
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2016 ISSN 1349-4198
Volume 12, Number 1, February 2016 pp. 91–101

MUTUAL EXCLUSION ROLE CONSTRAINT MINING
BASED ON WEIGHT IN ROLE-BASED ACCESS CONTROL SYSTEM

Xiaopu Ma1,∗, Jianfang Wang1, Li Zhao1 and Ruixuan Li2

1School of Computer and Information Technology
Nanyang Normal University

No. 1638, Wolong Road, Wolong District, Nanyang 473061, P. R. China
∗Corresponding author: mapxiao@nynu.edu.cn
2School of Computer Science and Technology

Huazhong University of Science and Technology
No. 1037, Luoyu Road, Hongshan District, Wuhan 430074, P. R. China

rxli@mail.hust.edu.cn

Received July 2015; revised November 2015

Abstract. Role-based access control (RBAC) is the most popular access control model
at present, and has become the norm in many applications. Role engineering is a way
to migrate a non-RBAC system to an RBAC system. However, none of the role engi-
neering work has employed mutual exclusion role constraint mining based on weight to
our knowledge although constraint is an important aspect of RBAC, thus providing the
motivation for this work. In this paper, we first define the weight of permission by con-
sidering the attributes of user and permission, and then study how to generate mutual
exclusion role constraint based on weight. Finally, experiments on performance study
prove the superiority of our approach.
Keywords: RBAC, Role engineering, Weight, Mutual exclusion role constraint

1. Introduction. Role-based access control (RBAC) recently has been widely deployed
in enterprise security management and enterprise management products [1]. The notion
of role makes RBAC have several benefits than others [2]. As a solution to facilitate the
process to migrate a non-RBAC system to an RBAC system, role engineering is introduced
[3].

However, a key challenge that has not been adequately addressed so far is how to
define the weight of permission and how to generate mutual exclusion role constraint
based on weight in role engineering. In other words, most of the existing role engineering
approaches did not consider the different nature and importance of each permission, or
treated each permission evenly [4, 5]. However, this is not always the case. For example,
the permission read of the patient’s personal information may be more important than the
permission write to the patient’s personal information. This is because the read permission
usually leads to more information leakage, but the standard role mining simply ignores this
difference. In another case, the permission write to the student’s achievement may be more
significant than the permission read of the student’s achievement. Furthermore, constraint
is a set of imposed rules on RBAC, and they are one of the most distinctive and important
features of the RBAC approach. We can get an incomplete architectural structure of
RBAC if there are no constraints. A common example is that of mutually exclusive roles,
such as purchasing manager and account payable manager. In most organizations, the
same individual will not be permitted to be a member of both roles, because this creates a
possibility for committing fraud. If there is no idea about this constraint in RBAC system,

91

92 X. MA, J. WANG, L. ZHAO AND R. LI

there may be wrong in enforcing the principle of least privilege in RBAC system. For
example, let us assume that there is a requested permission set RQ = {p1, p2, p3} (the
user requires permissions p1, p2 and p3 to perform the task), ass perms(r1) = {p1, p2},
ass perms(r2) = {p2, p3} (permission p1 and p2 belong to r1, r2 has the permissions p2

and p3). In this situation, role r1 and r2 can enforce the principle of least privilege for the
requested permission set because the goal of the principle of least privilege is to identify
the minimal set of roles whose permissions exactly equal the requested permission set.
However, this approach may be wrong if r1 and r2 are mutually exclusive roles.

To this aim, this research tries to define weight and mining mutual exclusion role
constraint based on weight in a feasible way. We first introduce the notion of weight
of permission. Our approach for the notion of weight can produce a natural importance
on permission to assist the mutual exclusion role constraint mining process that most
approaches currently lack. Finally, the algorithm of mutual exclusion role constraint
mining based on weight is tested on simulated test data. Experiments on performance
study are given to prove the superiority of our approach.

The remainder of the paper is organized as follows. We discuss related work in Section
2. The limitations in existing applications for constraint mining drive our motivation
and Section 3 proposes how to define the weight of permission. Section 4 describes the
algorithm of mining mutual exclusion role constraint based on weight. A summary of
our experimental results on simulated data is discussed in Section 5. Finally, Section 6
provides some insight into our ongoing and future work.

2. Related Work. In role engineering, the top-down approach starts from the user sce-
nario and business process in order to find out a role state that guarantees all the roles
receive their necessary rights so they can perform their functions and no more than their
functions [6]. However, since there are often dozens of business processes or tasks and
ten thousands of users, it makes the way time consuming and human intensive. Under
the bottom-up approach, roles can be generated through the user permission assignments
and some corresponding attribute information. According to their outputs, the bottom-
up role mining algorithms can be divided into two categories. The first class algorithm
generates a set of candidate roles, and then gives every role a priority value. The higher
a role’s priority value is, the more likely the role can be selected by users. The repre-
sentative algorithms of the first class are CompleteMiner (CM) and FastMiner (FM) [7].
As for the CM algorithm, it can get the unique intersection sets from the generated roles
while the FM algorithm can only find the intersection between pairs of initial roles. The
second class algorithm uses Weighted Structural Complexity (WSC) as a common quality
measure to generate a complete RBAC state. There are many algorithms belonging to
this catalog, such as ORCA [8] (which is a hierarchical clustering algorithm where every
permission is exactly assigned only to one role), HierarchicalMiner (HM) [9] and GO [10]
(where HM restructures the lattices according to the cost decreased of the RBAC with
a greedy strategy from the concept lattices, and GO reduces the number of role to user
and permission to role assignments by a graph optimization).

Furthermore, constraint is an essential aspect of RBAC and is sometimes argued to be
the principle motivation for RBAC [11, 12]. The most frequently mentioned constraint
in context of RBAC is mutually exclusive constraint, this constraint in terms of a many-
to-many user to role assignment relationships specifies that one individual cannot be a
member of both roles, and this constraint in terms of a many-to-many permission to role
assignment relationships specifies that the same permission cannot be assigned to both
role. Another example is cardinality constraint ; for example, the cardinality constraint of
user is defined as the maximum number of users which a role can have, the cardinality

MUTUAL EXCLUSION ROLE CONSTRAINT MINING BASED ON WEIGHT 93

constraint of role is defined as the maximum number of roles to which an individual user
can belong, the cardinality constraint of permission is defined as the maximum number
of roles to which a permission can belong and the number of permissions which a role can
own should also have cardinality constraint. The third concept is prerequisite constraints;
for example, a user can be assigned to role r1 only if the user is already a member of
role r2. Finally, the constraint also can apply to sessions. Although the constraint is
essential for the RBAC model, only a few researches took the constraint into account in
role mining. For example, Kumar et al. consider the maximum number of users that can
be assigned to each role in the mining RBAC role approach [13]. John et al. take the
number of roles to which an individual user can belong into the role mining approach [14].

However, the traditional role mining approach only considers how to mine role based
on different constraints without taking into account how to mine different constraints in
role engineering. Furthermore, the traditional constraint mining approach assumes that
permission has the same importance without taking account of their weight. To this aim,
this research tries to assign weight to each permission in a feasible way. We introduce the
concepts of original similarity between users, resources, operations and permissions, and
then propose a reinforced similarity to represent the importance of each permission. Our
focus is on how to calculate the similarity and how to define the weight of each permission
based on the similarity. We also present a new mutual exclusion role constraint mining
algorithm based on weight (WCM) to address the above problem. The experimental results
are tested to show the effectiveness of our findings.

3. Preliminaries. We develop the material in this paper in the context of the NIST
standard, the most widely known RBAC model [1]. This model includes RBAC0 which
includes users, permissions, roles and their relationships, RBAC1 which introduces hier-
archical between roles based on RBAC0, RBAC2 which adds exclusivity relations among
roles with respect to user assignment based on RBAC1, RBAC3 which defines exclusiv-
ity relations with respect to roles that are activated as part of a user’s session based
on RBAC2. For the sake of simplicity, we do not consider sessions in this paper. The
architecture of RBAC is shown in Figure 1.

SESSIONS

PRMS

USERS

CONSTRAINTS

.

.

.

RH

OPERS RESSROLES

Figure 1. The architecture of RBAC model

Definition 3.1. The RBAC model contains the following components:

• USERS, ROLES, OPERS, and RESS, users, roles, operations and resources res-
pectively;

• PRMS = 2(OPERS×RESS), the set of permissions;
• UA ⊆ USERS × ROLES, a many-to-many user to role assignment relationship;

94 X. MA, J. WANG, L. ZHAO AND R. LI

• ass users(r) = {u ∈ USERS | (u, r) ∈ UA}, the mapping of role r onto a set of
users;

• PA ⊆ PRMS×ROLES, a many-to-many role to permission assignment relationship;
• ass perms(r) = {p ∈ PRMS | (p, r) ∈ PA}, the mapping of role r onto a set of

permissions;
• UPA ⊆ USERS × PRMS, a many-to-many user to permission assignment relation-

ship;
• RH ⊆ R × R is a partial order of R called the role hierarchy of role dominance

relation, also written as ≽, when r1 ≽ r2 only if all permissions of r2 are also
permissions of r1, and all users of r1 are also users of r2. Formally: r1 ≽ r2 ⇒
ass perms(r2) ⊆ ass perms(r1) ∧ ass users(r1) ⊆ ass users(r2);

• POP ⊆ PRMS × OPERS, a many-to-many relationship between permissions and
operations;

• PRE ⊆ PRMS × RESS, a many-to-many relationship between permissions and re-
sources;

• Op(p : PRMS) → {op ⊆ OPERS}, the permission to operation mapping, which gives
the set of operations associated with permission p;

• Re(p : PRMS) → {re ⊆ RESS}, the permission to resource mapping, which gives
the set of resources associated with permission p.

We define M = |USERS|, N = |PRMS|, where M denotes the number of users, and
N denotes the number of permissions. The meaning of M and N is used throughout the
paper. Here, we can use an M × N binary matrix MUPA to describe the assignment
relationships between users and permissions before RBAC not construction. The element
MUPAi,j = 1 denotes that the ith user has the j th permission or the j th permission
belongs to the ith user; otherwise, the element MUPAi,j = 0 indicates that the ith user
has not the j th permission. Since permission can be described as 2(OPERS×RESS), we can
split permission into operations and resources where operations and resources carry the
function and action information of permission. Such a split approach can provide good
interpretability of a permission. For example, the permission to delete a book in a library
management system can be represented as follows:

• (Permission), DeleteBook
• (Operation), Delete
• (Resource), Book

Here we can use an N × P binary matrix MPOP to describe the relationships be-
tween permissions and operations (such as add, create, delete, and write). The element
MPOPi,j = 1 denotes that the ith permission has the jth operation; otherwise, the ele-
ment MPOPi,j = 0 indicates that the ith permission has not the jth operation (where P
denotes the number of operations). We use another N × S binary matrix MPRE to de-
scribe the relationships between permissions and resources (such as accounts, and books).
The element MPREi,j = 1 denotes that the ith permission has the jth resource; other-
wise, the element MPREi,j = 0 indicates that the ith permission has not the jth resource
(where S denotes the number of resources). Since the basic entities in the standard RBAC
have been defined, here we only define the attribute of user as follows.

Definition 3.2. The attribute of user in RBAC is defined as:

• USERA, the set of attributes with user, such as locations, department affiliations, or
task description of the user;

• USA ⊆ USERS×USERA, a many-to-many relationship between users and attributes.

MUTUAL EXCLUSION ROLE CONSTRAINT MINING BASED ON WEIGHT 95

Here we can use an M ×K binary matrix MUSA to describe the relationships between
users and attributes. The element MUSAi,j = 1 denotes that the ith user has the jth
attribute; otherwise, the element MUSAi,j = 0 indicates that the ith user has not the jth
attribute (where K denotes the number of user’s attributes). Since users are represented
by the set of attributes (such as locations, department affiliations, or task description of
the users that can be obtained from the top-down information), we can give a measure of
original similarity between users based on this.

Definition 3.3. The original similarity between the ith user and the jth user is defined
as

sim(ui, uj) =
|MUSAi. ∩ MUSAj.|
|MUSAi. ∪ MUSAj.|

(1)

Above definition is based on a statistical similarity measure called Jaccard co-efficient
between users, where 0 implies no similarity between the ith user and the j th user, and
1 represents an exact match between these two users [15].

According to the above definition, it just focuses on using a single type of relationships
to calculate the similarity between users. For example, it just uses the set of attributes
to calculate the similarity between users. Although this method is useful to compute
the similarity between users, it is not good at using the other information to make the
similarity more accurate. For example, the set of attributes between users that we call
intra-relationships can affect the similarity between users on one hand; on the other
hand, since users are represented by permission set, these permission sets that we call
inter-relationships can also influence the similarity between users. Hence, we can use
the intra-relationships and inter-relationships to reinforce the original similarity between
users. The formal definition of the reinforced similarity between users is given below.

Definition 3.4. The reinforced similarity between the ith user and the jth user is defined
as

resim(ui, uj) = wua × sim(ui, uj) + wup × |MUPAi. ∩ MUPAj.|
|MUPAi. ∪ MUPAj.|

(2)

Here wua+wup = 1 and wua, wup are parameters used to adjust the relative importance
about the reinforced similarity between the ith user and the j th user corresponding to
each relationship. If we have no prior knowledge of the initial attributes with users, we
can set wua to 0. Analogously, we give the definition of original similarity between the
ith resource and j th resource as follows.

Definition 3.5. The original similarity between the ith resource and the jth resource is
defined as

sim(rsi, rsj) =

∣∣MURST
.i ∩ MURST

.j

∣∣∣∣MURST
.i ∪ MURST

.j

∣∣ (3)

Here MURS = MUPA
⊗

MPRE, MURST
.i or MURST

.j is the ith or jth column transpose
of the user resource relationships matrix MURS, which is a boolean vector representing
the set of users has the ith resource or the j th resource. Similarly, we can define the
original similarity between the ith operation and the j th operation as follows.

Definition 3.6. The original similarity between the ith operation and the jth operation
is defined as

sim(opi, opj) =

∣∣MUOPT
.i ∩ MUOPT

.j

∣∣∣∣MUOPT
.i ∪ MUOPT

.j

∣∣ (4)

96 X. MA, J. WANG, L. ZHAO AND R. LI

Here MUOP = MUPA
⊗

MPOP, MUOPT
.i or MUOPT

.j is the ith or jth column trans-
pose of the user operation relationships matrix MUOP, which is a boolean vector repre-
senting the set of users has the ith operation or the j th operation. Hence, we can formally
define the reinforced similarity between permissions and the weight of permission as fol-
lows.

Definition 3.7. The reinforced similarity between the ith permission and the jth permis-
sion is defined as

resim(pi, pj) = wpu ×
∣∣MUPAT

.i ∩ MUPAT
.j

∣∣∣∣MUPAT
.i ∪ MUPAT

.j

∣∣
+ wps ×

∑
rsa∈Re(pi)

∑
rsb∈Re(pj)

sim(rsa, rsb)

|MPREi.| × |MPREj|

+ wpo ×

∑
opc∈Op(pi)

∑
opd∈Op(pj)

sim(opc, opd)

|MPOPi.| × |MPOPj.|

(5)

Here wpu+wps+wpo = 1 and wpu, wps, wpo are parameters used to adjust the relative
importance about the reinforced similarity between the permissions corresponding to the
original similarity between permissions, the original similarity between resources and the
original similarity between operations. If we have no prior knowledge of the original
similarity between resources and the original similarity between operations, we can set
wps = wpo = 0.

Definition 3.8. The weight of permission pi is defined as

wpi
= 1 −

ww × w0 + wp ×

N∑
j=1, j ̸=i

resim(pi, pj)

(N − 1)

+ wu ×

M∑
k=1∧MUPAki=1

M∑
j=1, j ̸=i

resim(ui, uj)

(M − 1) × |MUPAki = 1|


(6)

Here w0 is the initial weight of permission pi preset by the system based on the knowl-
edge of comprehensive effect of all factors on permission pi, ww + wp + wu = 1 and
ww, wp, wu are parameters used to adjust the relative importance about the weight of
permission corresponding to the initial weight, reinforced similarity between permissions
and reinforced similarity between users.

Definition 3.9. Given a set of roles rs ⊆ ROLES, we say ri ∈ rs and rj ∈ rs (i ̸= j)
are mutual exclusion roles if ass users(ri)∩ ass users(rj) = ∅. We will use the notation
ri ∧ rj to specify that role ri and rj are mutually exclusive roles.

For example, the user cannot be a member of both accounts-manager role and purchasi-
ng-manager role. More generally, we allow to have more than one role in the notation.
For example, r1r2 ∧ r3r4 describes that the user cannot have both the role set {r1, r2} and
{r3, r4}. Analogously, we give the definition of mutual exclusion permissions as follows.

Definition 3.10. Given a set of permissions ps ⊆ PRMS, we say pi ∈ ps, pj ∈ ps (i ̸= j)
are mutual exclusion permissions if pi ∈ ass perms(ri) and pj /∈ ass perms(ri) for all

MUTUAL EXCLUSION ROLE CONSTRAINT MINING BASED ON WEIGHT 97

ri ∈ ROLES. We will use the notation pi ∧ pj to specify that permissions pi and pj are
mutually exclusive permissions.

For example, the permission to issue checks and the permission to audit the operation
should not be assigned to the same role. More generally, we allow to have more than one
permission in the notation. For example, p1p2 ∧ p3p4 describes that the role cannot have
both the permissions set {p1, p2} and {p3, p4} or {p1, p2} and {p3, p4} cannot be given to
the same role.

4. Algorithm. In order to mine mutual exclusion role based on weight, we assign a
real number wpi

∈ [0, 1] for each permission pi ∈ PRMS (i = 1, . . . , N), which we call
the weight of permission that can be calculated by Definition 3.8. Since the frequent
permission set is to find implications between the elements in 2PRMS, not PRMS, we must
define weight for all elements in 2PRMS [16]. This can be done as follows:

For any permission set PS ⊆ 2PRMS, suppose that there has PS = {p1, p2, . . . , pk},
where pi ∈ PRMS (i = 1, . . . , N). We define the weight of PS as follows.

Definition 4.1. The weight of permission set PS is defined as

wPS =
k∑

i=1

wpi
(7)

According to the traditional support function and confidence used in Apriori algorithm
[17], we define the weighted support and confidence for any permission set to generate
mutual exclusion role as follows (Here we just consider how to generate mutual exclusion
role from user to permission assignment relationships because the same algorithm also can
generate mutual exclusion permission from permission to role assignment relationships).

Definition 4.2. The weighted support of permission set PS is defined as

wsupPS = wPS × numUsers(PS)

numUsers(All)
(8)

Definition 4.3. The confidence of the association rule X ⇒ Y is the probability that Y
exists given that a transaction contains X, i.e.,

conf (X ⇒ Y) =
probability(X ∪ Y)

probability(X)
=

numUsers(XY)

numUsers(X)
(9)

Here numUsers(PS) is the number of users which possess permission set PS that
presented in the user to permission assignment relationships matrix, and numUsers(All)
is the total number of users in the matrix. Before RBAC model is implemented, there is
only user to permission assignment relationship in the system; in this situation we regard
permission as item, the collection of all user to permission assignment relationships as a
transaction database and each user permission assignment relationship as a transaction.
Then we can define a mutual exclusion role constraint based on Apriori algorithm as
follows.

Definition 4.4. A mutual exclusion role constraint is an implication of the form X ⇒ Y ,
where X ⊆ PRMS, Y ⊆ PRMS, X ∩ Y = ∅ and MUPAi. ∩ X = ∅ ∨ MUPAi. ∩ Y = ∅
for each ui ∈ USERS (i = 1, . . . , M).

In reality, access control configurations in any large organization are noisy [18]. Hence,
we relax the restriction that the mutual exclusion constraint between roles holds in the user
permission assignment relationships if the constraint has certain user-specified weighted
minimum support (wminsup) and confidence based on weight. Hence, there are three

98 X. MA, J. WANG, L. ZHAO AND R. LI

cases to compute the weighted support and confidence of the mutual exclusion constraint
between roles as follows.

1) X ⇒ Y , in this situation users possess permission set X and do not contain per-
mission set Y at the same time that presented in the user to permission assignment
relationships. 

wsup = wX∪Y ×
numUsers

(
XY

)
numUsers(All)

conf =
numUsers

(
XY

)
numUsers(X)

(10)

2) X ⇒ Y , in this situation users possess permission set Y and do not contain per-
mission set X at the same time that presented in the user to permission assignment
relationships. 

wsup = wX∪Y ×
numUsers

(
XY

)
numUsers(All)

conf =
numUsers

(
XY

)
numUsers

(
X

) (11)

3) X ⇒ Y , in this situation users do not possess permission set X and Y at the same
time that presented in the user to permission assignment relationships.

wsup = wX∪Y ×
numUsers

(
XY

)
numUsers(All)

conf =
numUsers

(
XY

)
numUsers

(
X

) (12)

Now we design the weighted constraint mining algorithm WCM to generate the mutual
exclusion constraint between roles based on weight as follows.

1) Scan the user permission assignments matrix MUPA to generate all the user to
permission assignment relationships as < UID, P ermSet >. For example, we use < u1,
p1 p2 p3 p4 > to describe that u1 has the permissions p1, p2 and p3 while having not
permission p4 at the same time.

2) Scan all of the < UID, P ermSet > to generate all candidate permission sets as
follows:

Let PRMS be the set of all permissions. Support that Y is a q-permission set, where
q < k. In the set of the remaining permissions (PRMS− Y), let the permissions with the
(k − q) greatest weights wp1 , wp2 , . . . , wpk

. We can say the maximum possible weight for
any k-permission containing Y is:

W (Y, k) =
∑
pi∈Y

wpi
+

k−q∑
j=1

wpj
(13)

in which the first sum is the sum of the weights for the q-permission Y , and the second
sum is the sum of the (k−q) maximum remaining weights. Thus, we can get the minimum
count for a large k-permission containing Y is given by:

minCount =

⌈
wminsup

W (Y, k)
× numUsers(All)

⌉
(14)

MUTUAL EXCLUSION ROLE CONSTRAINT MINING BASED ON WEIGHT 99

Thus, we can get all the candidate permission sets if the number of permission is larger
than the minCount, and we denote them as C (The idea behind this step is to generate
the candidate permission sets based on weight based on the theory described in [19]).

Finally, generate all combinations of permission sets whose weighted support is greater
than the user specified minimum weighted support based on the candidate permission sets,
and we call them frequent permission sets and denote as F.

3) Generate mutual exclusion constraint between roles based on weight from the fre-
quent permission sets found in Step 2 using association rules mining algorithm as Apriori.
In this step, we eliminate the rules that do not contain pi (pi ∈ PRMS) in order to enhance
the algorithm’s efficiency.

5. Experimental Results. In this section, we will implement the WCM algorithm on
an Intel(R) Core(TM) i5-4590 @CPU 3.3G machine with 4GB memory to evaluate our
method and present the most relevant results. The running platform is Windows 8. We
mainly consider four weight schemes W0: ww = 0, wp = 0, wu = 0; W1: ww = 0,
wp = 0.5, wu = 0.5; W2: ww = 0, wp = 2/3, wu = 1/3; W3: ww = 0, wp = 1/3,
wu = 2/3. In the three tuple W0, we do not consider the weight of each permission, and in
the three tuple W1, it assumes that the similarity between users and the similarity between
permissions have the same importance to the weight of permission. As for the other three
tuple W2, it assumes that the similarity between permissions is more important while in
the last three tuple W3, it assumes that the similarity between users is more important
to the weight of permission. Furthermore, one can adjust the weight parameters to meet
different requirements. Table 1 shows the test parameters.

Table 1. Parameter settings for testing WCM algorithm

Initial Weight (ww) Perm Re-Similarity (wp) User Re-Similarity (wu)
W0 0 0 0
W1 0 0.5 0.5
W2 0 2/3 1/3
W3 0 1/3 2/3

To study the performance of our method, we generate the synthetic test data as follows.
First, we use for loop to create the relationships between users and permissions. For each
user, a random number of permissions are chosen. The value of each element in the
relationships is randomly chosen as 0, indicating that the user has no such permission, or
1, indicating that the user has such permission.

Figure 2(a) shows the average number of mutual exclusion role constraint in the various
user specified minimum support thresholds under the parameter W0 where there are 50
users and 20 permissions (In this situation, we cannot consider the weight of each permis-
sion). Figure 3(a) shows the average number of mutual exclusion role constraint in the
various user specified minimum weighted support thresholds under the parameters W1,
W2, W3 where there are 50 users and 20 permissions. From Figures 2(a) and 3(a), it can
be seen that when the minimum support threshold (or minimum weighted support thresh-
old) is low, there is a large number of identified mutual exclusion constraint between roles.
As the minimum support threshold (or minimum weighted support threshold) increases,
the number of mutual exclusion constraint between roles will decrease. Furthermore, we
can find that the number of mutual exclusion constraint will increase when we increase the
reinforced similarity between users from Figure 3(a). For example, at the same minimum
weighted support threshold 0.34, the number of constraint is 28, 54 and 87 under param-
eters W1, W2, W3 respectively. It means that the reinforce similarity between users can

100 X. MA, J. WANG, L. ZHAO AND R. LI

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

N
um

be
r

of
 C

on
st

ra
in

t

Minimum Support

(a)The number of constraint

W0

 0

 200

 400

 600

 800

 1000

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Se
ar

ch
 T

im
e(

Se
no

nd
)

Minimum Support

(b)Search time

W0

Figure 2. Performance analysis under 50 users and 20 permissions under
parameter W0 (minimum confidence = 1)

 0

 50

 100

 150

 200

 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

N
um

be
r

of
 C

on
st

ra
in

t

Minimum Weighted Support

(a)The number of constraint

W1
W2
W3

 0

 1000

 2000

 3000

 4000

 5000

 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Se
ar

ch
 T

im
e(

Se
no

nd
)

Minimum Weighted Support

(b)Search time

W1
W2
W3

Figure 3. Performance analysis under 50 users and 20 permissions under
parameters W1, W2, W3 (minimum confidence = 1)

impact more on the weight of each permission. Figure 2(b) shows the average search time
for mutual exclusion constraint between roles in the different minimum support thresholds
under the parameter W0. Figure 3(b) shows the average search time for mutual exclusion
constraint between roles in the different minimum weighted support thresholds under the
parameters W1, W2, W3. It can be seen that when the minimum support or weighted
support threshold is larger, the searching time will decrease. However, when the minimum
support or weighted support threshold is smaller, the average search time for generating
mutual exclusion constraint between roles is increasing exponentially.

6. Conclusions. While many role mining approaches have been proposed recently, none
of them considered how to mine mutual exclusion role constraint based on weight. It may
fail to reflect the constraints in the security systems. In this paper, we present a mutual
exclusion role constraint mining approach based on weight. We first define the weight of
permission and also propose an algorithm to mine mutual exclusion role constraint based
on weight. We carry out the experiments to illustrate the effectiveness of the proposed
techniques. As a result, the proposed approach can generate mutual exclusion role based
on weight very well. For the future work, we will try to find more meaningful information
that is available to make the weight of permissions more accurate. It could be used to
further refine the potential roles. Furthermore, we will find the efficient algorithm to
generate the mutual exclusion role constraint based on weight.

Acknowledgements. This work is supported by the Joint Fund for National Natural
Science Foundation of China and Henan Province for Fostering Talents under Grant No.

MUTUAL EXCLUSION ROLE CONSTRAINT MINING BASED ON WEIGHT 101

U1304619, the National Natural Science Foundation of China under Grant Nos. 61173170,
61300222, and 61433006, and the Innovation Fund of Nanyang Normal University under
Grant No. ZX2013013. We thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] D. F. Ferraiolo, R. Sandhu, S. Gavrila et al., Proposed NIST standard for role-based access control,
ACM Trans. Information and System Security, vol.4, no.3, pp.224-274, 2001.

[2] X. Ma, R. Li, Z. Lu, J. Lu and M. Dong, Specifying and enforcing the principle of least privilege
in role-based access control, Concurrency and Computation: Practice and Experience, vol.23, no.12,
pp.1313-1331, 2011.

[3] E. J. Coyne, Role engineering, Proc. of the 1st ACM Workshop on Role-based Access Control, p.4,
1996.

[4] X. Ma, R. Li and Z. Lu, Role mining based on weights, Proc. of the 15th ACM Symposium on Access
Control Models and Technologies, pp.65-74, 2010.

[5] W. Zhang, Y. Chen, C. A. Gunter, D. Liebovitz and B. Malin, Evolving role definitions through
permission invocation patterns, Proc. of the 18th ACM Symposium on Access Control Models and
Technologies, pp.37-48, 2013.

[6] E. B. Fernadez and J. C. Hawkins, Determining role rights from use cases, Proc. of the 2nd ACM
Workshop on Role-based Access Control, Fairfax, Virginia, USA, pp.121-125, 1997.

[7] A. Baumgrass, M. Strembeck and S. R. Ma, Deriving role engineering artifacts from business pro-
cesses and scenario models, Proc. of the 16th ACM Symposium on Access Control Models and Tech-
nologies, pp.11-20, 2011.

[8] J. Schlegelmilch and U. Steffens, Role mining with ORCA, Proc. of the 10th ACM Symposium on
Access Control Models and Technologies, Stockholm, Sweden, pp.168-176, 2005.

[9] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo and J. Lobo, Mining roles with
semantic meanings, Proc. of the 13th ACM Symposium on Access Control Models and Technologies,
Colorado, USA, pp.21-30, 2008.

[10] D. Zhang, K. Ramamohanarao and T. Ebringer, Role engineering using graph optimisation, Proc. of
the 12th ACM Symposium on Access Control Models and Technologies, Antipoles, France, pp.139-
144, 2007.

[11] X. Ma, R. Li, Z. Lu et al., Mining constraints in role based access control, Mathematical and Com-
puter Modelling, vol.55, nos.1-2, pp.87-96, 2012.

[12] H. Lu, J. Vaidya, V. Atluri and Y. Hong, Constraint-aware role mining via extended Boolean matrix
decomposition, IEEE Trans. Dependable and Secure Computing, vol.9, no.5, pp.655-669, 2012.

[13] R. Kumar, S. Sural and A. Gupta, Mining RBAC roles under cardinality constraint, Proc. of the 6th
International Conference on Information Systems Security, pp.171-185, 2011.

[14] J. C. John, S. Sural, V. Atluri and J. S. Vaidya, Role mining under role-usage cardinality constraint,
Proc. of the 27th IFIP International Information Security and Privacy Conference, pp.150-161, 2012.

[15] R. Li, W. Wang, X. Ma et al., Mining roles using attributes of permissions, International Journal of
Innovative Computing, Information and Control, vol.8, no.11, pp.7909-7924, 2012.

[16] X. Chen, Z. Yi and Y. Wu, Mining association rules based on seed items and weights, Proc. of the
2nd International Conference on Fuzzy Systems and Knowledge Discovery, pp.603-608, 2005.

[17] F. Geerts, B. Goethals and T. Mielikainen, Tiling databases, Proc. of the 7th International Confer-
ence Discovery Science, pp.278-289, 2004.

[18] I. Molloy, N. Li, J. Lobo and L. Dickens, Mining roles with noisy data, Proc. of the 15th ACM
Symposium on Access Control Models and Technologies, Pittsburgh, PA, USA, pp.45-54, 2010.

[19] C. H. Cai, W. C. Fu, C. H. Cheng and W. W. Kwong, Mining association rules with weighted items,
Proc. of the 1998 International Symposium on Database Engineering and Applications, pp.68-77,
1998.

