
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2016 ISSN 1349-4198
Volume 12, Number 1, February 2016 pp. 139–160

HIGH-PERFORMANCE INFORMATION PROCESSING
IN DISTRIBUTED COMPUTING SYSTEMS

Valery Skliarov1, Artjom Rjabov2, Iouliia Skliarova1

and Alexander Sudnitson2

1Department of Electronics, Telecommunications and Informatics
Institute of Electronics and Informatics Engineering of Aveiro

University of Aveiro
Aveiro 3810-193, Portugal

{ skl; iouliia }@ua.pt

2Department of Computer Engineering
Tallinn University of Technology

Tallinn 19086, Estonia
aleksander.sudnitson@ttu.ee

Received July 2015; revised December 2015

Abstract. This paper explores distributed computing systems that may be used effi-
ciently in information processing that is frequently needed in electronic, environmental,
medical, and biological applications. Three major components of such systems are: 1)
data acquisition and preprocessing; 2) transmitting the results of preprocessing to a higher
level computing system that is a PC; and 3) post processing in higher level computing sys-
tem (in the PC). Preprocessing can be done in highly parallel accelerators that are mapped
to reconfigurable hardware. The core of an accelerator is a sorting/searching network that
is implemented either in an FPGA or in a programmable system-on-chip (such as Zynq
devices). Data is transmitted to a PC through a high-bandwidth PCI-express bus. The
paper suggests novel solutions for sorting/searching networks that enable the number of
data items that can be handled to be significantly increased compared to the best known
alternatives, maintaining a very high processing speed that is either similar to, or higher
than in the best known alternatives. Preprocessing can also include supplementary tasks,
such as extracting the minimum/maximum sorted subsets, finding the most frequently
occurring items, and filtering the data. A higher level computing system executes final
operations, such as merging the blocks produced by the sorting networks, implement-
ing higher level algorithms that use the results of preprocessing, statistical manipulation,
analysis of existing and acquired sets, data mining. It is shown through numerous exper-
iments that the proposed solutions are very effective and enable a more diverse range of
problems to be solved with better performance.
Keywords: High-performance computing systems, Information processing, Sorting,
Searching, Merging, Reconfigurable hardware, PCI-express bus, Programmable systems-
on-chip

1. Introduction. Sorting and searching procedures are needed in numerous computing
systems [1]. They can be used efficiently for data extraction and ordering in information
processing. Some common problems that they apply to are (see also Figure 1):

1. Extracting sorted maximum/minimum subsets from a given set;
2. Filtering data, i.e., extracting subsets with values that fall within given limits;
3. Dividing data items into subsets and finding the minimum/maximum/average values

in each subset, or sorting each subset;

139

140 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

4. Finding the value that is repeated most often, or finding the set of n values that are
repeated most often;

5. Removing all duplicated items from a given set;
6. Computing medians;
7. Solving the problems indicated in points 1-6 above for matrices (for rows/columns of

the matrices).

Figure 1. Common problems that are frequently solved in information
processing systems

These problems are important because many electronic, environmental, medical, chem-
ical, and biological applications need to process data streams produced by sensors and
calculate certain parameters [2]. Let us consider some examples. Applying the technique
[3] in real-time applications requires data acquisition from control systems such as in a
manufacturing or process plant. Signals from sensors may need to be filtered and analyzed
to prevent error conditions (see [3] for additional details). To provide a more precise and
reliable conclusion, combinations of different values need to be extracted, ordered, and
analyzed. Similar tasks arise in monitoring thermal radiation from volcanic eruptions [4],
filtering and integrating information from a variety of sources in medical applications [5],
in data mining [6], and so on. Since many control systems are real-time, performance is
important and hardware accelerators can provide significant assistance for software.

The problems listed above can be solved as shown in Figure 2. Measured data items
are handled in such a way that they are optionally filtered before various types of data
processing algorithms are applied. Performance can be increased by employing broad
parallelism and we suggest providing support for such parallelism in networks for sorting
and searching.

Let us introduce a set of high-level operations, each of which is dedicated to one of the
problems listed in points 1-6 above. The paper suggests methods for high-performance im-
plementation of such operations in a distributed computing system with the architecture
depicted in Figure 3.

Two basic subsystems (a pre-processor implemented in reconfigurable devices and a host
PC) communicate through a high-bandwidth PCI-express (Peripheral Components Inter-
face) bus. Two types of reconfigurable devices are studied: advanced field-programmable
gate arrays (FPGAs), such as those from the Xilinx Virtex-7 family, and all-programmable

HIGH-PERFORMANCE INFORMATION PROCESSING 141

Figure 2. General architecture of data processing

Figure 3. Architecture of a distributed computing system

systems-on-chip (APSoCs), such as those from the Xilinx Zynq-7000 family. In the first
case, two-levels of processing are involved: accelerators implemented in reconfigurable
hardware, and general-purpose software running in a PC. In the latter case, a third level
of processing is added that is application-specific software running in a multi-core pro-
cessing unit embedded to APSoC. The basic tasks of the host PC and the reconfigurable
subsystem are listed in Figure 3.

The main contributions of the paper can be summarized as follows:

1) Selecting widely reusable operations for various types of information processing, and
developing a methodology for using such operations in engineering applications;

2) Highly parallel networks for various sorting and searching algorithms and their thor-
ough evaluation;

3) Multi-level implementation of the selected operations in general-purpose and applicati-
on-specific software, and in reconfigurable hardware;

4) Experimental evaluation of the proposed technique in two advanced prototyping boards
– the ZC706 [7] and the VC707 [8].

The remainder of the paper contains 6 sections. Section 2 analyzes related work. Section
3 identifies potential practical applications of the results and gives a number of real world
examples from different areas. Section 4 describes highly parallel networks for sorting and
searching. Section 5 explores software/hardware co-design. Section 6 presents the results
of experiments and comparisons. The conclusion is given in Section 7.

2. Related Work. The majority of known methods and designs that are relevant to
this paper are in three main areas: 1) high-performance distributed systems that include

142 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

a general-purpose computer (such as a PC) and a reconfigurable subsystem interacting
through a high-bandwidth PCI-express bus; 2) sorting and searching using highly parallel
networks; 3) software/hardware co-design targeted to combine reconfigurable hardware
with general-purpose and application-specific software. The following subsections discuss
the related work that has been done in each area separately.

2.1. High-performance distributed systems. High-performance distributed systems
are used in many areas such as in medical equipment, aerospace, transportation vehicles,
intelligent highways, defense, robotics, process control, factory automation, and building
and environmental management [9]. A number of such systems for different application
areas are described in [10-12]. Let us consider one of them from [12]. Typical adaptive
cruise control and collision avoidance systems receive periodic inputs from sensors such as
radar, lidar (light identification detection and ranging), and cameras, and then process the
data to extract the necessary information. The system then executes a control algorithm
to decide how much acceleration or deceleration is required, and sends commands to
actuators to execute the appropriate actions. Since this is time-critical functionality, the
end-to-end latency from sensing to actuation must be bounded.

The application domains define different requirements for systems. Independently of
the domains, the majority of applications need data processing that may be organized
in different ways. For example, a researcher may require support for finding data items
that occur together in a certain situation, either a maximum or a minimum number of
times. Such problems arise in determining the frequency of inquiries over the Internet, for
customer transactions such as credit card purchases, which typically produce very large
volumes of data in the course of a day [6]. Data processing is involved in software systems
[13], priority buffering in scheduling algorithms [10], information retrieval [14], extracting
data from sensors within predefined ranges [2], video processing [15], knowledge acquisi-
tion from controlled environments [3], and so on. Satisfying the real-time requirements for
these applications can be achieved in on-chip devices that combine a multi-core process-
ing system (PS) running multi-thread software with programmable logic (PL) that can
be used to implement hardware accelerators. For example, devices from the Xilinx Zynq-
7000 family of APSoC have already been successfully used in a number of engineering
designs [11,12]. The Zynq APSoC combines the dual-core ARM R⃝CortexTM-A9 central
processing unit with the PL appended with on-chip memories (OCM), high-performance
(HP) interfaces, a rich set of input/output peripherals, and a number of embedded to
the PL components, such as digital signal processing (DSP) slices. APSoC devices enable
complete solutions to be implemented on a single microchip running software that may be
enhanced with easily customizable hardware. Various advantages of the APSoC platform
are summarized in [16,17]. Interactions between the ARM-based PS and PL are supported
by nine on-chip Advanced eXtensible Interfaces (AXI): four 32-bit general-purpose (GP)
ports; four 32/64-bit HP ports, and one 64-bit accelerator coherency port (ACP) [15].
There are a number of prototyping systems available, some of which (e.g., [7]) allow ad-
ditional data exchange with higher level computers such as PCs through PCI-express.
On-chip interfaces [18] enable hardware accelerators and other circuits (supporting, for
example, communications with sensors and actuators) in the PL to be linked with multi-
core software running in the PS. The PCI-express bus permits multilevel systems to be
developed that combine software running in a general-purpose computer (e.g., PC), soft-
ware running in the PS, and hardware implemented in the PL.

Satisfying real-time requirements is critical in many of the systems referenced above and
this can be a problem for the software-only systems that, perhaps, are the most frequently
applied nowadays [11,13]. Hardware-only systems are also widely used in a number of

HIGH-PERFORMANCE INFORMATION PROCESSING 143

areas (e.g., [12]). It is concluded in [12] that the most sensible approach is for the data
intensive portions of an application to be implemented in hardware, thus providing a high
degree of determinism and lower execution time, while the high-level decision making is
implemented in software, supporting easy customization. It is shown in [19] that on-chip
interactions between software and hardware may be seen as a bottleneck (even if HP ports
are used) especially for applications that require the exchange of high volumes of data.

The architectures and functionalities of various PCI-express systems are described in
[20]. A PCI connection has one or more data transmission lanes, each of which consists of
two pairs of wires: one for receiving and one for sending data. The maximum theoretical
bandwidth of a single lane is up to 2.5 Giga transfers per second (GT/s) in each direction
simultaneously [21], which is the same as Gb per second except that some bits are lost
as a result of interface overhead and consequently the theoretical bandwidth is reduced
by approximately 20% [21,22]. The bandwidth of χ lanes is the bandwidth of one lane
multiplied by χ.

There are many systems that involve high-performance on-chip communications and
interactions with PC through a PCI-express bus. The distinctive feature of this paper is
the study and evaluation of such systems for a particular area of data processing targeted
to problems that were described in Section 1. We will show in the next section that there
exist a very large number of potential practical applications for such processing.

2.2. Sorting and searching networks. Highly parallel networks for sorting and search-
ing enable numerous operations to be executed simultaneously, which is very appropriate
for FPGAs and APSoCs. Two of the most frequently investigated parallel sorters are
based on sorting [23] and linear [24] networks. A sorting network is a set of vertical
lines composed of comparators that can swap data to change their positions in the input
multi-item vector. The data propagate through the lines from left to right to produce
the sorted multi-item vector on the outputs of the rightmost vertical line. Three types
of such networks have been studied: pure combinational (e.g., [23,25,26]), pipelined (e.g.,
[23,25,26]), and combined (partially combinational and partially sequential) (e.g., [27]).
The linear networks, which are often referred to as linear sorters [24], take a sorted list
and insert new incoming items in the proper positions. The method is the same as the
insertion sort [1] that compares a new item with all the items in parallel, then inserts
the new item at the appropriate position and shifts the existing elements in the entire
multi-item vector. Additional capabilities of parallelization are demonstrated in the in-
terleaved linear sorter system proposed in [24]. The main problem with this is that it is
applicable only for small data sets (see, for example, the designs discussed in [24], which
accommodate only tens of items).

The majority of sorting networks that are implemented in hardware use Batcher even-
odd and bitonic mergers [28,29]. Other types are rarer (see for example the comb sort [30]
in [31], the bubble and insertion sort in [23,25], and the even-odd transition sort in [32]).
Research efforts are concentrated mainly on networks with a minimal depth or number
of comparators and on co-design, rationally splitting the problem between software and
hardware. The regularity of the circuits and interconnections are studied in [26,27] where
networks with iteratively reusable components were proposed. We target our results to-
wards FPGAs and APSoCs because they are regarded more and more as a universal
platform incorporating many complex components that were used autonomously not so
long ago. The majority of modern FPGAs contain embedded DSP slices and embedded
multi-port memories, which are very appropriate for sorting. GPU (graphics processing
unit) cores have also been placed inside an APSoC in recent devices [17], but even without

144 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

such cores, streaming SIMD (single instruction multiple data) applications can be sup-
ported with the existing programmable logic. Comparing FPGA-based implementations
with alternative systems [33,34] clearly demonstrates the potential of reconfigurable hard-
ware, which encourages further research in this area. FPGAs still operate at a lower clock
frequency than non-configurable ASICs (application-specific integrated circuits) and AS-
SPs (application-specific standard products) and broad parallelism is evidently required
to compete with potential alternatives. Thus, sorting and linear networks can be seen
as very adequate models. Unfortunately, they have many limitations. Suppose N data
items, each of size M bits, need to be sorted. The results of [23,25] show that sorting
networks cannot be built for N > 64 (M = 32), even in the relatively advanced FPGA
FX130T from the Xilinx Virtex-5 family because the hardware resources are not suffi-
cient. When N is increased, the complexity of the networks (the number of comparators
C(N)) grows rapidly (see Figure 1 in [26]). Besides, propagation delays through long
combinational paths in FPGA networks are significant [26]. Such delays are caused not
only by comparators, but also by multiplexers that have to be inserted even in partially
regular circuits [27], and by interconnections.

It is shown in [26] that very regular even-odd transition networks with two sequentially
reusable vertical lines of comparators are more practical because they operate at a higher
clock frequency, provide sufficient throughput, and enable a significantly larger number
of items to be processed in programmable logic.

2.3. Multi-level software/hardware co-design. Multi-level software/hardware co-
design is a new kind of system design that combines on-chip hardware/software co-design
and co-design at the level of PC interacting with the on-chip subsystem, such as that
implemented in Zynq-7000 devices. To our knowledge just a few publications (such as
[35,36]) briefly discuss such multi-level co-designs. On the other hand existing prototyp-
ing boards, such as [7] permit such designs to be evaluated. Besides, they are valuable
for numerous practical applications that were listed in Section 1.

3. Potential Practical Applications. Let us discuss now applicability of the consid-
ered design technique. An ordinary sorting is required in many types of information pro-
cessing. For a large number of data items, the known procedures that are used are time
consuming and can be accelerated using the methods proposed in this paper. This is
especially important for portable embedded applications. In the latter case, even sorting
thousands of items can be done significantly faster in software/hardware (e.g., in APSoC)
than in software only.

One common problem is clustering objects in accordance with their attributes. Different
methods have been proposed for solving this problem and many of them involve sorting
and searching as frequently used operations [37-40]. For example, in the CPES (Clustering
with Prototype Entity Selection) method [41], a fitness function is proposed to decide if
given objects can be clustered. Sorting the results produced by the fitness function enables
solutions to be found faster. Actually, for many practical applications it is important to
make sorting built-in, much as in operations such as computing the Hamming weights
of binary vectors, e.g., POPCNT (population count) [42] and VCNT (Vector Count Set
Bits) [43]. Similar proposals were made in [44].

Another example is extracting a required number of items through the Internet. For
example, suppose we would like to find the N cheapest products from very large number
of available options. An FPGA/APSoC based system requests and receives data from dif-
ferent suppliers and extracts the maximum/minimum subsets with the indicated number
of items. Different search criteria can be applied and very large volumes of data can be

HIGH-PERFORMANCE INFORMATION PROCESSING 145

analyzed. Other practical applications (in which high throughput is very important) are
described in [2]. One particular example can be taken from [2], which requires deciding
how often the data collected falls within a set of critical values that are above or below a
given threshold. Generally, the greater the intensity, the more critical is the subset and
the higher the probability of an event which might happen. By discovering the maximum
and minimum subsets you can determine when the activity is the highest or the lowest.

The algorithm [45] discovers rules associated with a set of classes and it has been
tested on a real world application data set related to website phishing. In this algorithm
the classifier sorts classes within each rule based on their frequency. Thus, sorting is also
needed.

In [25] small even-odd merge and bitonic sorting networks were used to implement
a median operator over a count-based sliding window. Such an operator is commonly
needed to eliminate noise in sensor readings [46] and in data analysis [47], which are tasks
that occur often in control engineering.

The method proposed in [48] (based on the Monte Carlo method coupled with a sorting
algorithm [49] and gradient search [50]) systematically evaluates possible behaviors of a
closed-loop system by analyzing its time response. This permits various techniques to
be applied for solving problems that are commonly encountered in networked control
systems.

The software/hardware solutions proposed in this paper are faster. They are based on
two (PC - FPGA) or three (PC - APSoC: PS - PL) level systems. The effectiveness of the
hardware/software solutions is underlined in [51], addressing the importance of portable
computing hardware environments to handle massive data.

4. Highly Parallel Networks for Sorting and Searching. It is shown in Section 2.2
that sorting networks are widely used in data [25] and vector [52] processing and they
enable comparison and swapping operations over multiple data items to be executed in
parallel. A review of recent results in this area can be found in [26] where it is shown
that many researchers and engineers consider such technique as very beneficial for data
and vector processing in FPGAs and APSoCs. Although the methods [28,29] enable the
fastest theoretical throughput, the actual performance is limited by interfacing circuits
supplying initial data and transmitting the results and the communication overheads do
not allow theoretical results to be achieved in practical designs [19].

The proposed circuits require a significantly smaller number of comparators/swappers
(C/S) than networks from [28,29] and many C/S are active in parallel and reused in differ-
ent iterations. The first circuit (see Figure 4) contains N M -bit registers Rg0, . . . , RgN−1.
Unsorted input data are loaded to the circuit through N M -bit lines d0, d1, . . . , dN−1. For
the fragment on the left-hand side of Figure 4, the number N of data items is even, but
it may also be odd which is shown in the example in the same Figure 4. Each C/S is
shown in Knuth notation () [1] and it compares items in the upper and lower registers
and transfers the item with the larger value to the upper register and the item with the
smaller value to the lower register (see the upper right-hand corner of Figure 4). Such
operations are applied simultaneously to all the registers linked to even C/S in one clock
cycle (indicated by the letter α) and to all the registers linked to odd C/S in a subse-
quent clock cycle (indicated by the letter β). This implementation may be unrolled to
an even-odd transition network [32], but vertical lines of C/S in Figure 4 are activated
sequentially and the number of C/S is reduced compared to [32] by a factor of N/2. For
example, if the number N is even then the circuit from [32] requires N × (N − 1)/2 C/S
and the circuit in Figure 4 – only N − 1 C/S. The circuit in [32] is combinational and
the circuit in Figure 4 may require up to N iterations. The number N of iterations can

146 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Figure 4. The first sorting circuit with an example

Figure 5. The second sorting circuit

be reduced very similarly to [26]. Indeed, if beginning from the second iteration, there is
no data exchange in either even or odd C/S, then all data items are sorted. If there is no
data swapping for even C/S in the first iteration, data swaps for odd C/S may still take
place. Note that the network [32] possesses a long combinational delay from inputs to
outputs. The circuit in Figure 4 can operate at a high clock frequency because it involves
a delay of just one C/S per iteration (i.e., in each rising/falling edge of the clock).

Let us look at the example shown in Figure 4 (N = 11, M = 6). Initially, unsorted data
d0, d1, . . . , d10 are copied to Rg0, . . . , Rg10. Each iteration (6 iterations in total) is forced
by an edge (either rising or falling) of a clock. The signal α activates the C/S between
the registers Rg0, Rg1, Rg2, Rg3, . . . , Rg8, Rg9. The signal β activates the C/S between the
registers Rg1, Rg2, Rg3, Rg4, . . . , Rg9, Rg10. There are 10 C/S in total. Rounded rectangles
in Figure 4 indicate elements that are compared at iterations 1-6. Data are sorted in 6
clock cycles and 6 < N = 11. Unrolled circuits from [32] would require 50 C/S with the
total delay equal to the delay of N sequentially connected C/S.

The second circuit is shown in Figure 5 and it combines the first circuit with the radix
sort. Now only single bits from the registers of Figure 4 are compared and if the upper bit
is 0 and the lower bit is 1, then M -bit data in the relevant upper and lower registers are
swapped. Thus, any C/S is built on only one gate (see Figure 5) much like in [52]. Data
are sorted in such a way that at the first step bit 0 (the least significant bit) is chosen.

HIGH-PERFORMANCE INFORMATION PROCESSING 147

At the second step bit 1 is chosen and at the last step bit M − 1 is chosen. Hence, bits in
all registers are chosen sequentially, i.e., they are scanned. Clearly, the number of clock
cycles is increased but the resources occupied are reduced because one-bit C/S are smaller
than M -bit C/S.

The maximum number of clock cycles for sorting N M -bit items is increased up to
N ×M but in practical designs it is smaller because the method described above enables
sorting to be completed as soon as there is no need for swapping data items.

Figure 6 demonstrates an example. The same data as in Figure 4 are chosen. Now we
consider binary codes of the items. For the first sort (0) bit 0 is analyzed, which is the
least significant bit. All the remaining sorts (1-5) and the relevant (analyzed) bits are
shown in Figure 6. After the last step (sort 5), all data are sorted and for clarity binary
codes are shown as decimal numbers.

Figure 6. An example

The networks described above can be used efficiently for solving numerous supplemen-
tary tasks. One of these tasks is the extraction of the maximum and/or minimum subsets
from the sorted sets [53-55]. Let set S containing L M -bit data items be given. The max-
imum subset contains Lmax largest items in S, and the minimum subset contains Lmin

smallest items in S (Lmax ≤ L and Lmin ≤ L). We mainly consider such tasks for which
Lmax << L and Lmin << L, which are more common for practical applications. Since L
may be very large (millions of items), the set cannot be completely processed in hardware
because the resources required are not available. Figure 7 shows the top-level architec-
ture from [55] in which the proposed iterative data sorter is used. Much like [55], the
given set S is decomposed on Q = ⌈L/K⌉ subsets, all of which contain exactly K M -bit
items except the last, which may have less than K M -bit items. Subsets are computed
incrementally in Q steps (we assume below that K ≤ L).

At the first step, the first K M -bit data items are sorted in the network (such as that
shown in Figure 4) which handles Lmax + K + Lmin data items in total but comparators
linking the upper part (handling Lmax M -bit data items) and the lower part (handling
Lmin M -bit data items) are deactivated (i.e., the links with the upper and lower parts are
broken). So, sorting is done only in the middle part handling K M -bit items. As soon
as sorting is completed, the maximum subset is copied to the upper part of the network
and the minimum subset is copied to the lower part.

From the second step, all the comparators are active, i.e., the network (see Figure 4)
handles Lmax + K + Lmin items. Now for each new K M -bit items, the maximum and

148 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Figure 7. Computing the maximum and minimum sorted subsets

minimum sorted subsets are properly corrected, i.e., new items may be inserted. All other
details relevant to top-level architecture in Figure 7 can be found in [55].

The next potential task that can be solved with the aid of the proposed methods is
filtering [55]. Let Bu and Bl be predefined upper (Bu) and lower (Bl) bounds for the given
set S. We would like to use the circuit in Figure 7 only for such data items D that fall
within the bounds Bu and Bl, i.e., Bl ≤ D ≤ Bu (or, possibly, Bl < D < Bu). Once
again the basic component is the sorting network (see Figure 4) and it can be used in the
method [55] that enables data items to be filtered at run-time (i.e., during data exchange).

Clearly, the operations described above can be implemented in software. For example,
the C function qsort permits large data sets to be sorted. After that, extracting the
maximum and minimum subsets is easily done. Filtering may be done by testing and
eliminating items that do not fall within the predefined constraints. However, for many
practical applications the performance of the operations described above is important.
The results of thorough experiments and comparisons have shown that software/hardware
solutions are significantly faster than software only solutions.

Many other problems can also be solved applying the proposed networks. For example,
in [2] a highly parallel architecture was proposed that permits repeated items to be found
efficiently. The basic component of the architecture [2] is a sorting network, and using
the proposed technique for such a network permits the hardware resources to be reduced
and the performance to be increased. Thus, the results of this paper are useful for a large
number of practical applications.

5. Software/Hardware Co-design. Figure 8 shows the basic architecture for data
transfer between a host PC and an APSoC through PCI-express.

Figure 9 presents a more detailed architecture of a three-level system for the example
of distributed data sort. Software in the host PC runs the 32-bit Linux operating system
(kernel 3.16) and executes programs (written in the C language) that take results from
PCI-express (from the APSoC) for further processing. We assume that the data collected

HIGH-PERFORMANCE INFORMATION PROCESSING 149

Figure 8. Basic architecture for data transfer between a host PC and an
APSoC through PCI-express

Figure 9. Architecture of a three-level APSoC-based system for data sorting

in the APSoC are preprocessed in the APSoC by applying various highly parallel networks
(see Section 4), and the results are transferred to the host PC through the PCI-express
bus. To support data exchange through PCI-express, a dedicated driver was developed.
The APSoC uses the Intellectual Property (IP) core of the central direct memory access
(CDMA) module [56] to copy data through AXI PCI express (AXI-PCIE) [57]. The project
is similar to [58] and links CDMA and AXI-PCIE modules based on a simple data mover
(i.e., the mode “scatter gather” [58] is not used). A master port (M-AXI) of the AXI-
PCIE operates similarly to GP ports in [19] and supplies control instructions from the
PC to customize data transfers. The instructions indicate the physical address of data for
PC memory, the size of transferred data, etc. The CDMA module can be connected to
either AXI HP or AXI ACP interfaces in APSoC and transmits data from either on-chip
memory (OCM) or external DDR. After supplying the addresses, the number of data
bytes (that need to be transferred) is indicated and the data transmission is started. As
soon as the data transmission is completed, the CDMA module triggers an interrupt that
has to be properly handled (the interrupt number is determined by the BIOS of the host
PC). The following customization is done for 1) AXI-PCIE: legacy interrupts, 128 bits
data width, and 2) CDMA: 256 bytes burst size, 128 bits data width. Note that the

150 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Figure 10. Architecture of a two-level FPGA-based system for data sorting

architecture in Figure 9 allows data transfers in both directions, i.e., data from the PC
may also be received.

The architecture for the case when an FPGA is used (instead of an APSoC) is similar,
and is shown in Figure 10 (now there are just two levels). The only difference is the
transfer of data items from an external source to FPGA DDR memory where the data
are preliminarily collected by the FPGA and stored. The DDR is controlled by a memory
interface generator.

Data transfer in the host PC is organized through direct memory access (DMA). To
work with different devices, a driver (kernel module) was developed. The driver creates
in the directory /dev a character device file that can be accessed through read and write
functions, for example write(file, data array, data size). Up to 5 base address registers
(BAR) can be allocated but we used just one.

The PC BIOS assigns a number (an address) to the selected BAR and a corresponding
interrupt number that will be later used to indicate the completion of a data transfer. As
soon as the driver is loaded, a special operation (probe) is activated and the availability
of the device with the given identification number (ID) is verified (the ID is chosen during
the customization of the AXI-PCIE). Then a sequence of additional steps is performed
(see [59, pp.302-326] for necessary details). A number of file operations are executed in
addition to the probe function (see Figure 11). In our particular case, access to the file
is done through read/write operations. Figure 11 demonstrates the interaction of a user
application with the driver (kernel module) and some additional operations that may be
executed.

As soon as a user program calls the read function, the read(file, data array, data size)
function gets the address in the user memory space and the number of bytes that need
to be transferred. Initially, the data are copied to a buffer and then the physical address
of the buffer is obtained. Now the data are ready to be transferred from APSoC/FPGA.
Then the data are copied and the driver is waiting for an interrupt indicating that the
data transmission is complete. The necessary operations for generating the interrupt are
given in [56]. Additional details can be found in [59, pp.258-287].

The proposed networks (see Section 4) can be used as follows. The sorter receives blocks
composed of N M -bit data items that are collected from sensors initially and stored in
memories (such as external DDR and OCM). Interactions with memory are done through
AXI HP/ACP ports (see Figure 9) or through the memory interface block (see Figure 10).
The sorter (such as that shown in Figure 4) executes iterative operations over multiple
parallel data and is controlled by a dedicated finite state machine (FSM) called Sorter
Control Unit (see Figures 9 and 10). The ports are also controlled by a dedicated FSM

HIGH-PERFORMANCE INFORMATION PROCESSING 151

Figure 11. Operations with the device driver in the host PC and addi-
tional operations that may be executed

(see HP/ACP Control Unit in Figures 9 and 10). The results of sorting are copied back
to memory and then transmitted to the host PC through the PCI-express bus. APSoC
PS is responsible for data collection and organization that is done in accordance with the
established requirements. For the case of FPGA, data collection and organization are
done by specially developed dedicated circuits. Finally, either the PS or the dedicated
circuits prepare data in memory so that these data can be processed in the PL/FPGA
and the results of the processing (stored in memory) are ready to be transmitted to the
host PC. The blocks CDMA with control units (PCI Control Unit and Interrupt Control
Unit in Figures 9 and 10) are responsible for transmitting data.

6. Experiments and Comparisons. The system for data transfers between a host PC
and an APSoC/FPGA has been designed, implemented, and tested. Experiments were
done with two prototyping boards. The first is the Xilinx ZC706 evaluation board [7]
containing the Zynq-7000 XC7Z045 APSoC device with PCI express endpoint connec-
tivity “Gen1 4-lane (x4)”. The PS is the dual-core ARM Cortex-A9 and the PL is a
Kintex-7 FPGA from the Xilinx 7th series. The second board is VC707 [8] and it contains
the Virtex-7 XC7VX485T FPGA from the Xilinx 7th series with PCI express endpoint
connectivity “Gen2 8-lane (x8)”. All designs were done for: 1) hardware in the PL of
APSoC/FPGA synthesized from specifications in VHDL that describe circuits interacting
with Xilinx IP cores (Xilinx Vivado Design Suite 2015.1/2015.2); 2) software in the PS
of APSoC developed in C language (Xilinx Software Development Kit – SDK 2015.1); 3)
user programs running under the Linux operating system in the host PC developed in C.
Data were transferred from the ZC706/VC707 to the host PC through PCI-express. The
host PC contains Intel core i7 3820 3.60GHz.

Figure 12 demonstrates organization of experiments with data sorters.
We assume that data are collected by the ZC706/VC707 board and stored in DDR

memory (in the experiments, data are produced as described in point 1 below). Subse-
quently, different components (A, B, C, D) may be involved in data processing:

1) Data are randomly generated in the programmable logic (in the PL of APSoC or in the
FPGA) and sorted using only networks in hardware (component A), indicated below
as Sorting blocks ;

2) Data are transferred from the ZC706/VC707 to the PC through PCI-express and sorted
by software in the PC (component D), indicated below as PC sort ;

3) Data are completely sorted in the APSoC (the set of data items is decomposed into
blocks, blocks are sorted in the PL by the networks described above, the sorted blocks

152 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Figure 12. Organization of experiments with data sorters (the size of one
block is 1024 32-bit data items)

are merged in the PS to produce the final result) and the sorted data are transferred
to the PC through PCI-express (components A and B), indicated below as Sorting +
PS merge;

4) Data are completely sorted in APSoC/FPGA and in the PC in such a way that: a)
blocks of data are sorted in the PL of APSoC or in FPGA; b) the sorted blocks are
transferred to the PC through PCI-express; and c) the blocks are merged by software
in the PC (components A and C). This case is indicated below as Sorting + PC merge.

Sorting in hardware only (see point 1 above) permits the circuits that process the maxi-
mum possible number of data items and can be entirely implemented in the programmable
logic without any support from software to be evaluated. In the next subsections we will
present the following results: 6.1) evaluation of the circuits including threshold values
that are potential limitations of the methods proposed; 6.2) comparisons with the best
known alternatives.

6.1. Evaluation of the proposed circuits. Evaluation of the proposed circuits has
been done through a set of experiments with the network from Figure 4, selecting four
data sets sizes of 512, 1024, 2048, and 4096 items. The results are shown in Figure 13.

We counted only the percentage of look-up tables (LUTs), which are the primary
PL/FPGA resources that are used for the network. The percentage of other resources is
lower, for example, the percentage of flip-flops for the FPGA does not exceed 23% and

Figure 13. The results of sorting in hardware only using iterative networks
from Figure 4

HIGH-PERFORMANCE INFORMATION PROCESSING 153

for the PL – 31% for all data set sizes (from 512 to 4096). From Figure 13 we can see that
the available resources permit only iterative networks of up to 2048 32-bit data items to
be implemented. Thus 2048 is the threshold for hardware only implementations based on
the microchips indicated above. A preliminary evaluation shows that 8192 items is the
maximum threshold value for hardware-only implementations of the circuit from Figure
4 in the most advanced FPGAs/APSoCs currently available on the market.

The circuit in Figure 5 was also implemented and tested. As we expected in Section
4, the occupied resources were reduced, and the time was increased compared to the
network in Figure 4 by a factor of about M . For example, if the size of one block is 1024
(N = 1024) of 32-bit (M = 32) items, then the percentage of LUTs used for VC707 is
25% for the network in Figure 4, and 18% for the network in Figure 5. Thus, sorting 4096
items in the FPGA of VC707 is possible. However, we found that the remaining resources
are not sufficient to implement the other blocks shown in Figure 14. Thus, the circuit in
Figure 5 makes sense only for autonomous hardware networks.

In further experiments (see Figure 12) only the network from Figure 4 will be used.
The size of data varies from 2 KB to 1024 KB (M = 32). The results obtained for the
four measurements indicated above are reported in Figure 14 (the two curves PC sort and
PC sort + data transfer show the same results without and with data transfers). The
result for each type of experiment is an average of 64 runs.

The following conclusions can be drawn from Figure 14.

• The fastest results were obtained for the components A and C, i.e., pre-sort in the
PL with a subsequent merge in the PC (see point 4 above). Note that the fastest
(the lowest) curve in Figure 14 is built for sorting individual subsets only. Thus, the
complete data set has not been sorted and the relevant results cannot be used for
comparisons.

• The slowest result is shared between the remaining two cases (see points 2, 3 above).
• Note that for almost all data sizes, sorting and merging in APSoC is faster than

sorting in PC software. Thus, cheaper (than PC) APSoCs are more advantageous
and may be used efficiently for embedded applications.

• Sorting blocks in the PL network (see Figure 4) is significantly faster than subsequent
merging. All communication and protocol overheads were taken into account.

Figure 14. The results of experiments with the three-level system sorting
data (the size of one block is 1024 32-bit data items)

154 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Figure 15. The results of experiments with the two-level system sorting
data (the size of one block is 2048 32-bit data items)

Similar experiments were done with the VC707 prototyping board, but with the blocks
of data containing 2048 32-bit data items (i.e., the blocks sorted in the hardware network
are two times larger). The results are shown in Figure 15.

From analyzing these results we can conclude that:

• Using an FPGA from the Virtex-7 family, sorting in hardware networks is slightly
faster, but the difference is negligible;

• Using larger blocks (2048 vs. 1024) allows sorting in point 4 (see the beginning of
this section) to be faster by a factor ranging from 1.2 to 1.8. This is because the
depth of software merges is reduced by one level.

The next experiments were done extracting the maximum and the minimum sorted
subsets. We found that the acceleration is better than in Figures 14 and 15 for data sort-
ing. This is because the number of data transferred through PCI express is significantly
decreased and almost all operations are done in the APSoC/FPGA. We implemented and
tested the circuit shown in Figure 7 in the PL of APSoC, which takes data from the DDR
memory and extracts the maximum and minimum subsets with Lmax/Lmin data items,
where Lmax/Lmin varies from 128 to 1024 (as before M = 32, L varies from 2 KB to 1024
KB). Table 1 presents the results for Lmax/Lmin = 128.

Table 1. The results of experiments extracting the maximum/minimum subsets

Data (KB) Time (µs) Data (KB) Time (µs)
2 70 64 254
4 75 128 425
8 89 256 916
16 112 512 1543
32 157 1024 3535

For some practical applications the maximum and/or minimum subsets may be large
and the available hardware resources become insufficient to implement the circuit from
Figure 7 [54]. The problem can be solved by applying the following technique. Let lmax

and lmin be constraints for the upper and lower parts of the sorting network in Figure 7,

HIGH-PERFORMANCE INFORMATION PROCESSING 155

i.e., circuits with larger values (than lmax and lmin) cannot be implemented due to the lack
of hardware resources or for some other reasons. Let the parameters for the maximum
and minimum subsets be greater than lmax and lmin, i.e., Lmax > lmax and Lmin > lmin. In
this case, the maximum/minimum subsets can be computed incrementally as follows [54].

1. In the first iteration the maximum subset containing lmax items and the minimum
subset containing lmin items are computed. The subsets are transferred to the PS (to
memories). The PS removes the minimum value from the maximum subset and the
maximum value from the minimum subset. This correction avoids the loss of repeated
items in subsequent steps. Indeed, the minimum value from the maximum subset (the
maximum value from the minimum subset) can appear in subsets that are generated
in point 3 below, and they will be lost because of filtering (see point 3 below).

2. The minimum value from the corrected in the PS maximum subset is assigned to Bu.
The maximum value from the corrected in the PS minimum subset is assigned to Bl.
The values Bu and Bl are supplied to the PL through a general-purpose port.

3. The same data items (from memory), as in point 1 above, are initially filtered [55] so
that only items that are less than Bu and greater than Bl are allowed to be processed,
i.e., computing sorted subsets can be done only for the filtered data items. Thus, the
second part of the maximum and minimum subsets will be computed and appended
(in the PS) to the previously computed subsets (such as the subsets from point 1).

Points 2 and 3 above are repeated until the maximum subset with Lmax items and the
minimum subset with Lmin items are computed.

If the number of repeated items is greater than or equal to lmax/lmin, then the method
above may generate infinite loops. This situation can easily be recognized. Indeed, if
any new subset becomes empty after the corrections in point 1 above, then an infinite
loop will be created. In this case, we can use the previously described method based on
software/hardware sorters (i.e., sorting in hardware and subsequent merging in software).
Thus, data items are sorted before the desired number of the largest and/or the smallest
items are taken.

Table 2 presents the results for larger numbers of data items in extracted subsets (from
128 to 1024) for L = 256 KB.

Table 2. The results of experiments with extracting subsets with different
number of data items

Data Time (µs) Data Time (µs)
128 + 128 916 640 + 640 4481
256 + 256 1808 768 + 768 5372
384 + 384 2698 896 + 896 6261
512 + 512 3589 1024 + 1024 7152

The developed software and hardware can also solve higher level tasks. As examples,
we considered creating objects in software for further clustering and finding the frequency
of occurrence of data items in hardware. The attributes of any individual object are gen-
erated randomly in software within a given range. Objects and attributes are associated
with rows and columns of a matrix. Clearly, the Hamming weight of any row r indicates
how many times the attribute associated with r appeared in different objects (associated
with columns). Two tasks are solved in the PL: 1) calculating the Hamming weights
using the methods and tools from [2]; and 2) sorting the Hamming weights with the aid
of the methods described above. The sorted values are used to simplify solving different
problems from the scope of data mining.

156 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Finding the item that occurs most frequently can be done entirely in hardware. Suppose
we have a set of L sorted data items which may include repeated items and we need the
most frequently repeated item to be found. This problem is solved in the hardware circuit
proposed in [2]. Thus, combining the proposed solutions with the circuit [2] enables the
complete problem to be solved.

6.2. Comparisons with the best known alternatives. Comparisons with the best
known alternatives can be done by analyzing the fastest known networks. For data sorting,
the latency and the cost of the most widely discussed networks are shown in Table 3. The
formulae for the table are taken from [1,23,25,26,32]. For example, if N = 1024 then the
latency is equal to D(1024) = 55 for the fastest known even-odd merge and bitonic merge
networks [28,29], which is smaller than the number of iterations for the proposed network.
However, C(1024) for the less resource consuming even-odd merge network is 24,063 C/S
and for the proposed network C(1024) = 1023 C/S. Thus, the difference is a factor of
about 24. It means that with the same hardware resources, the proposed networks can
process blocks of data with significantly larger number N of data items. Indeed, the
resources C(1024) = 24, 063 of the known even-odd merge network are the same as for 24
proposed networks each of which sorts the same number of data items, i.e., 1024. This
means that the proposed network occupies less than 5% of the resources of the known
network and the number of sorted items is exactly the same.

Table 3. Cost C(N) and latency D(N) of the most widely discussed networks

Type of the network C(N) D(N)
Bubble and insertion sort N × (N − 1)/2 2 × N − 3
Even-odd transition N × (N − 1)/2 N

Even-odd merge
(
p2 − p + 4

)
× 2p−2 − 1, N = 2p p × (p + 1)/2, N = 2p

Bitonic merge
(
p2 + p

)
× 2p−2, N = 2p p × (p + 1)/2, N = 2p

The proposed network (see Figure 4) N − 1 ≤ N

The experiments done for the board [8] have shown that for the networks [28,29]
N ≤ 128, while for the proposed networks N > 2048. Thus, the proposed networks
may handle about 16 times larger blocks. The blocks created in hardware are further
merged in software, thus the number of levels in software will be increased in the known
networks by a factor of ⌈log2 16⌉ = 4 (comparing to the proposed network). The following
experiments were done:

1. Blocks with two sizes (that are 128 and 2048 32-bit words) have been sorted in software
using the known (for the size 128) and the proposed (for the size 2048) networks. The
measured times are T128 and T2048.

2. Since the known networks cannot be used for N = 2048, the same results have been
obtained through a subsequent merge in software of blocks with N = 128 to get blocks
with N = 2048. The measured time is T128 + Tmerge.

3. Finally we measured the value (T128 + Tmerge)/T2048. The fastest method was used i.e.,
pre-sort in the PL with subsequent merge in the PC (see Subsection 6.1). The result
that was an average of 64 runs exceeds 5. Note that additional delays appeared also
in data transmission through PCI-express of smaller blocks of data items.

For subsequent merging required for larger data sets all the conditions for the proposed
and known methods are the same. Thus, the proposed methods are always faster because
merging in software begins with significantly larger pre-sorted blocks. Clearly, threshold

HIGH-PERFORMANCE INFORMATION PROCESSING 157

values for maximum sizes of sorted sets are the same as for general-purpose software
running in a PC.

Comparison of the proposed methods for extracting the maximum and minimum sorted
subsets with the results in [53] demonstrates that the proposed method permits signifi-
cantly larger subsets to be constructed. Indeed, the maximum size of extracted subsets
in [53] is only 8 items and the maximum size of initial set is only 256 items. The size of
each item is 10 bits. This is because the methods [53] are based on even-odd merge and
bitonic merge networks for which the complexity of the circuits, i.e., the value of C(N),
is limited. In our case, the maximum size of extracted subsets is 1024 (which exceeds the
size of initial data sets in [53]) and the size of initial set is up to 1024 KB. The size of
each item is 32 bits (versus 10 in [53]). The conclusion is the following: 1) the proposed
methods enable data sets with significantly larger numbers of items to be processed; 2)
the size of the extracted (minimum, maximum, or both) subsets may be increased in the
proposed networks; 3) the performance (throughput) for processing large subsets in the
proposed methods is better because complex tasks cannot be entirely solved in hardware
using the methods [53] and the necessary software introduces large additional delays.

7. Conclusions. The paper is dedicated to distributed computing systems that involve
higher level computers (such as a PC) interacting with programmable systems-on-chip
through a PCI-express bus. We studied different levels of such systems, namely higher
level software running in the host PC, data transfer through PCI-express, lower level
software running in ARM of a programmable system-on-chip, and hardware accelerators
implemented in the programmable logic. It is shown that sorting and searching are com-
mon operations in different types of data and information processing. We found the fastest
way to implement such operations and suggested numerous supplementary operations that
are common to different computing systems. A number of hardware accelerators were pro-
posed, all of which were completely implemented and tested in commercial computers and
microelectronic devices. The practical analysis consisted of numerous experiments using
the most recent all programmable systems-on-chip combining a processing system with
configurable logic. The experiments comprehensively demonstrated that the proposed
multilevel solutions outperformed software running in a PC by a significant margin. It is
also shown that the networks proposed can be used in numerous practical applications in
control engineering and applied informatics.

Acknowledgments. The authors would like to thank Ivor Horton for his very useful
comments. This research was supported by the institutional research funding IUT 19-1 of
the Estonian Ministry of Education and Research, the Study IT in Estonia Programme,
and Portuguese National Funds through FCT – Foundation for Science and Technology,
in the context of the projects UID/CEC/00127/2013 and Incentivo/EEI/UI0127/2014.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Sorting and Searching, Vol. III, Addison-Wesley,
2011.

[2] V. Sklyarov and I. Skliarova, Digital hamming weight and distance analyzers for binary vectors and
matrices, International Journal of Innovative Computing, Information and Control, vol.9, no.12,
pp.4825-4849, 2013.

[3] D. Zmaranda, H. Silaghi, G. Gabor and C. Vancea, Issues on applying knowledge-based techniques in
real-time control systems, International Journal of Computers, Communications and Control, vol.8,
no.1, pp.166-175, 2013.

[4] L. Field, T. Barnie, J. Blundy, R. A. Brooker, D. Keir, E. Lewi and K. Saunders, Integrated field,
satellite and petrological observations of the November 2010 eruption of Erta Ale, Bulletin of Vol-
canology, vol.74, no.10, pp.2251-2271, 2012.

158 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

[5] W. Zhang, K. Thurow and R. Stoll, A knowledge-based telemonitoring platform for application in
remote healthcare, International Journal of Computers, Communications and Control, vol.9, no.5,
pp.644-654, 2014.

[6] Z. K. Baker and V. K. Prasanna, An architecture for efficient hardware data mining using reconfig-
urable computing systems, Proc. of the 14th Annual IEEE Symp. on Field-Programmable Custom
Computing Machines, pp.67-75, 2006.

[7] Xilinx, Inc., ZC706, All Programmable SoC Evaluation Kit (Vivado Design Suite 2014.3), http://
www.xilinx.com/support/documentation/boards and kits/zc706/2014 3/ug961-zc706-GSG.pdf.

[8] Xilinx, Inc., VC707 Evaluation Board for the Virtex-7 FPGA User Guide, http://www.xilinx.
com/support/documentation/boards and kits/vc707/ug885 VC707 Eval Bd.pdf.

[9] R. Rajkumar, I. Lee, L. Sha and J. Stankovic, Cyber-physical systems: The next computing revolu-
tion, Proc. of the 47th ACM/IEEE Design Automation Conference, pp.731-736, 2010.

[10] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems – A Cyber-Physical Systems Approach,
2nd Edition, 2011.

[11] J. C. Jensen, E. A. Lee and S. A. Seshia, An Introductory Lab in Embedded and Cyber-Physical
Systems, http://leeseshia.org/lab, 2014.

[12] K. Vipin, S. Shreejith, S. A. Fahmy and A. Easwaran, Mapping time-critical safety-critical cyber
physical systems to hybrid FPGAs, Proc. of the 2nd IEEE International Conference on Cyber-
Physical Systems, Networks, and Applications, pp.31-36, 2014.

[13] M. Panunzio and T. Vardanega, An architectural approach with separation of concerns to address
extra-functional requirements in the development of embedded real-time software systems, Journal
of Systems Architecture, vol.60, pp.770-781, 2014.

[14] A. Borangiu and D. Popescu, Digital signal processing for knowledge based sonotubometry of eu-
stachian tube function, Journal of Control Engineering and Applied Informatics, vol.16, no.3, pp.56-
64, 2014.

[15] Y. Benmoussa, J. Boukhobza, E. Senn, Y. Hadjadj-Aoul and D. Benazzouz, A methodology for
performance/energy consumption characterization and modeling of video decoding on heterogeneous
SoC and its applications, Journal of Systems Architecture, vol.61, pp.49-70, 2015.

[16] M. Santarini, Products, profits proliferate on ZynqSoC platforms, XCell Journal, vol.88, pp.8-15,
2014.

[17] M. Santarini, Xilinx 16nm UltraScale+ devices yield 2-5X performance/watt advantage, XCell Jour-
nal, vol.90, pp.8-15, 2015.

[18] Xilinx Inc., Zynq-7000 All Programmable SoC Technical Reference Manual, http://www.xilinx.com/
support/documentation/user guides/ug585-Zynq-7000-TRM.pdf.

[19] J. Silva, V. Sklyarov and I. Skliarova, Comparison of on-chip communications in Zynq-7000 all
programmable systems-on-chip, IEEE Embedded Systems Letters, vol.7, no.1, pp.31-34, 2015.

[20] R. Budruk, D. Anderson and T. Shanley, PCI-Express System Architecture, Addison-Wesley, 2008.
[21] N. Edwards, Theoretical vs. Actual Bandwidth: PCI Express and Thunderbolt, http://www.tested.

com/tech/457440-theoretical-vs-actual-bandwidth-pci-express-and-thunderbolt/, 2013.
[22] J. Lawley, Understanding Performance of PCI Express Systems, http://www.xilinx.com/support/

documentation/white papers/wp350.pdf, 2014.
[23] R. Mueller, J. Teubner and G. Alonso, Sorting networks on FPGAs, The International Journal on

Very Large Data Bases, vol.21, no.1, pp.1-23, 2012.
[24] J. Ortiz and D. Andrews, A configurable high-throughput linear sorter system, Proc. of IEEE Int.

Symp. on Parallel & Distributed Processing, pp.1-8, 2010.
[25] R. Mueller, Data Stream Processing on Embedded Devices, Ph.D. Thesis, ETH, Zurich, 2010.
[26] V. Sklyarov and I. Skliarova, High-performance implementation of regular and easily scalable sorting

networks on an FPGA, Microprocessors and Microsystems, vol.38, no.5, pp.470-484, 2014.
[27] M. Zuluada, P. Milder and M. Puschel, Computer generation of streaming sorting networks, Proc.

of the 49th Design Automation Conference, pp.1245-1253, 2012.
[28] K. E. Batcher, Sorting networks and their applications, Proc. of AFIPS Spring Joint Computer

Conference, pp.307-314, 1968.
[29] S. W. Aj-Haj Baddar and K. E. Batcher, Designing Sorting Networks: A New Paradigm, Springer,

2011.
[30] S. Lacey and R. Box, A fast, easy sort: A novel enhancement makes a bubble sort into one of the

fastest sorting routines, Byte, vol.16, no.4, pp.315-320, 1991.

HIGH-PERFORMANCE INFORMATION PROCESSING 159

[31] R. D. Chamberlain and N. Ganesan, Sorting on architecturally diverse computer systems, Proc.
of the 3rd International Workshop on High-Performance Reconfigurable Computing Technology and
Applications, pp.39-46, 2009.

[32] P. Kipfer and R. Westermann, GPU Gems, Improved GPU Sorting, http://http.developer.nvidia.
com/GPUGems2/gpugems2 chapter46.html.

[33] C. Grozea, Z. Bankovic and P. Laskov, FPGA vs. multi-core CPUs vs. GPUs, in Facing the Multicore-
Challenge, R. Keller, D. Kramer and J. P. Weiss (eds.), Springer-Verlag, 2010.

[34] B. Cope, P. Y. K. Cheung, W. Luk and L. Howes, Performance comparison of graphics processors
to reconfigurable logic: A case study, IEEE Trans. Computers, vol.59, no.4, pp.433-448, 2010.

[35] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson and C. Cardoso, Hardware/Software
Co-design for Programmable Systems-on-Chip, TUT Press, 2014.

[36] V. Sklyarov, I. Skliarova, J. Silva and A. Sudnitson, Design space exploration in multi-level com-
puting systems, Proc. of the 15th International Conference on Computer Systems and Technologies,
pp.40-47, 2014.

[37] S. Sun, Analysis and Acceleration of Data Mining Algorithms on High Performance Reconfigurable
Computing Platforms, Ph.D. Thesis, Iowa State University, 2011.

[38] S. Sun and J. Zambreno, Design and analysis of a reconfigurable platform for frequent pattern
mining, IEEE Trans. Parallel and Distributed Systems, vol.22, no.9, pp.1497-1505, 2011.

[39] X. Wu, V. Kumar, J. R. Quinlan et al., Top 10 algorithms in data mining, Knowledge and Information
Systems, vol.14, no.1, pp.1-37, 2014.

[40] M. F. Firdhous, Automating legal research through data mining, International Journal of Advanced
Computer Science and Applications, vol.1, no.6, pp.9-16, 2010.

[41] E. Kovacs and I. Ignat, Clustering with prototype entity selection compared with K-means, Journal
of Control Engineering and Applied Informatics, vol.9, no.1, pp.11-18, 2007.

[42] Intel, Corp., Intel R⃝ SSE4 Programming Reference, http://home.ustc.edu.cn/∼shengjie/REFEREN
CE/sse4 instruction set.pdf, 2007.

[43] ARM, Ltd., NEONTM Version: 1.0 Programmer’s Guide, http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.den0018a/index.html, 2013.

[44] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger and W. Lehner, An application-specific in-
struction set for accelerating set-oriented database primitives, Proc. of ACM SIGMOD International
Conference on Management of Data, pp.767-778, 2014.

[45] N. Abdelhamid, Multi-label rules for phishing classification, Applied Computing and Informatics,
vol.11, pp.29-46, 2015.

[46] L. R. Rabiner, R. Marvin, M. R. Sambur and C. E. Schmidt, Applications of a nonlinear smoothing
algorithm to speech processing, IEEE Trans. Acoustics, Speech and Signal Processing, vol.23, no.6,
pp.552-557, 1975.

[47] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.
[48] A. P. Batista and F. G. Jota, Effects of time delay statistical parameters on the most likely regions of

stability in an NCS, Journal of Control Engineering and Applied Informatics, vol.16, no.1, pp.3-11,
2014.

[49] R. Sedgewick, Implementing quicksort programs, Communications of the ACM, vol.21, no.10, pp.847-
857, 1978.

[50] Y. Yuan, Step-sizes for the gradient method, Proc. of the 3rd International Congress of Chinese
Mathematicians, pp.785-796, 2008.

[51] A. Goodman, Perspective emerging topics and challenges for statistical analysis and data mining,
Statistical Analysis and Data Mining, vol.4, pp.3-8, 2011.

[52] S. J. Piestrak, Efficient hamming weight comparators of binary vectors, Electronic Letters, vol.43,
no.11, pp.611-612, 2007.

[53] A. Farmahini-Farahani, H. J. Duwe, M. J. Schulte and K. Compton, Modular design of high-
throughput, low-latency sorting units, IEEE Trans. Computers, vol.62, no.7, pp.1389-1401, 2013.

[54] V. Sklyarov, I. Skliarova, A. Rjabov and A. Sudnitson, Zynq-based system for extracting sorted
subsets from large data sets, Journal of Microelectronics, Electronic Components and Materials,
vol.45, no.2, pp.142-152, 2015.

[55] V. Sklyarov, I. Skliarova, A. Rjabov and A. Sudnitson, Computing sorted subsets for data pro-
cessing in communicating software/hardware control systems, International Journal of Computers
Communications & Control, vol.11, no.1, pp.126-141, 2016.

[56] Xilinx, Inc., AXI Central Direct Memory Access v4.1, http://www.xilinx.com/support/documentati
on/ip documentation/axi cdma/v4 1/pg034-axi-cdma.pdf, 2015.

160 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

[57] Xilinx, Inc., LogiCORE IP AXI Bridge for PCI Express v1.06, http://www.xilinx.com/support/
documentation/ip documentation/axi pcie/v2 5/pg055-axi-bridgepcie.pdf, 2012.

[58] Xilinx, Inc., PCI Express Endpoint-DMA Initiator Subsystem, http://www.xilinx.com/support/doc
umentation/application notes/xapp1171-pcie-central-dma-subsystem.pdf, 2013.

[59] J. Corbet, A. Rubini and G. Kroah-Hartman, Linux Device Drivers, http://lwn.net/Kernel/LDD3/.

