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Abstract. This paper presents a new design method for a self-repairing PI/PID control
system against unknown sensor failures. This active fault tolerant control system can
automatically replace the failed sensor with the healthy backup if the failure occurs. One
of the advantages is that sensor failures of various types can be detected with the integral
controller (integrator) and the switching term, and so the structure of the fault detector
becomes quite simple independently of plant models. Thus, the system has high robustness
with respect to both failures and changes in plant parameters. Furthermore, in order to
reduce an influence of the injected switching term on the control performance, the PI
and PID controllers are designed based on high-gain feedback. This paper also shows a
theoretical analysis of the control performance and explores a numerical simulation to
confirm the effectiveness.
Keywords: Self-repairing, Sensor failure, PID control, High-gain feedback

1. Introduction. A wrong signal measured by a faulty sensor, often cuts a feedback-loop
to destabilize a control system. Hence, sensor failure is one of the most fatal and critical
issues on system stability and safety. As a remedy, based on dynamic redundancy, active
fault-tolerant control (AFTC) has been considered that automatically replaces the failed
sensor with the healthy backup if failure occurs [1]. In general, this kind of AFTC exploits
a fault detector. Unfortunately, many existing deterministic design methods for detectors,
require a priori information about the plants to find failures exactly. However, this means
that those AFTCs cannot work in the presence of variation in plant parameters.

Recently, in the framework of AFTC based on dynamic redundancy, our previous works
[4, 5, 6], have focused on feedback-loop-cutting by sensor failure, and a simple detection
filter, whose structure does not depend on the mathematical model of the plant, has
been developed. An unstable filter is utilized as the detection filter, but the controller is
designed to stabilize the feedback system including both the plant and the filter. If the
sensor fails, then the feedback-loop opens and the output of the filter behaves unstably.
Therefore, monitoring the detection filter can make it possible to find a sensor failure.
After the detection, the feedback-loop is repaired by replacing the sensors, and the control
system can recover its stability and performance. So, we call this AFTC system as the
self-repairing control system (SRCS). The feature is that no a priori information about the
plant is required to design the preceding detection filter for the SRCS. Thus, exact fault
detection can be robustly achieved regardless of unknown plant parameters. However,
failures to be found by the detection filter, are limited to stuck and/or slowly floating types
only [6]. From a practical viewpoint, a class of detectable failures should be expanded.

Meanwhile, it is well-known that PI/PID control is widely used in various industrial
fields, and is applied to more than 90 percent of practical systems, e.g., chemical processes,
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mechanical systems [2, 3]. Despite its simple control structure, reasonable performance
can be obtained easily. This is the reason why PI/PID control is common and popular.
However, from social demands on safety and reliability, sensor failure in PI/PID control
is still an open problem to be solved. Fortunately, according to [4], an integrator can be
exploited as a detection filter for the SRCS.
Then, in this paper, a new design method for the self-repairing PI control system is

presented against sensor failures, that utilizes the I (integral) controller for detection.
In order to expand a class of detectable failures, instead of the test signal used in [4],
a switching signal is introduced to the I controller, and it also contributes early fault
detection. Because the switching signal sometimes degrades the control performance, the
PI controller is designed based on the concept of high-gain feedback [7, 8] so as to make
an influence from the switching signal small. Furthermore, it is possible to extend to PID
control by adding the D (derivative) controller to the self-repairing PI control system.
Thus, this paper presents the concrete design methods for the self-repairing PI and

PID control systems, and also shows the theoretical analysis of their self-repairing and
control performances. Moreover, several numerical simulations are explored to confirm
the effectiveness of the proposed SRCSs.
This paper is organized as follows. Section 2 describes the SRC problem, and Section 3

shows the basic design of the self-repairing PI control system and its theoretical analysis.
In Section 4, the self-repairing PID control system is discussed. Section 5 demonstrates
the numerical examples by the proposed SRCS. Finally, we conclude in Section 6.
Throughout this paper, with x ∈ R we redefine the “sgn” function by

sgn[x] =

{
1 (x ≥ 0)
−1 (x < 0)

The above function is slightly different from the ordinary one.

2. Problem Statement. Consider the following LTI system of the n ∈ I+-th order [7].

ΣP : ẏ = ay + bu+ hTz

z = Fz + gy (1)

where y ∈ R is the actual output, u : R+ → R is the control input, and z ∈ Rn−1 is the
state of the plant. In the form (1), a ∈ R and b ∈ R are constants, and F ∈ R(n−1)×(n−1),
g ∈ Rn−1 and h ∈ Rn−1 are a matrix and vectors respectively. Here, we assume that the
plant ΣP has a minimum-phase characteristic, and the sign of the high-frequency gain is
supposed to be positive, i.e., b > 0.
To measure the output y, the two sensors ♯1 (primary) and ♯2 (backup) are exploited.

Thus, the measured signal yS : R+ → R is given by

yS(t) =

{
y1(t) (t ≤ tD)
y2(t) (t > tD)

(2)

where tD ∈ R+ is a failure detection time, which will be defined later. Each yi ∈ R,
i ∈ {1, 2} is the output of the sensor ♯i. If the sensors are healthy, then we have yi = y.
From (2), if the failure of the primary sensor ♯1 is detected, then the backup ♯2 is activated.
The failure scenario to be considered here, is given as follows.

y1(t) = φ(t), t ≥ tF (3)

where tF ∈ R+ is an unknown failure time, and φ : [tF ,∞) → R is an unknown bounded
function, and we assume that the sign of the function φ will not change after the failure
time, that is,

sgn[y1(t)] = sgn[φ(t)] = sgn[φ(tF )], t ≥ tF (4)
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Figure 1. Block diagram of the self-repairing PI control system

Comparing with the assumptions on φ in [6], we should notice that a wider class of fail-
ures, φ, can be considered here. In the previous works, the condition on the boundedness
of the time derivative φ̇ has been imposed, that can be alleviated in this paper.

The SRC problem is to replace the failed sensor automatically so as to maintain the
control system stability. The following sections will show the concrete design procedures
for the SRCSs, and analyze the performances theoretically.

3. Design of the Self-Repairing PI Control System.

3.1. Basic structure. The PI control input u is designed as follows.

u = kP (−yS + v) (5)

where kP ∈ R+ is the P (proportional) controller parameter. The signal v ∈ R is the
output of the integrator:

v̇ = −kIyS − γsgn [yS] (6)

where kI ∈ R+ is the I controller parameter. The details of kP and kI will be discussed
later. Furthermore, in (6), the switching signal γsgn [yS] is introduced to detect the failure,
and γ ∈ R+ is an arbitrary constant. Larger γ makes it possible to shorten detection time
(see the next subsection).

Here, consider the case when the sensor ♯1 is healthy. In this case, we have yS(t) = y(t),
t ∈ [0, tF ). For analysis, define the new augmented signal ε : R+ → R as

ε ≜ −y + v (7)

Then, the overall control system can be expressed as follows.

ε̇ = −(bkP − a− kI)ε− (kI + a)v − hTz − γsgn[y]

ż = Fz − gε+ gv

v̇ = −kIv + kIε− γsgn[y] (8)

From this result, we obtain the following lemma on the system stability.

Lemma 3.1. For sufficiently large kP and kI , all the signals, y, z and v in the overall
closed control system are bounded on the time period [0, tF ) where the sensor is healthy.
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Proof: On the period, [0, tF ), we consider the following positive function S : R+ → R+:

S =
1

2

{
ε2 + zTPz + v2

}
(9)

where P ∈ R(n−1)×(n−1) is a positive definite matrix satisfying

F TP + PF = −2Q (10)

for arbitrarily given, positive definite, Q ∈ R(n−1)×(n−1). The detail of Q will be deter-
mined later.
From (8), the time derivative of S can be expressed as follows.

Ṡ = − (bkP − a− kI)ε
2 − (kI + a)vε− hTzε− γsgn[y]ε

− zTQz − zTPgε+ zTPgv − kIv
2 + kIεv − γsgn[y]v (11)

Furthermore, we have

Ṡ ≤ −1

2

(
bkP − 3|a| − 2kI − ∥h∥2 − ∥Pg∥2

)︸ ︷︷ ︸
α1

ε2

−1

2
(2λmin[Q]− 3)︸ ︷︷ ︸

α2

∥z∥2 − 1

2

(
kI − |a| − ∥Pg∥2

)︸ ︷︷ ︸
α3

v2

+
γ2

2

(
1

bkP
+

1

kI

)
︸ ︷︷ ︸

β

(12)

Here, we choose Q, kP and kI so that λmin[Q] > 3/2 and

kP >
3|a|+ 2kI + ∥h∥2 + ∥Pg∥2

b
, kI > |a|+ ∥Pg∥2 (13)

Then, all αi are positive. So, we can get

Ṡ ≤ −αS +
γ2β

2
, α = min

{
α1,

α2

λmax[P ]
, α3

}
(14)

which yields

S(t) ≤ S(0) exp(−αt) +
γ2β

2α
, t ∈ [0, tF ) (15)

This means that all the signals are bounded on the time period [0, tF ). ■

Remark 3.1. The PI controller constructed by (5) and (6) can be rewritten in the fol-
lowing well-known form.

u = −kP

{
yS +

1

TI

∫ t

0

(
yS + TIγsgn [yS]

)
dτ

}
where TI ∈ R+ is called as the integral time constant. Comparing with (5), we can find
that TI = 1/kI . Hence, based on high-gain feedback, for sufficiently large kI , the integral
time TI would become a small value.
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Figure 2. The unstable behavior of the absolute value of v for fault detection

3.2. Failure detection. From Lemma 3.1, we can see that if no failure occurs, then
there is a finite constant Γ ∈ R+ so that |v(t)| < Γ, t ∈ [0, tF ) because of boundedness of

v. For example, from (15), a candidate of Γ can be selected as Γ =
√

2S(0) + γ2β/α.
However, if the sensor ♯1 fails, then the I controller (6) can be expressed as

v̇ = −kIφ− γsgn[φ] = −sgn[φ] (kI |φ|+ γ) (16)

Hence, in the case of sgn[φ] = 1, we have v < −γ(t− tF ) + v(tF ) = v̄, and in the case of
sgn[φ] = −1, we have v > γ(t− tF ) + v(tF ) = v̄. In the both cases, a time tC ≥ tF exists
so that |v(t)| > |v̄(t)|, t > tC , and thus |v| tends to infinity as time approaches infinity
because |v̄| diverges. Therefore, as shown in Figure 2, |v| hits the threshold Γ whenever
the sensor ♯1 fails.

Then, taking this unstable behavior of v into consideration, we define the detection
time tD as follows.

tD ≜ min {t| |v(t)| ≥ Γ} (17)

Of course, after the detection time, the boundedness of v can be guaranteed again by
replacing sensors.

3.3. Main results. The control performances of the self-repairing PI control system can
be summarized in the following theorem.

Theorem 3.1. Consider the self-repairing PI control system constructed by (1), (2), (5),
(6) and (17). Then, the control system has the following properties.
(P1) If the sensor ♯1 fails, then the detection time tD exists, and satisfies

tD ≤ tF +
2Γ

γ
(18)

(P2) All the signals, y, z and v are bounded over [0,∞).
(P3) Regarding the output y, for arbitrarily given, small λ ∈ R+ and large γ, there exists
a sufficiently large kP and kI such that

lim sup
t→∞

|y(t)| ≤ λ (19)

Proof: From the discussion on v in the previous subsection, there is a time tB > tF
such that |v̄(tB)| = Γ if the sensor failure (3) occurs as shown in Figure 2. Because
|v(t)| > |v̄(t)|, t > tC , the detection time tD exists so that

tD ≤ tB ≤ tF +
Γ + |v(tF )|

γ
(20)

which means that (P1) is true.
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Next, consider the boundedness of all the signals on the anxious period [tF , tD] where
the failed sensor ♯1 is still activated. On this period, v is bounded because of (17). Hence,
the control input u is also bounded. Furthermore, for bounded u, the plant ΣP does not
have a finite escape time. Therefore, all the signals y, z and v are bounded on [tF , tD].
After the fault detection, i.e., t > tD, the healthy sensor ♯2 is activated. By the same

discussion as Lemma 3.1, all the signals are bounded on the period (tD,∞) where the
sensor ♯2 is healthy. Thus, (P2) is true.

From (7), it follows that |y| ≤ |ε|+ |v| ≤ 2
√
2S. Therefore, from (15), we have

|y(t)| ≤ 2
√
2S(tD) exp(−α(t− tD)) + 2γ

√
β

α
, t ∈ (tD,∞) (21)

which yields

lim sup
t→∞

|y(t)| ≤ 2γ

√
β

α
(22)

From the definitions of αi and β in (12), it is clear that for sufficiently large kP and kI ,

we can get 2γ
√
β/α ≤ λ. Hence, (P3) holds.

Thus, the proof of Theorem 3.1 is completed. ■
From (18) in the property (P1), it is found that the detection time tD can be shortened

arbitrarily by choosing large γ which is the design parameter of the I controller. Even if
larger γ is selected for early detection, from (P3), one can render the output y arbitrarily
small in the sense of convergence to the λ-ball [7, 8].

4. Extension to PID Control. Introducing the D (derivative) control term to (5), we
can construct the PID controller.

u = kP (−yS + v)− kDẏS (23)

where kD ∈ R+ is the D controller parameter.
Now, we consider the case when the sensor ♯1 is healthy. On the time period [0, tF ),

we have yS = y. Regarding the augmented error signal ε defined by (7), it follows that

ε̇ =

(
1

1 + bkD

)
× {− (bkP − a− kI + bkDkI) ε

− (kI + a− bkDkI) v − hTz − (1− bkD) γsgn[y]
}

(24)

From this result, we can have the following lemma.

Lemma 4.1. For sufficiently small kD, sufficiently large kP and kI , all the signals, y, z
and v in the overall closed control system are bounded on the time period [0, tF ) where the
sensor is healthy.

Proof: On the period, [0, tF ), we consider the following positive function S̃ : R+ → R+:

S̃ =
1

2

{
(1 + bkD) ε

2 + zTPz + v2
}

(25)

The time derivative of S̃ can be calculated as follows.

˙̃S = − (bkP − a− kI + bkDkI)ε
2

− (kI + a− bkDkI)vε− hTzε− (1− bkD) γsgn[y]ε

− zTQz − zTPgε+ zTPgv − kIv
2 + kIεv − γsgn[y]v (26)
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Furthermore, we can evaluate the time derivative of S̃ as

˙̃S ≤ − 1

2

(
bkP + bkDkI − 3|a| − 2kI − ∥h∥2 − ∥Pg∥2

)︸ ︷︷ ︸
α̃1

ε2

− 1

2
(2λmin[Q]− 3)︸ ︷︷ ︸

α̃2

∥z∥2 − 1

2

{
(1− bkD)kI − |a| − ∥Pg∥2

}︸ ︷︷ ︸
α̃3

v2

+
γ2

2

(
1

bkP
+ bkD +

1

kI

)
︸ ︷︷ ︸

β̃

(27)

Here, we choose Q, kD, kP and kI so that λmin[Q] > 3/2 and

kD <
1

b
, kP >

3|a|+ 2kI + ∥h∥2 + ∥Pg∥2

b
, kI >

|a|+ ∥Pg∥2

1− bkD
(28)

Then, all α̃i are positive. So, we can get

˙̃S ≤ −α̃S̃ +
γ2β̃

2
, α̃ = min

{
α̃1,

α̃2

λmax[P ]
, α̃3

}
(29)

which yields

S̃(t) ≤ S̃(0) exp(−α̃t) +
γ2β̃

2α̃
, t ∈ [0, tF ) (30)

This means that all the signals are bounded on the time period [0, tF ). ■
From Lemma 4.1, there is a finite constant Γ̃ ∈ R+ so that |v(t)| < Γ̃, t ∈ [0, tF ).

However, if the sensor ♯1 fails, then |v| tends to infinity because of the integral storage
effect of (6). Hence, we define the detection time tD as follows.

tD ≜ min
{
t| |v(t)| ≥ Γ̃

}
(31)

Thus, the following theorem about the self-repairing PID control system can be derived.

Theorem 4.1. Construct the self-repairing PID control system constructed by (1), (2),
(6), (23) and (31). Then, the control system has the following properties.
(P4) If the sensor ♯1 fails, then the detection time tD exists, and satisfies

tD ≤ tF +
2Γ̃

γ
(32)

(P5) All the signals, y, z and v are bounded over [0,∞).
(P6) Regarding the output y, for arbitrarily given, small λ ∈ R+ and large γ, there exists
a sufficiently large kP , kI and small kD such that

lim sup
t→∞

|y(t)| ≤ λ (33)

Proof: From the same proofs of (P1) and (P2) in Theorem 3.1, it is clear that (P4)
and (P5) are true.
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From (7) and (30), it follows that

|y(t)| ≤ |ε(t)|+ |v(t)|

≤
(
1 +

1√
1 + bkD

)√
2S(t)

≤
(
1 +

1√
1 + bkD

)√
2S(tD) exp(−α̃(t− tD)) + γ

√
β̃

α̃

 , t ∈ (tD,∞) (34)

which yields

lim sup
t→∞

|y(t)| ≤ γ

(
1 +

1√
1 + bkD

)√
β̃

α̃
(35)

From the definitions of α̃i and β̃ in (27), for sufficiently large kP , kI and small kD, we can

get γ
(
1 + 1/

√
1 + bkD

)√
β̃/α̃ ≤ λ. Hence, (P6) holds.

Thus, the proof of Theorem 4.1 is completed. ■
Remark 4.1. The PID controller constructed by (6) and (23) can be rewritten as follows.

u = −kP

{
yS +

1

TI

∫ t

0

(
yS + TIγsgn [yS]

)
dτ + TDẏS

}
where TD ∈ R+ is called as the derivative time constant. Comparing with (5), we can
verify that TD = kD/kP . Hence, based on high-gain feedback, for sufficiently large kP and
small kD, the derivative time TD would become an extremely small value.

5. Numerical Examples. In this section, to confirm the effectiveness of the proposed
SRCS, several numerical simulations are explored.
Consider the following unstable second order system:

ΣP : ẏ = y + u+ z, y(0) = 1

ż = −z + y, z(0) = −0.5 (36)

Suppose that the failure time tF is set as

tF = 25.0 [s]

and the function φ is supposed to be

φ(t) = y1(tF ) + 0.01 cos t, t ≥ tF

Of course, these are unknown.
For this plant ΣP with the faulty sensor, we construct the controller. The following are

the design parameters for the PI/PID controller and fault detection.

kP = 3, kI = 1, kD = 0.003, γ = 1, Γ = 2

These parameters are selected by trial and error in the preliminary simulation.
From Theorem 3.1 (and also 4.1), the maximum detection time can be estimated as

follows.

tD ≤ tF +
2Γ

γ
= 29.0 [s]

The simulation results are shown in Figures 3 and 4. In Figure 3, the time responses of
the actual outputs y (top) and the states z (bottom) are shown. The dashed lines are the
results by the PI controller, and the solid lines are the ones by the PID controller. Figure 4
shows the time responses of the absolute value of the monitored signal v with the threshold
Γ. The dashed line indicates the result by the PI controller, and the solid line represents
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Figure 3. Simulation results: the outputs y (top) and the states z (bottom)
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Figure 4. Simulation results: the absolute values of v

the one by the PID controller. In both cases, the signal v hits the threshold Γ exactly.
From these results, it can be shown that the unstable plant (36) can be stabilized well
in spite of the existence of the sensor failure. Also, the failed sensor can be successfully
detected and replaced after the failure.

From Figure 3, the control performance can be remarkably improved by the introduction
of the D control term. However, in Figure 4, comparing the detection times by PI and
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PID controllers, it can be found that the use of the PI controller makes the fault detection
much earlier than the PID controller; in the case by the PID controller, tD ≃ 27.6 [s],
and in the case by the PI controller, tD ≃ 26.8 [s]. Fortunately, those detection times are
much earlier than the above-estimated maximum time 29.0 [s].

6. Concluding Remarks. This paper has shown the new design method for the self-
repairing PI/PID control against sensor failures, and the theoretical analysis and the
numerical simulation are performed to show the control performance and the effectiveness.
Fundamentally, in this method, based on the high-gain feedback [7, 8], the system can

be stabilized, and also the influence from the switching signal γsgn [yS] can be rendered
small. This is the reason why the plant ΣP has to fulfill the high-gain feedback stabilization
conditions (see Section 2). Regarding the restriction on the relative degree, the well-known
backstepping [9] might solve this issue because this design strategy has treated nonlinear
systems with high relative degree. In addition, the introduction of parallel feedforward
compensator [10, 11] can alleviate not only the condition of the relative degree but also
the requirement of the minimum-phase property because the compensator can make the
augmented plant with the desired zeros. Thus, the proposed SRCS is expected to be
applied to a wider class of the plants with sensor failures.
Fortunately, if one already has had a stable PI/PID control system, then it is available

instead of (6) and (5) or (23). However, in such a case, the property (P3) does not hold,
and hence small γ should be chosen so as to avoid degradation of the control performance
due to the injection of the switching signal.
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