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Abstract. A novel approach to robust controller design with hard input constraints is
presented. The proposed robust controller design procedure is based on the robust stability
condition developed using Affine or Parameter-Dependent Quadratic Stability approach.
The obtained feasible design procedures are in the form of BMI or LMI. The obtained
design results and their properties are illustrated in simulation examples.
Keywords: Robust controller, Affine, Parameter-dependent Lyapunov function, Hard
input constraints

1. Introduction. All control actuation devices are subject to magnitude and/or rate
limits and this leads to degradation of the performance and even instability of closed
loop control systems. Hard input constraints belong to the very important task in the
controller design. A chronological bibliography on saturating actuators can be found in
[2,7]. Necessary and sufficient conditions for controllability of linear systems subject to
input/state constraints are given in [5]. Robust stabilization of uncertain systems subject
to input constraints is considered in [6,14]. A piecewise linear control ensuring the input
constraints is parameterized by algebraic Riccati equation. Youla parametrization of un-
certain plant and stabilizing controllers which guarantee prescribed hard bounds on the
control signal can be found in [9]. The use of a two stage IMC anti-windup design for
stable plant and input constraints is described at [1]. The invariant set and an algorithm
approach similar to Soft Variable Structure Control ensuring soft input constraints for
the model predictive plant control systems are described by [15]. In the papers by [10,11]
deal with the design of linear systems with saturating actuators, where the actuator lim-
itations have to be incorporated into control design. The semiglobal approach includes
stabilization, input additive disturbance rejection, and robust stabilization. In the book
by [12] methods are proposed and algorithms are designed on the basis of the state space
approach to overcome the effects of actuator saturation ensuring the global stability of
closed loop systems. Book by [13] is devoted to these directions: first, anti-windup strate-
gies, a second model predictive control with constraints and finally development of a
stability and stabilization method for constrained systems. The paper [16] investigated
the problem of decentralized robust stabilization of a class of uncertain nonlinear systems
with input saturation. Robust constrained control for MIMO nonlinear systems can be
found in [3].
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The above short survey implies that in the field of robust controller design with input
constraints there are many different approaches. The above observation motivated us to
study the following research problem which has not been sufficiently solved yet. Design
the robust controller with hard input constraints which will guarantee:

• stability and robustness properties of the closed loop system when the uncertain
plant parameters Π ∈ Ω lie in the given polytopic (convex) uncertainty box;

• guaranteed cost (performance) for the closed loop system for all Π ∈ Ω;
• Affine or Parameter-Dependent Quadratic Stability;
• the BMI or LMI design procedure.

In this paper, we provide, to the authors’ best knowledge, an alternative novel approach
to the robust controller design with hard input constraints. The proposed uncertainty
model, introduced in Section 2, is used to formulate a robust control problem with hard
input constraints. The main results are presented in Section 3. The design procedure
is based on the new developed robust stability condition for the hard input constraints
controller and numerical examples in Section 4 illustrate the effectiveness of the proposed
approaches. Some conclusions are made in Section 5.

2. Problem Formulation and Preliminaries. This paper is concerned with the class
of uncertain linear systems that can be described as

ẋ =

(
A0 +

p∑
i=1

Aiθi

)
x +

(
B0 +

p∑
i=1

Biθi

)
u

y = Cx

(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rl are the state, control input and controlled output,
respectively; matrices Ai, Bi, i = 0, 1, . . . , p are constants with appropriate dimensions;
θ = [θ1, . . . , θp] is a vector of uncertain and possible time varying real parameters satisfying

θ ∈
⟨
θ θ

⟩
∈ Ω, θ̇ ∈

⟨
θ̇ θ̇

⟩
∈ Ωt which belong to the known boundaries.

There are two possibilities for θ parameter changes:

• parameter θ is unknown but time varying,
• parameter θ is unknown and constant.

For the first case the modified affine quadratic stability will be adapted to obtain the
closed loop stability conditions with input constraints and for the second case the modified
parameter dependent quadratic stability will be used.

For the class of uncertain systems (1) the following problem is studied in this paper.
Design a robust static output feedback controller with control algorithm

u = F (θ0)y = F (θ0)Cx (2)

with hard constraints |uj| ≤ uMj, j = 1, 2, . . . , m such that for the closed-loop system
(3) the designed controller guarantees robust affine or parameter dependent quadratic
stability and guaranteed cost with respect to the performance index (4)

ẋ = (A(θ) + B(θ)F (θ0)C)x = Acx (3)

where F (θ0) = Fθ0, θ0 = diag{θ0j}, j = 1, 2, . . . ,m,
[
θ0 ∈

⟨
θ0 θ0

⟩
, θ̇0 ∈

⟨
θ̇0 θ̇0

⟩]
∈ Φ

is known time varying parameter which serve for ensure the hard input constraints. To
assess the performance quality, the following performance index is associated with system
(1)

J =

∫ ∞

0

(
xT Qx + uT Ru + ẋT Sẋ

)
dt =

∫ ∞

0

J(t)dt (4)
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The respective notion of guaranteed cost is given in the next definition.

Definition 2.1. Consider system (1) and controller (2). If there exist a control law u∗ and
a positive scalar J∗ such that the respective closed-loop system (3) is stable and the value
of the closed-loop cost function (4) satisfies J ≤ J∗, then J∗ is said to be the guaranteed
cost and u∗ is said to be the guaranteed cost control law for system (1).

Recall the well known result from LQ theory which will be used below to prove one of
the main results.

Lemma 2.1. [8] Consider the system (1) with control algorithm (2). Control algorithm
(2) is the guaranteed cost control law for the closed-loop system (3) if and only if there

exists a Lyapunov function V (θ) such that for all θ ∈ Ω, θ̇ ∈ Ωt and θ0, θ̇0, the following
condition holds

Be(θ) =

{
dV (θ)

dt
+ J(t)

}
= −εxT x ε → 0 ε ≥ 0 (5)

Uncertain system (1) with control algorithm (2) conforming to Lemma 2.1 is called
robust stable with guaranteed cost. Note that for concrete structure of V (θ) “if and only
if” may to be decreased to “if”.

3. Main Results.

3.1. Affine Quadratic Stability. This subsection formulates the theoretical approach
to the robust static output feedback controller design for uncertain system (1) which
ensures closed-loop system affine quadratic-stability and guaranteed cost (4), for all un-
certain plant parameters Π ∈ Ω and hard input constraints.

Definition 3.1. [4] The linear time varying system (3) is affine quadratically stable if
there exist p + 2 symmetric matrices P, P0, P1, . . . , Pp such that

P (θ) = P + P0θ0 +

p∑
i=1

Piθi > 0 (6)

dV (θ)

dt
= xT

(
AT

c P (θ) + P (θ)Ac + P0θ̇0 +

p∑
i=1

Piθ̇i

)
x ≤ 0 (7)

for all θ ∈ Ω, θ̇ ∈ Ωt,
(
θ0, θ̇0

)
∈ Φ.

Then for the closed loop system, Lyapunov function holds

V (θ) = xT P (θ)x

Equation (7) can be rewritten as follows

dV (θ)

dt
=
[

ẋT xT
] [ 0 P (θ)

P (θ) P
(
θ̇
) ][ ẋ

x

]
(8)

P
(
θ̇
)

= P0θ̇0 +
∑p

i=1 Piθ̇i.

To isolate two matrices P (θ) and Ac using auxiliary matrices N1, N2 ∈ Rn×n from (3)
we obtain

(2N1ẋ + 2N2x)T (ẋ − Acx) = 0

or [
ẋT xT

] [ NT
1 + N1 −NT

1 Ac + N2

−AT
c N1 + NT

2 −NT
2 Ac − AT

c N2

] [
ẋ
x

]
= 0 (9)



164 V. VESELÝ AND A. ILKA

Substitute control algorithm (2) to performance (4)

J(t) =
[

ẋT xT
] [ S 0

0 Q + CT F T RFCθ2
0

] [
ẋ
x

]
(10)

Substituting (8), (9) and (10) to (5) one obtains

Be =
[

ẋT xT
]
W
[

ẋT xT
]T ≤ 0 (11)

where

W = W01 + W02θ0 + W03θ
2
0 +

p∑
i=1

(Wi1 + Wi2θ0)θi (12)

W01 =

[
NT

1 + N1 + S −NT
1 A0 + N2 + P

∗ −NT
2 A0 − AT

0 N2 + Q + P
(
θ̇
) ]

W02 =

[
0 −NT

1 B0FC + P0

∗ −NT
2 B0FC − (B0FC)T N2

]
W03 =

[
0 0
0 CT F T RFC

]
Wi1 =

[
0 −NT

1 Ai + Pi

Pi − AT
i N1 −NT

2 Ai − AT
i N2

]

Wi2 =

[
0 −NT

1 BiFC
−(BiFC)T N1 −NT

2 BiFC − (BiFC)T N2

]
i = 1, 2, . . . , N .

The first main results for design of robust controller which ensure the Affine Quadratic
Stability with input constraints are summarized in the next theorem.

Theorem 3.1. Consider the uncertain systems governed by (1) with robust control algo-
rithm (2) and hard input constraints |uj| ≤ uMj, j = 1, 2, . . . , m. Closed loop system (3)
is robust affine quadratically stable with guaranteed cost if there exist auxiliary matrices
N1, N2, p + 2 symmetric matrices P, P0, P1, . . . , Pp and output feedback gain matrix F
such that inequality

W ≤ 0 (13)

holds for all θ ∈ Ω, θ̇ ∈ Ωt and
(
θ0, θ̇0

)
∈ Φ.

Variable θ0 will guarantee the hard input constraints |uj| ≤ uMj, j = 1, 2, . . . , m if it is
calculated as

θ0cj =

{
1 if |uj| < uMj, for all j = 1, 2, . . . ,m

uMj

maxj |uj|
if for some |uj| > uMj, j = 1, 2, . . . , m (14)

To ensure that rate of θ0 change within θ̇0 ∈
⟨
θ̇0, θ̇0

⟩
and to obtain the real value of θ0

it is recommended to use a first order filter with transfer function θ0j =
θ0cj(

θ̇0j

)−1
s+1

.

Proof: The proof of sufficient conditions are based on Equations (6), (8), (9) and (10).
Because matrix W03 ≥ 0, matrix W with respect to θ0, θi, i = 1, 2, . . . , p is convex,

matrix W is negative definite (semidefinite) if and only if it takes negative definite (semi-
definite) at the corners of θ0 and θ. For robust stability analysis (13) reduces to LMI; for
robust control synthesis we obtain BMI.
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3.2. Parameter Dependent Quadratic Stability. This subsection formulates the the-
oretical approach to the robust static output feedback controller design for system (1)
which ensures closed loop system parameter dependent quadratic stability and guaran-
teed cost (4), for all uncertain plant parameters Π ∈ Ω and hard input constraints. When
one substitutes to Equation (1) maximal and minimal value of θ a polytopic system model
with N = 2p vertices is obtained in the form.

{(A1v, B1v, C), (A2v, B2v, C), . . . , (ANv, BNv, C)}, N = 2p (15)

or

{A(α), B(α)} =
N∑

i=1

(Aiv, Biv)αi,

N∑
i=1

αi = 1, αi ≥ 0

N∑
i=1

α̇i = 0

where αi ∈ ⟨0 1⟩, i = 1, 2, . . . , N is uncertain constant or time varying parameter. The
parameter dependent Lyapunov function is given as follows

V (α) = xT P (α)x, P (α) = P0θ0 +
N∑

i=1

Pivαi (16)

From (16) and (8) one obtains the time derivative of the Lyapunov function for polytopic
systems as follows

dV (α)

dt
=
[

ẋT xT
] [ 0 P0θ0 +

∑N
i=1 Pivαi

P0θ0 +
∑N

i=1 Pivαi P0θ̇0 +
∑N

i=1 Pivα̇i

] [
ẋ
x

]
(17)

The closed-loop system can be obtained from (15) and (2)

ẋ = (Aiv + BivFθ0C)x = Acix i = 1, 2, . . . , N (18)

Using the same procedure as for affine quadratic stability (9), (10) and (11) one obtains
the closed loop system robust parameter-dependent quadratic stability conditions with
guaranteed cost in the form

Bev =
[

ẋT xT
]
Wv

[
ẋT xT

]T ≤ 0 (19)

where

Wv =

[
NT

1 + N1 + S −NT
1 Ac(α) + N2 + P (α)

∗ φ(α, θ0)

]
where

φ(α, θ0) = −NT
2 Ac(α) − Ac(α)T N2 + Q + P0θ̇0 +

N∑
i=1

Pivα̇i + CT F T RFCθ2
0

Inequality (19) is linear with respect to uncertain parameter αi, and inequality (19)
can be split to N inequalities as

Wi = Wiq + Wilθ0 + Wikθ
2
0 ≤ 0, i = 1, 2, . . . , N (20)

where

Wiq =

[
NT

1 + N1 + S −NT
1 Aiv + N2 + Piv

∗ φi

]
Wil =

[
0 −NT

1 BivFC + P0

P0 − (BivFC)T N1 −NT
2 BivFC − (BivFC)T N2

]



166 V. VESELÝ AND A. ILKA

Wik =

[
0 0
0 CT F T RFC

]
φi = −NT

2 Aiv − AT
ivN2 + Q + P θ̇0 +

N∑
i=1

Pivα̇i

Robust stability conditions are summarized in the following theorem.

Theorem 3.2. Consider the uncertain linear system (1) or (15). The closed loop system
(18) with control algorithm (2) is parameter dependent quadratically stable with input
constraints |uj| ≤ uMj, j = 1, 2, . . . ,m if there exist matrices N1, N2 ∈ Rn×n, N + 1

symmetric matrices P0, P1v, . . . , PNv such that P0θ0+
∑N

i=1 Pivαi ≥ 0,
∑N

i=1 αi = 1, αi ≥ 0,

θ0 ∈
⟨
θ0 θ0

⟩
, θ̇0 ∈

⟨
θ̇0 θ̇0

⟩
, symmetric positive definite matrices Q, R, S and output

feedback gain matrix F such that

Wi = Wiq + Wilθ0 + Wikθ
2
0 ≤ 0 (21)

for i = 1, 2, . . . , N , θ0 = θ0 and θ0 = θ0. Variable θ0 is calculated as in (14).

Because matrix Wik ≥ 0, matrix Wi with respect to θ0 is convex, matrix Wi is negative
definite (semidefinite) if and only if it takes negative definite (semidefinite) at the corners
of θ0 and N vertices of polytopic system. For robust stability analysis (21) reduces to
LMI; for robust control synthesis we obtain BMI.

Proof: The proof of Theorem sufficient conditions are based on the Equations (10),
(15), (17) and (18).

4. Examples. In order to prove applicability of the proposed robust controller design
procedure with input constraints, two examples are presented. The first example is simu-
lation of randomly generated system near to the boundary of stability and the second one
is slightly modified first example to make the system unstable. Two control algorithms
are calculated for each of the two examples: for the first algorithm the affine quadratic
stability approach is used and for the second one the parameter dependent quadratic sta-
bility. In the both cases the problem is to design two robust decentralized PI controllers
which ensure the affine (parameter dependent) quadratic stability and guaranteed cost
with input constraints. A level of hard input constraints is equal to 200 percent value
of nominal input variable. The rate of θ0 changes need to be more than 3. The states of
third order system due to PI controller design need to be increased to five states.

Example 4.1. Parameters of randomly generated example (1) are given as follows:

A0 =


−1.1 1 .5 0 0
0.4 −0.435 0.2 0 0
0.3 .25 −1.85 0 0
1 0 0 0 0
0 0 1 0 0

 B0 =


0.1 1
1 .1
0 .1
0 0
0 0


with eigenvalues Eig(A0) = 0; 0; 0.0301;−2.0152;−1.4.

A1 =


−0.2 0 0.2 0 0
0.028 0 0.02 0 0
0.03 0.075 −0.05 0 0
0 0 0 0 0
0 0 0 0 0

 B1 =


0.02 0.2
0.05 0.03
0.025 0.01

0 0
0 0
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A2 =


0.1 0.05 0.07 0 0
0.1 0 0.03 0 0

0.025 0.1 −0.1 0 0
0 0 0 0 0
0 0 0 0 0

 B2 =


0.035 0.03
0.01 0.2
0.02 0.05
0 0
0 0


and output matrix C

C =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


For the parameters: performance Q = qI, q = 0.01, R = rIr, r = 1, S = sI, s = 0.001;

rates of uncertain parameters changes θ̇i = 0, α̇i = 0; input constraints θ0 ∈ ⟨.5, 1⟩,
θ̇0 ∈ ⟨−8, 8⟩; Lyapunov matrices constraints P ∈ ⟨0.1 ∗ I, ro ∗ I⟩, ro = 1000; uncertainties
θi ∈ ⟨−1, 1⟩, i = 1, 2 the following two robust PI controllers are obtained
AQS

R11(s) = −6.0907 − 1.2702

s
; R12(s) = −1.4507 +

0.9607

s
PDQS

R11(s) = −5.0674 − 1.3597

s
; R12(s) = −1.7537 +

1.1603

s
For simulation we have used the nominal plant model and robust controller designed with

AQS. Simulation results (Figures 1-5) confirm, that Theorem 3.1 holds. Figures 1 and 2
show the simulation results without input constraints and Figures 3-5 show simulation
results with hard input constraints |u1| ≤ 4 and |u2| ≤ 6 which proves that Theorem 3.1
holds and guarantees hard input constraints. Figure 5 shows the calculated parameters θ01

and θ02 which change the corresponding controller gains for guarantee of the hard input
constraints.

Figure 1. Simulations results w(t), y(t) without input constraints

Figure 2. Controller output u(t) without input constraints
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Figure 3. Simulations results w(t), y(t) with input constraints

Figure 4. Controller output u(t) with input constraints

Figure 5. Calculated parameters θ(t)

Example 4.2. To obtain the system parameters for the second example we change the
following entries A0(2, 2) = −0.135, A0(3, 3) = −0.85 in matrix A0 (first example). The
obtained eigenvalues of matrix A0 for second example are Eig(A0) = 0; 0; 0.3023;−0.8698;
−1.5175. All other system parameters are the same as for the first example, except for
θ0 rates constraints θ̇0 ∈ ⟨−3, 3⟩. Parameters of two designed robust controllers are as
follows
AQS

R21(s) = −5.1684 − 0.5782

s
; R22(s) = −0.6081 +

0.6987

s

PDQS

R21(s) = −4.587 − 0.5175

s
; R22(s) = −0.7636 +

0.6809

s

For simulation we have used the plant model with θ1 = 1, θ2 = −1 and the robust
controller designed with PDQS. Simulation results (Figures 6-10) confirm, that Theorem
3.2 holds. Figures 6 and 7 show the simulation results without input constraints and
Figures 8-10 show simulation results with input constraints |u1| ≤ 2 and |u2| ≤ 2 which
proves that Theorem 3.2 holds and guarantees hard input constraints. Figure 10 shows
the calculated scheduled parameters θ1 and θ2.
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Figure 6. Simulations results w(t), y(t) without input constraints

Figure 7. Controller output u(t) without input constraints

Figure 8. Simulations results w(t), y(t) with input constraints

Figure 9. Controller output u(t) with input constraints

Figure 10. Calculated scheduled parameters θ(t)
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5. Conclusions. A novel robust controller design approach with hard input constraints
has been proposed. The obtained results, illustrated on the two examples, show the appli-
cability of the designed robust controller and its ability to cope with model uncertainties.
Several forms of parameter dependent/affine quadratic Lyapunov functions are presented
and tested by simulations. The proposed robust controller design approach with parameter
dependent/affine Lyapunov function consider quick parameter changes to ensure the hard
input constraints. Simulation results prove the potential ability of the designed closed-loop
to withstand also these changes. The obtained robust controller design procedures are in
the form of BMI and LMI approaches. The proposed approach contributes to the design
tools for robust controllers which guarantee the affine/parameter dependent quadratic
stability, guaranteed performance and hard input constraints.
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of the reviewers, which have improved the presentation.
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