noise are around 0.001. The average absolute error (AAE) is 1.47×10−4. For added noise
0.1%, the errors are similar, i.e., the absolute errors between analytical and numerical
results with noise 0.1% are also around 0.001. The corresponding AAE is 8.03 × 10−5.
However, for more noise 1% added, the errors increase to around 0.009. Although the
AAE is 1.35 × 10−3, the largest absolute error is 0.01.

This example shows that even with only partially accessible boundary conditions, we
can also get accurate results. More importantly, no regularization techniques are used for
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Figure 3. Errors between analytical and numerical results on under-
specified x-axis
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Figure 4. Schematic diagram of smooth domain

non-noisy boundary conditions and boundary conditions with small noise levels. However,
for larger noise levels, regularization methods are also needed. All in all, we conclude that
there is no need to use additional boundary data which is used in traditional procedures.

5.2. Smooth domain. Here, we consider an irregular smooth domain Ω = {(r, θ)|0 ≤
θ < 2π, 0 ≤ r ≤ 0.3(1.5 + cos(5θ))}, whose schematic diagram is shown in Figure 4. Only
partially boundary condition Γ is accessible (The solid line with ‘.’ in Figure 4). We aim
to recover the boundary data in the rest part (The broken line in Figure 4). The Dirichlet
boundary condition is given by

u(x, y) = x2 − y2, (x, y) ∈ Γ. (13)

The source points are located on the fictitious boundary Γ′ = {(r, θ)|r = 5, 0 ≤ θ < π}
(The solid line with ‘*’ in Figure 4).

5.2.1. Noisy boundary. For this case, the boundary point number is N = 16 and half
accessible boundary Γ = {(r, θ)|0 ≤ θ < π, r = 0.3(1.5 + cos(5θ))}. Figure 5 reveals
the numerical results of Dirichlet boundary condition on the under-specified x-axis for
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Figure 5. Dirichlet boundary condition

boundary conditions with/without noise. From it we see the numerical results are in
good agreement with analytical solutions for noisy-free boundary condition and boundary
conditions with noise 0.1%. As more noise added, the numerical results are obviously
different from analytical results. This is different from the results shown in Figure 2. The
reason for this phenomenon may contribute to the size of accessible boundary. It will be
investigated in the subsequent subsection. Although not presented, similar errors can be
achieved as shown in Figure 3. The previous conclusion still holds in this case, i.e., there
is no need to use additional boundary data in solving this kind of inverse problems.

We note that if fixed noise levels are used, the numerical results are less sensitive to
noise levels. Also, it is also an ideal case for practical problems. Due to the limitation of
space, the numerical results are omitted here.

5.2.2. Influence of accessible boundary. We consider the effect of accessible boundary

Γ = {(r, θ)|r = 0.3(1.5 + cos(5θ)), 0 ≤ θ < α} (14)

on the accuracy of numerical results, where the polar angle α ∈ [π/8, 3π/2]. For fixed
boundary point number N = 16, Figure 6 shows the sensitivity of AAM versus the mea-
surement of the accessible boundary Γ with angle step π/8. As the accessible boundary
increases, the AAM becomes small for α ≤ 9π/8. After α > 9π/8, convergence curve
of the AAM oscillates around 10−5. This may be partially due to the ill-conditioned
interpolation system.

The corresponding traditional condition number (Cond) and ECN variation curves
versus the measurement of the accessible boundary Γ with angle step π/8 are shown
in Figure 7. From it we can see the ECN is a superior criterion to the Cond. More
specifically, the ECN increases with the AAM decreases. This is not obvious for the Cond
case. Also, we find that the ECN is far smaller than the Cond.

In [18], it is stated that a necessary condition for the inverse problem given by Equations
(1) and (2) to be identifiable is that measure (Γ) > measure Γ0. The results in Figure
7 show that accurate numerical results can be got even for smaller accessible boundary.
For example, the AAM is smaller than 10−4 for accessible boundary with α = π/8.

Unless otherwise stated, we fix half accessible boundary Γ = {(r, θ)|r = 0.3(1.5 +
cos(5θ)), 0 ≤ θ < π} in the following discussions.

5.2.3. Noisy boundary analysis. For various noisy levels, the relationship among the tradi-
tional condition number (Cond), ECN and AAE are shown in Table 1. Since the coefficient
matrix only relates to the positioning of the boundary points, the Cond remains the same
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Figure 6. AAM versus the variation of accessible boundary data
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Figure 7. Cond (Left) and ECN (Right) against the variation of accessible
boundary data

Table 2. Effect of noise level

Noise δ 0 0.00001 0.0001 0.001

Cond 2.60 × 1017 2.60 × 1017 2.60 × 1017 2.60 × 1017

ECN 4.83 × 107 1.53 × 106 1.18 × 105 1.18 × 104

AAE 5.10 × 10−5 2.44 × 10−3 3.67 × 10−2 1.71 × 10−1

for various noise levels. Differently, the ECN is related on the positioning of the bound-
ary points and the Dirichlet boundary data as well as the imposed noise levels. This
conclusion is supported by data in Table 2.

Once a tiny amount of noise δ = 0.00001 is added, the ECN drops from order 107 to
106. And the corresponding AAE increases from order 10−5 to 10−3. The data in Table
2 strongly support the relation ECN = O(AAE−1). This relationship is same with direct
problems [30]. More interestingly, the small ECN (ECN = 1.18 × 104) found in Table 2
suggests that the numerical solutions (AAE = 1.71 × 10−1) are not trustworthy. In this
case, one should turn to other ways instead of applying MFS directly.
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Figure 8. AAM versus boundary point numbers

Table 3. Condition numbers for Section 5.2.4

N Cond ECN AAE

5 1.17 × 105 1.44 × 101 1.29 × 10−1

9 3.06 × 109 3.55 × 103 1.03 × 10−2

13 1.68 × 1013 2.40 × 105 2.29 × 10−3

15 4.98 × 1015 4.94 × 106 2.73 × 10−5

19 1.32 × 1018 1.43 × 108 7.07 × 10−5

23 1.62 × 1018 1.33 × 108 1.92 × 10−5

25 1.20 × 1019 1.03 × 108 4.81 × 10−5

29 5.30 × 1018 4.47 × 108 1.41 × 10−5

33 8.01 × 1018 3.22 × 108 1.05 × 10−5

35 1.62 × 1019 5.09 × 108 2.17 × 10−5

37 2.03 × 1018 2.83 × 108 5.28 × 10−6

5.2.4. Convergence analysis. As is known to all, more boundary data will lead to more
accurate numerical results. Figure 8 displays AAE versus boundary point numbers for
noisy-free boundary conditions. From it we observe that convergence curve of the MFS is
smooth for boundary point number N ≤ 15. After the boundary point number N > 15,
convergence curve of the MFS has oscillatory phenomenon. For N > 20, there is almost
no decrease in the AAE. This phenomenon is similar with the direct problems which may
partially contribute to the ill-conditioned interpolation system [36, 37].

Corresponding to Figure 8, Table 3 gives the Cond, ECN and AAE versus boundary
point numbers. It is shown that the Cond and ECN increase with the increasing boundary
point numbers, while the AAE decreases. For boundary point number N ≤ 15, we observe
that the Cond and ECN are inversely proportional to the AAE. From this point, the Cond
and ECN can be used to determine the optimal boundary point number with the MFS
to get the best numerical accuracy. After N > 15 the relationship between the ECN
and the AAE is inconclusive. The reason for this case may be partially contribute to the
ill-conditioned interpolation system. Similar to Figure 7, we find the Cond is much larger
than the corresponding ECN.

5.3. Discussions. From the foregoing numerical investigations, we can conclude that
the MFS can be directly applied to simulate inverse problems with noisy and non-noisy
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boundary conditions. Only Dirichlet boundary condition is used and there is no need to
use additional boundary conditions. It is computationally efficient, stable with respect to
arbitrary geometry. Furthermore, the approximation of the solution and its derivative on
the entire solution domain are available by simple and direct function evaluation.

Although this paper considers only the inverse Laplace problems, the method can be
similarly extended to the other types of inverse problems in higher dimensions.

6. Conclusions. In this paper, the MFS is used to solve the inverse problems associated
with the Laplace equation under both smooth and piecewise smooth geometry. The
condition number analysis of interpolation system is also considered. Numerical solutions
obtained by the proposed analysis closely agree with the corresponding analytical solutions
over the under-specified boundaries. Even for the existence of various noise levels, it is
accurate without considering regularization techniques. The proposed numerical examples
have proved the capability of the MFS together with the condition number analysis to
easily handle the inverse Laplace problems under boundary conditions with/without noise
levels.

However, a more systematic study on the accuracy and condition number for the MFS
deserves further investigation.

Acknowledgment. The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.
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