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ABSTRACT. This paper deals with a stochastic two-species competitive model of plankton
alleopathy. Some very verifiable criteria on the uniformly weakly persistent in the mean
almost surely (a.s.) and extinction for each species are obtained. Moreover, we also prove
that there is a stationary distribution to this system and it has the ergodic property. Fi-
nally, some sufficient conditions for global asymptotic stability of the positive solution are
established. An example is given to illustrate our main theoretical findings. Our results
are new and complement previously known results.
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1. Introduction. It is well known that the dynamical behavior of predator-prey models
plays an important role in ecology and mathematical biology. In recent years, a lot of
predator-prey models have attracted much attention due to its theoretical and practical
significance. Many results on various predator-prey models are reported (see [1-3]). In
1974 and 1996, Maynard [4] and Chattopadhyay [5] considered the following system

{ T1(t) = 21 (1) [K1 — aqzi(t) — Brawa(t) — nza (t) ()], (1)
T (t) = @o(t) [Ko — qowa(t) — Barwi(t) — vawr (t)22(1)],

where x1(t) and x5(t) denote the population densities (number of cells per liter) of two
competing species; K, K, are the rates of cell proliferation per hour; a;, as are the rates
of intra-specific competition of first and second species, respectively; (12, 521 are the rates
of inter specific competition of first and second species respectively and K;/aq, Ko/as are
environmental carrying capacities (representing number of cells per liter). 7, and v, are
the rates of toxic inhibition of the first species by the second and vice versa, respectively.
The units of ay, as, B2 and Py are per hour per cell and the unit of time is hour. a;,
s, B2, P21, 71 and v, are positive constants.

Considering that discrete time models governed by difference equations are more ap-
propriate to describe the dynamics relationship among populations than continuous ones
and discrete time models can also provide efficient models of continuous ones for nu-
merical simulations, Wu and Zhang [6] established the following two-species competitive
discrete-time system of plankton allelopathy

[ T ] [ z1 + 0z (K — gy — Praxs — 112122)
%
T2 Ty + 02 (Ko — oy — P11 — Y22122)

(2)

Applying the center manifold theorem and bifurcation theory, Wu and Zhang [6] in-
vestigated the flip bifurcation of system (2). Moreover, numerical simulations display
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interesting dynamical behaviors (including period-doubling orbits and chaotic sets) for
the system (2).

In the real world, the coefficients of system are not unchanged constants owing to
the variation of environment. Moreover, species live in a real fluctuating medium, and
human exploitation activities might result in the duration of abrupt changes, Xu et al.
[7] investigated the following competitive system with impulsive perturbations

21 (t) = o1 (8) [K1(8) — an ()1 () — Bra(t)w2(t) — mi ()21 (8)22(1)]

ia(t) = wa(t) [Kalt) — as(t)7a(t) — B (Dan () — va(Bar (B (0], 71

z1(ty) = (1 + k)21 (t),
[ wa(t)) = (14 yae)wa(th),

where x1(07) = z1(0) > 0, 22(07) = x5(0) > 0 and N is the set of positive integers,
all the coefficients K;(t), a;(t), vi(t) (i = 1,2), B2(t), Pai(t) are all continuous almost
periodic functions which are bounded above and below by positive constants, v, > —1
and 79, > —1 are constants and 0 < t; < ty < --- < {1 <ty < --- are impulse points
with limy_, o tx = 4+00. The jump conditions reflect the possibility of impulsive effects
on two species. From the viewpoint of biology, 7;x > 0 implies that the perturbations
may stand for stocking and ~;;, < 0 the perturbations stand for harvesting.

It shall be pointed out that population dynamics is inevitably affected by the environ-
mental white noise which is an important component in an ecosystem (see [8-10]). Thus,
environmental perturbations should not be neglected. Thus, we think that it is important
to investigate the effect of environmental noises [11,12]. In 1994, Mao [13] had revealed
important effect of noise: it can stabilize a system in some cases.

To the best of our knowledge, there are not many papers considering the stochastic
two-species competitive model of plankton alleopathy. In model (1), we assume that the
environmental noises mainly affect the rate of cell proliferation a; with K; — K;+0;dB;(t),
where B;(t) stands for a standard Brownian montion defined on a complete probability
space (Q, F, P) and o7 is the intensity of the noise, : = 1,2. Then we obtain the following
stochastic two-species competitive model of plankton alleopathy

{ dxi(t) = x1(t) [K1 — aqz1(t) — Brawa(t) — y1x1(t)x2(t)] dt + o121 (t)d By (1), (1)
d.’L’Q(t) = T9 (t) [KQ — O[Q.’L’Q(t) — 621.'1,’1 (t) — ’YQIl(t)l‘Q (t)] dt + O'Q.'IIQ(t)dBQ(t)

In this paper, we make an attempt to discuss the dynamics of system (4). We will find how
the noise affects the population models. The rest of this paper is arranged as follows. In
Section 2, we present some notations, definitions and lemmas. In Section 3, we establish
some sufficient criteria on the main result on the uniformly weakly persistent in the
mean almost surely (a.s.) and extinction for each species. In Section 4, we consider the
stationary distribution and ergodic property of model (4). In Section 5, some sufficient
conditions for global asymptotic stability of the positive solution are established. In
Section 6, examples together with the numerical simulations are given to verify the validity
of the main theoretical analysis. In Section 7, we make a conclusion.

(3)

}t:tkakeNa

2. Notations and Preliminaries. For simplicity, we use the notations as follows.
Ri = {CL = (Cl,l,CLQ) € R2‘ai > 0, 1= 1,2}, bz = Kz — 0_50'2.2, 7 = 1,2

Gy =t [ ses (5= tim swpet [ ps)as

(f)«= lim inf¢™! /tf(s)ds.
0

t—+4o00
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Lemma 2.1. [14] Suppose that z(t) € C(2 x [0, 4+00), Ry).
(1) If there exist two constants T and \g such that In z(t) < Mt— Xy f(f 2(s)ds+327_, 0, Bi(t)
for allt > T, where o;, i = 1,2, are constants, then

A

lim;_, 4o sup(z(t)) < @S- if A>0;
0

limy o0 2(¢) = 0 a.s., if A <0.

(i1) If there exist three constants T, X and N such that Inz(t) > M\t — A fotz(s)ds +
S22 @;Bi(t) for allt > T, then lim,_, o sup(z(t)) > %0 a.s.

Lemma 2.2. [15] For any given initial value 2(0) = (z1(0),22(0)) € R2, system (4) has
a unique positive solution x = (x1(t),x2(t)) on t > 0 a.s. and the solution satisfies

In ZT; (t)

lim sup <las., i=1,2. (5)

t—+4o00

Proof: The proof is rather standard and hence is omitted (see e.g., [15]).
Definition 2.1. z(t) is said to be persistent in the mean if (x), > 0.

Definition 2.2. Population x is said to go to extinction if for any initial value x(0) =
xo > 0, we have limy_, 1 x(t;0,29) = 0. Population x is said to be uniformly weakly
persistent in the mean if there are constants > 0 and M > 0 such that for any initial
value o > 0, we have M > limsup,_,, (x(¢;0,20)) > 3.

3. Persistence and Extinction. The property of permanence and extinction plays an
important role in population dynamics since it means the long time survival or disap-
pearance for each species. In this section, we will establish some sufficient conditions on
the uniformly weakly persistent in the mean almost surely (a.s.) and extinction for each
species.

Theorem 3.1. For system (), the following assertions hold.

(1) If b; < 0 (i = 1,2), then z; (i = 1,2) goes to extinction almost surely (a.s.), i.e.,
limy oo zi(t) =0 a.s., i =1, 2.

(ii) If by > 0, by < 0, then xo goes to extinction almost surely (a.s.) and

t
b
lim tl/ z1(s)ds = —, a.s.
(iii) If b; > 0 (i = 1,2), then x; (i = 1,2) will be uniformly weakly persistent in the mean
almost surely (a.s.), i.e., (x1(t))* < &, as.

(iv) If by > 0 and a1by — Po1by < 0, then xo goes to extinction almost surely (a.s.) and x,
will be uniformly weakly persistent in the mean almost surely (a.s.), i.e., {x1(t))* < Z—ll,
a.s.

(v) If by > 0 and asb; — Biaby < 0, then xy goes to extinction almost surely (a.s.) and xo

will be uniformly weakly persistent in the mean almost surely (a.s.), i.e., (za(t))* < 22

a.s.
Proof: Applying It6’s formula to system (4), we have
{ dIn .Z'l(t) = [bl — alxl(t) — 612.1'2(2&) - 'ylxl(t)xg(t)] dt + O'ldBl(t), (6)
dIn T (t) = [b2 — Q9 (t) — 621.1'1 (t) — Y21 (t)xg(t)] dt + O'gdBQ(t).
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Integrating and then dividing by ¢ yields

xy(t o By (t
2D e (0) - Bislaalt) — o (Bt + 220
x1(0) t
To(t oo Bs(t
1 220, an(ra(8) — a1 (4)) — ol (Do) + 22220,
72(0) t
Now we prove (i). It follows from (7) that
P 21 (1) < b4 UlBl(t),
P (1) < byt 02 Bs (1)
Note that B
lim i) =0, a.s.
t—+o00
and b; < 0 (i = 1,2), we have
lim z;(t) =0, a.s.
t—+4o00
Next we prove (ii). It follows from (8) that
— -Tl(t) UlBl (t)
t=1 < b — t :
Hxl(o) < by — ar(z (b)) + P
In view of b; > 0 and Lemma 2.1, we have
b
(z1(1))" < a—ll a.s.
On the other hand, in view of (7), we have
_ l'Q(t) O'ng(t)
tln 2552 < by + —2 7,
"0 ST T
Note that B
lim 2(t) =0, a.s.
t——+00 t
and by < 0, we have
lim 25(t) =0, a.s.
t—+o00
According to (7), (11) and (13), we get
xy(t o By (t
2D s anan(0) = Brafea(t)” — (o (sl + 22D
x1(0) t
Bq(t
Z bl — & — Oél<l'1(t)> + ! tl( )
for sufficiently large ¢t and arbitrary € > 0. In view of Lemma 2.1, one can obtain
by — e
(1(t))s > lal . a.s.

It follows from the arbitrariness of € that
by
), > -2, a.s.
@(0). = 2 as

From (11) and (16), we have

t
lim t_l/ z1(s)ds = lim (xq(t)) = ﬁ, a.s.
0

t——+o00 t——+o00 (o]

(13)

(15)

(16)

(17)
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In the sequel, we prove (iii). It follows from (7) that

i i B .
t1 ln;ET((t))) < b; —a{z;(t)) + z t(t), i=1,2. (18)
In view of b; > 0 and Lemma 2.1, we have
(x; (1)) < %, a.s., i=1,2. (19)
We prove (iv). By (7), we have
Gt 28— b = a1 (0) = sl — et + ZE)
Oéltil ln 1‘2(t) = |:b2 — O[2<l‘2(t)> — 521<$1(t)> — ’)/2<1‘1(t)1'2(t)> + @] y
72(0) t
(20)
which leads to
109 1t
Oélt ! In :L‘Z(O) — 521t ! In xl([))
= (Cth - 521171) - (CY1CY2 - 312521)<$2(t)>
— (172 = Bam)(z1()w2(t))
+t71[0110'232(t) - BQlalBl(t)]- (21)
In view of (5), we have [Inz;(t)/t] < 0. Substituting this inequality into (21), we get
L, T2(t)
Oélt ! In :L‘Z(O)

< (a1by — Barby) 4 € — (g — Brafar) (w2(t)) — (12 — Baryi ) (w1 (t)22(2))
+ 1t ooy By(t) — o101 By (t)]
< (Cth - 521171) +e— (CY1CY2 - 512521)<$2(t)>
+ 1t ooy By(t) — o101 By (t)] (22)

for sufficiently large . By the condition a1by — B216; < 0, we can choose ¢ sufficiently
small such that a1by — f2161 + ¢ < 0. In view of Lemma 2.1, we have

lim x5(t) =0, a.s. (23)

t——+o00

Substituting (23) into the first equation of (7), we get

z1(t)
1'1(0)

In view of b; > 0 and Lemma 2.1, we have

0'1B1 (t)
7 .

t'in

S bl — Oél<l'1(t)> +

(24)

(2 (8))" < —. (25)

Finally we prove (v). By (7), we have

z1(t) N Caly B N e
x1(0) = 3 {61 (21 () = Pralxae(t)) — yi{x1(t)z2(t)) +

t

IL’Q(O)

agtil In

Ulil(t)] ,

=~ [b2 — ap(z2(t)) — Bar (@1 (t)) — (@1 (t)22(t)) + @] ,

t
(26)
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which leads to

N0, L1 Ta(t)
CYQt In o (0) — 512t In 7 (0)
= (aby — Pr2be) — (e — Br2far)(x1(t)) — (a2 — Braye) (@1 (t)x2(t))
+ 1t apo, By (t) — Biao2Ba(1)]. (27)

In view of (5), we have [Inzo(¢)/t] < 0. Substituting this inequality into (27), we get

ot In (1) < (agby — Biob) + ¢ — (1 — Brafar)(x1(1))

1(0)
— (v — Bray2) (x1 ()22 (t)) + t~ ooy By (t) — B1202Bs(t)]
< (CYle - 51252) +e— (CY1CY2 - 312321)@1(15))
+t_1[a20131(t) - 51202Bg(t)]. (28)

for sufficiently large . By the condition asb; — B12bs < 0, we can choose ¢ sufficiently
small such that asb; — S12bs + ¢ < 0. In view of Lemma 2.1, we have

8

lim z(t) =0, a.s. (29)

t—400

Substituting (29) into the second equation of (7), we get

To(t 09 Bs(t
t'In Ij((o)) < by — anlma(t)) + %’() (30)
In view of b, > 0 and Lemma 2.1, we have
b
(wa(1))" < —. (31)
&%)

The proof of Theorem 2.1 is completed.

4. Stationary Distribution and Ergodicity. Based on Section 3, we will consider
another interesting topic on stationary distribution and ergodicity.

Let X () be a homogeneous Markov process in E' (E' denotes Euclidean I-space) sat-
isfying the following stochastic differential equation:

dX (1) = b(X)dt + Xk: By (X)dBn (t). (32)

The diffusion matrix is A(z) = (G;(z)), a; = Yo% _, B9 (2) 8% (z).

Assumption 1. There is a bounded domain U C E' with regular boundary I', which
has the properties that

(H1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(H2) If z € EL\ U, the mean time 7 at which a path issuing from x reaches the set U is
finite, and sup,cx E,7 < +00 for every compact subset K € E'.

Lemma 4.1. [16] If Assumption 1 holds, then the Markov process X (t) has a stationary
distribution u(.). Let f(.) be a function integrable with respect to the measure ju(.). Then

p{ lim ~ [ F(X(s))ds = Elf(x)u(dx)} —1

t—+oo t 0
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Remark 4.1. To verify (H1), it is sufficient to show that H is uniformly elliptical in U,
where Hu = b(z)u, + 0.5trace (A(z)uys,), i.e., there exists a positive number ¢ such that

k
Z dij(x)ﬁiﬁj > C|9|2, xelU, 0¢€ RE.
ij=1
In detail, one can see [17,18]. To wverify (H2), it is sufficient to prove that there exist
a neighborhood U and a non-negative C*-function V(x) such that for any v € E* \ U,
LV (x) <0 (see [19]).

Remark 4.2. The diffusion matriz of (4) is

. o?z? 0

Ax) = Lt .

=17 s ]
Lemma 4.2. [20] For any initial value x(0) € R% and p > 0, there is a constant K =
K(p) > 0 such that the solution x(t) of (4) satisfies
lim sup E [28(t)] < K, i =1,2.
t—+oo
According to Lemma 4.2, there exists a T' > 0 such that F [2?(¢)] < 2K fort > T. Note

that E[z;(t)] is continuous, then there is a constant K, > 0 such that E[27(t)] < K, for
0 <t <T. Define L + max{2k, K,}. Then

Elf(t)] <L=1L(p), t>0, p>0,i=1,2. (33)
Theorem 4.1. Let (z7,x3) be a positive solution of the following system

171 + Biawe + Nimwe = Ky,
aoTy + P11 + V2x172 = K.

If the following conditions
01 = ay — 0.5 (Biz2 + 27125 + 10] + B + Y213) > 0,
02 = ay — 0.5 (Ba1 + 27227 + 7215 + Brz + nxy) > 0,
2
0.5 2; orw; < min {oi(«])’}
hold, then there is a stationary distribution p(.) for system (4) and it has the ergodic

property
1 t
P< lim —/ xi(s)ds:/
t——+oo ¢ 0 R

Proof: Define

Ziﬂ(le,dZQ,ng)} =1,1=1,2.

2
+

2
V(r) = Z {xl —xz; —z;In %] : (34)
i=1 i

Applying It6’s formula we have
2
dV(z) = LV (z)dt + Y _ (x; — 7) o:d Bi(1), (35)
i=1

where
LV(ZL’) = (ZCI — 1'1:) [Kl — 1y — BIQZUQ — ’)/155'11'2] + 050'%55'{
—+ (1'2 — l';) [Kg — Qg — Blel — "}/21'155'2] —+ 050';1';

= —(z1 — 2}) [ (21 — 2}) = Prawa — x3) — 11 (2122 — 2523)] + 0.507 2}
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— (w2 — x3) [as(22 — 23) — Bar (w1 — 77) — Ya(w122 — @]75)] + 0.50575
< —Jag — 0.5(B1a + 212l + yix] + Par + y2x3)] (1 — $1)

* * * 2 *
— [ag — 0.5(Bo1 + 2722} + 7225 + Pra + 112})] (22 — 23)” + 0.5 Z a?a?
i=1

2 2
== oz —)*+05) ol (36)
i=1 i=1

Note that g; > 0 and 0.537, o} < min;_; 5 {0;(2})?}, then the ellipsoid

—Z@i(xi 240, 5Za2x* =0 (37)
i=1

lies entirely in Ri. We can take U to be a neighborhood of the ellipsoid with U C Ri,
then for z € R% \ U, we obtain LV (z) < 0. Namely, (H2) holds. On the other hand,
there exists a ¢ > 0 such that

Za” )0:0; = Zafxfef > ¢|f|? (38)

for x € U and § € R?. That is to say, (H1) holds. Thus, (4) has a stationary distribution
p(.) and it is ergodic. In view of the ergodic property, for M > 0, we have

t
lim t_l/ [:Ei(s)/\M]ds:/ [2i A M|u(dzy, dz,dz3), a.s. (39)
0 R?

t——+o00
+

It follows from the dominated convergence theorem and (33) that

E { lim tl/ot[xi(s)/\]\/[]ds] = lim ¢ /Ot[xi(s)/\M]ds <L (40)

t—+o00 t—400

In view of (39), we have
/ (52 A Mpu(dzr, dzs, dz) < L. (41)
R2

Let M — +o0o0, then [, zu(dz,dz,dz;) < L. Thus, the function f(z) = x is integrable
+

with respect to the measure pu(.). It follows from Lemma 4.1 that the desired assertion
holds.

5. Global Asymptotic Stability. In this section, we give sufficient conditions of global
asymptotic stability.

Definition 5.1. Let x(t) and y(t) be two arbitrary solutions of (4) with initial values
z(0) € R% and y(0) € R2, respectively. If for every 1 <i <2, limy_, o |2;(t) —y;(t)] = 0,
a.s., then we say (4) is globally asymptotically stable (or globally attractive).

Lemma 5.1. [21] Suppose that an n-dimensional stochastic process X (t) ont > 0 satisfies
the condition

EIX(t) = X(s)I" <cft — 5|, 0< s, < oo,

for some positive constants A1, Ay, and c. Then there erists a continuous modification
X(t) of X(t) which has the property that for every v € (0, 2/A1) there is a positive
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random variable h(w) such that

P{w: i X (tw) = X(tw)| __ 2 }: X

0<[t—s|<h(w),0<s,t<00 |t - 3|7 - 1-2

In other words, almost every sample path of X(t) 18 locally but uniformly Holder contin-
uous with exponent .

Lemma 5.2. Let x(t) be a positive solution of (4), then almost every sample path of x;(t)
(1 =1,2) is uniformly continuous.

Proof: The proof is similar to that of Lemma 15 in [20]. Here we omit it.

Lemma 5.3. [22] Let f be a non-negative function defined on [0,+00) such that f is
integrable and is uniformly continuous. Then limy_, o f(t) = 0.

Theorem 5.1. If there exist positive constants ¢; and co such that
(A { croq > €171%y + a1 + o725,
Cotry > CoYaTy + €1 P12 + 11y,
then (4) is globally asymptotically stable.
Proof: Let z(t) and y(t) be two solutions of (4) with initial values 2(0) € R3 and
y(0) € R2, respectively. Define

2

V()= cllnz(t) — Iny,(t)]. (42)

i=1
Calculating the right differential d*V'(¢), we have

2

d*V(t) = Z cisgn(x;(t) — y;(t))d(Inz;(t) — Iny; (1))

= —C1SgH(I1(t) — y1 ()] (1 (t) — yi(1)) + Bra(w2(t) — y2(t)) + 11 (@1 (t)22(1)
—y1(t)ya2(t))]dt — casgn(@2(t) — ya(t))[ca(w2(t) — y2(1))
+ Bar(21(t) — 1(1) + re(@1(t)z2(t) — y1(t)ya(t))]dt
< —[eron — eynwy — cofor — covpxs] |21 (t) — yi(t)|di
(

— [ea0a — o2y — 1812 — cinixy] |x2(t) — yalt)|dt. (43)
Then
t
V(O < V)~ [ e — evnas - eafar — exrans] o (5) — 11 (5)lds
0
t
—/ [Catve — Coyoxy — €112 — 11 Ts] |T2(s) — ya(s)|ds. (44)
0
Thus

t
V(t) +/ [craq — 11Ty — e2fo1 — covams]|zi(s) — y1(s)|ds
0

¢
+ / [ca0g — cayaxy — €112 — crnias]|@a(s) — ya(s)|ds < V(0) < oo. (45)
0

Note that V' (¢) > 0, it follows from (A) that |z;(t) — y;(t)] is integrable. In view of Lemma
5.2 and Lemma 5.3 that the required assertion holds.
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Remark 5.1. Although there are many papers that deal with the stochastic models, there
are only few papers that consider the stationary distribution and ergodicity. In addition,
the results on the global asymptotic stability are useful to estimate the risk of extinction
of species for the competitive model. From this viewpoint, we think that our results are
completely new.

6. Examples. In this section, we give examples to illustrate our main results. Consider
the following two stochastic two-species competitive models of plankton alleopathy.

Example 6.1.
{ dry(t) = x1(t) [4 — 0.521(t) — 0.0322(t) — 0.0221 (t)x2(t)] dt + o121 (t)d By (1),

( (46)
dzo(t) = xo(t) [3 — 0.322(t) — 0.04z1(t) — 0.0521 (t)x2(t)] dt + oax2(t)dBa(t).

Corresponding to system (4), we have Ky = 4, Ky = 3, a; = 0.5, 12 = 0.03, 73 = 0.02,
ay = 0.3, By1 = 0.04, v = 0.05. Using Milstein’s method [23], we get the following
discrete equation of (46)

(2l =2l 42l [4 - 0520 - 0,032 — 0,020 At

+oal® /Dte® —xl ((5<k>)2At—At),

A [3 —0.308") — 0.042{"” — 005272 | At

\ +02x2 \/ tn* —x2 ((n(k))ZAt—At).

We can obtain 27 = 2.5, 23 = 1.3. Let 07 = 0.3, 02 = 0.4, ¢; = 112, ¢; = 102. It is easy
to check that all the conditions in Theorem 5.1 are fulfilled. Hence we can conclude that
then system (46) is globally attractive. From Figure 1, we know that two species in the
community can coexist.

(47)

5

45+

E_ —
- ——

0 1000 2000 3000 4000 5000
Time

FIGURE 1. Time response of state variables x; and x4
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Example 6.2.

{ dxy(t) = z1(t) [ — 0.321(t) — 0.0129(t) — 0.03x1 (t)xo(t)] dt + o121 (¢)d By (1), (48)

(

Corresponding to system (4), we have K; =5, Ky =2, a5 = 0.3, 12 = 0.01, 73 = 0.03,
ay = 0.1, f31 = 0.01, 7o = 0.02. Using Milstein’s method [23], we get the following
discrete equation of (48)

(oD = 50 4 2 ® [5 0,35 — 0,012 — 0.03x§’“>mg’“)] At
2
+ ol VAW + Zal ((69)" At — o),
20D = o 4 o0 o3 0120 —0.012% — 0.02x§’“)x§’“)] At

2
+ agxgk)\/Atn(k) + %xgk) ((77(’“))2 At — At) :

(49)

\

We can obtain z} = 3.1, 23 = 1.1. Let o7 = 0.25, 05 = 0.38, ¢; = 101, ¢ = 99. It is easy
to check that all the conditions in Theorem 5.1 are fulfilled. Hence we can conclude that
then system (48) is globally attractive. From Figure 2, we know that two species in the
community can coexist.

Xi

WT’W*\MWW\J

0.5 b

—_

0 1 Il 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

FIGURE 2. Time response of state variables x; and x4

Example 6.3.

{ dxy(t) = z1(t) [3 — 0.221(t) — 0.0529(t) — 0.01zy (t)xo(t)] dt + o121 (¢)d By (), (50)

(
dxo(t) = xo(t) [5 — 0.522(t) — 0.0621(t) — 0.0621 (t)x2(t)] dt + oax2(t)dBa(t).
)

Corresponding to system (4), we have K| = 3, Ky =5, a; = 0.2, 815 = 0.05, 73 = 0.01,
ay = 0.5, fy1 = 0.06, 7o = 0.06. Using Milstein’s method [23], we get the following
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discrete equation of (50)

) _
2B = B 203 0,225 — 0,052 — 0.012W2H) | At

2
+ oW + Tl (V)" bt = 1t),
| _ | 51)
28 = 2 2P 15 — 0528 — 0,062 — 0,062 | At

] 2
+ Ungk)\/Atn(k) + %xgk) ((77(’“))2 At — At) :
\

We can obtain z} = 2.5, 25 = 1.3. Let 07 = 0.24, 02 = 0.33, ¢; = 122, ¢, = 79. Tt is easy
to check that all the conditions in Theorem 5.1 are fulfilled. Hence, we can conclude that
then system (50) is globally attractive. From Figure 3, we know that two species in the
community can coexist.

45 T T T T T T T
4 - -
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3 -
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os| _
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x
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x

0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time

FIGURE 3. Time response of state variables x; and x4

7. Conclusions. In this paper, we are concerned with the dynamical properties of a
stochastic two-species competitive model of plankton alleopathy. We have established
the sufficient conditions on the uniformly weakly persistent in the mean almost surely
(a.s.) and extinction for each species. We prove that there is a stationary distribution
to this system and it has the ergodic property. Moreover, the sufficient conditions for
global asymptotic stability of the positive solution of this system are obtained. There are
still many interesting and challenging questions that need investigate. In this paper, we
only discuss the rates of cell proliferation per hour K; (i = 1,2) are stochastic; for other
parameters, for example, «;(t) (i = 1,2) are stochastic, they are not considered. This
aspect will be our future work.

Acknowledgment. The authors gratefully acknowledge the helpful comments and sug-
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