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ABSTRACT. This paper aims to solve a class of quadratic programming with linear com-
plementarity constraints (QPLCCs). We transit it to an equivalent quadratic program-
ming with nonsmooth equation constraints, and partially penalize the problem by set-
ting the monsmooth equation constraints as the penalty term. And then, we apply the
magorization approach to solve the penalty form. We prove that this partially penalty
method is exact. At last, by solving a sequence of convex semismooth quadratic optimiza-
tion problems with linear constraints, the QPLCC is solved and the convergence analysis
is obtained. Numerical results are displayed at the ending of this paper.

Keywords: Quadratic program, Linear complementarity constraints, Majorization me-
thod, Penalty method

1. Introduction. Mathematical programming with complementarity constraints (MP-
CC) is a special case of mathematical programming with equilibrium constraints (MPEC),
which plays a very important role in many fields such as inverse problem, engineering de-
sign, economic equilibria, transplantation science, multilevel game, and mathematical pro-
gramming itself (for more applications of MPCC or MPEC, one can refer to [1, 8, 12, 30],
etc.). As a special case of MPCCs, quadratic programming with linear complementarity
constraints has many applications in data estimation and some inverse linear complemen-
tarity problems [19, 20]. In this paper, we consider a class of quadratic programming with
linear complementarity constraints which can be specified as

mingey f(z):= 32" Gr+ 'z 1)
s.t. 0<Ax+al Bx+0b>0,

where c € R”, a € R, b e R, G € ST, A € §™*", B € ™" are given, X is a convex
set in RN™, such as X = {z : h(z) < 0,g(x) = 0}. Many important classes of QPLCCs can
be cast into Problem (1), see [7, 13, 21].

During the last three decades, tremendous progress has been achieved on algorithm to
MPCCs, and these methods can be used to solve Problem (1). For example, interior-
point methods (see, e.g., [14, 15]), matrix splitting methods (see, e.g., [16]) and active-set
methods (see, e.g., [17, 18]), can be applied to solve MPCCs. Meanwhile, there are
some excellent results with Problem (1): Fukushima et al. [7] presented a sequential
quadratic programming algorithm for a mathematical program with a special form of
linear complementarity constraints by using FB-function; Chen and Ye [13] considered
a class of quadratic programs with linear complementary constraints by investigating
the stationary conditions and proposed a Newton-like method; recently, Bai et al. [21]
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proposed a two-stage approach to solve a more general situation of QPLCCs based on
the Benders decomposition. Although so many methods can be used to solve Problem
(1), they are not directed towards Problem (1). Majorization method, which was first
introduced by de Leeuw [2, 3] and Heiser [4], is an efficient approach in solving many
optimization problems [5, 10]. Majorized penalty approach has been successfully applied
in calibrating rank constrained correlation matrix problem [9] and inverse linear second-
order cone programming problems [29]. Due to its efficiency in solving the optimization
problems, we will apply majorized penalty to solve Problem (1).

In our study, we transit the linear complementarity constraints in (1) to nonsmooth
equations constraints like that in [13]. Then, we consider the penalized version of the
problem by regarding the nonsmooth equation constraint as the penalty term and then
apply the majorization method to the penalized problem by solving a sequence of semis-
mooth optimization problems. The exactness of the penalty and the convergence of the
majorized penalty approach will be analyzed. There are two main advantages in our
method. On one hand, when we apply penalty method, Problem (1) is equivalent to
Problem (4) which demonstrates the exactness of the penalty (see Proposition 2.1). On
the other hand, when we apply the majorization method to solving Problem (4), the
penalty term brings small error (see the algorithm A A(p) and Table 1). The numerical
results demonstrate the efficiency of our approach.

For a matrix Z € R™" Z; (1 < i < m) denotes the i-th column of Z, and, Z}
(1 <4 < m) denotes the i-th column of Z”. For a vector 2 € R™, 2; denotes the i-th
entry. [1:m] is a set including the integers 1,2,... m.

The rest of this paper is organized as follows. In Section 2, we transmit the Problem
(1) to an equivalent form. We propose a majorized penalty approach for solving it and
analyze the convergent properties. In Section 3, we report the computational experiments
on quadric objective function with linear constraints to test the efficiency of our approach,
especially, an inverse linear programming to be solved. The final conclusions are made in
Section 4.

2. The Majorized Penalty Approach. In this section, we propose the so called ma-
jorized penalty approach to solve Problem (1). For this purpose, we first consider the
penalized version to Problem (1) in Subsection 2.1 and then apply majorized method to
solving the penalized problem and analyzing the convergency in Subsection 2.2.

2.1. Exact penalty method. Denote HML(') the metric projector over R’?. For u,v €
R, it is obvious that
u; — max{u; — v;, 0} >0
and then
ulv & u=lpe(u—v)e Y0 u— " max{y; —v;,0} = 0. (2)

Defining
p(x) = Z (" Al + a;) — Zmax {z"(A] = B) + (a; — b;), 0},
i=1 i=1
then, Problem (1) can be written as a slightly different form as follows:
mingey f(x)
s.t. Ar+a >0,
Bx+b >0,
p(z) = 0.
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The constraints of nonsmooth equation in (3) appeared in reaction diffusion problems
[22], thin stretched membranes partially covered with water [23] and other fields (for
more applications of the constraints of nonsmooth equation as in (3), one can see [13] and
its references).

For simplicity, we denote

Q={reX:Ar+a>0,Bx+b>0},
and
={reX :Ar+a>0,Bx+b>0,p(x) =0}
And we define
0,(2) : = f(z) + pp().
Then p(z) > 0 for z € Q, and Qy is the feasible set of Problem (3), for a given penalty

parameter p > 0, the partially penalized form of Problem (3) by setting the nonsmooth
constraint as the penalty term can be expressed as the following:

mingeo 6,(z) (4)

We will show that Problem (4) is an exact [; partial penalty of Problem (3). For this
purpose, we let

U:={zeR":p(xr) =0}
and, for any = € Q, define the Lagrange function of Problem (3)
L(z,\) := f(z) +px)\, z€Q.
Let

x* € inf sup L(x, A
CBEQ/\EI}% ( )

and

A" € supinf L(x, A
AcR TESL ( )

We say that (z*, A*) is a saddle point of the Lagrange function if
L(z*,\) < L(x*, \*) < L(z, \").
Proposition 2.1. Suppose that (z*, \*) is the saddle point of Problem (3). Denoting
p* =[N,
X" = argmin,cony f(2),
Z(p) : = argmingo0,(x),
then X* = Z(p) for p > p*.
Proof: Since (z*, \*) is the saddle point of Problem (3), then we have p(z*) = 0 and
x* € X*. For any x € ,
0,(z") = f(z*) = L(z", \*) < L(z, \").
Thus, it holds that
() + A"p(z)
(@) + |A*[[p(2)]
(#) + |A*[p(x)
(z) + p*p(x)
(z) + pp()
= 0,(z)
which implies X* C Z(p), p > p*.
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On the other hand, we will show that Z(p) C X* when p > p*. Otherwise, if there
exist p; > p* and x; € Q such that z; € Z(p;) and x; ¢ X*, recalling that (z*, \*) is the
saddle point of Problem (3), we have z* € X* (Theorem 1.6.1 in [32]) and then

f@*) = 0p, (%)
= 0,,(z1) (because z* € Z(p1), 21 € Z(p1))
= f(@1) + pip(21).

Case 1. x; € U. In this case, we have p(z1) = 0 which means f(z*) = f(z1), and then
z; € X*. It is a contradiction.
Case 2. x; ¢ U. In this case, we have p(z1) > 0. Letting p € [p*, p1], then we obtain

0,(2") = f(z*) + pp(a”)
f(@*) + pip(a)

f(z1) + pip(x1) (because z1 € Z(py))

f(a1)

0

ARV,

x1) + pp(x1)

p(ﬁl)

which contradicts with (5).

2.2. Majorization method and its convergency. To apply majorization method for
Problem (4), we first introduce some notations and symbols. Suppose that h is defined
over X C R", we say that g on X x X is a majorization function of h if h(x) < g(z,v),
Vo,y € X and h(z) = g(z,z),Vr € X. Letting

1
1 o T T
0,(r) == z2 Gr +c x+ ple, Ar + a)

2
and
02 (x —pZmaX{x (A7 = BI') + (a; — b;),0},
=1
then the objective function of Problem (4) can be rewritten as
0p(x) = 0,(x) — 0;(z) (6)

which yields 6,(-) is the difference of two convex quadratic functions 6,(-) and 62(-).
By the convexity of the function #2(-), we have

02(z) > 05(s) + (£, x —s) Vs eR",
where ¢ is the subgradient of 67(-) at the point s, i.e., £ € 962(s). For any s € Q, define
0,(-,s) : 2 = R as
0,(z,5) = 0(x) — 0%(s) — " (x —5) VzeQ (7)
Then, we readily obtain that
0,(x,5) > 0,(x) and 6,(s,s) =0,(s) Ve
Then, the function ép(-, s) is a majorization function of ,(-) at any s € 2. Moreover,

from (7), we know that for any s € €, 0,(-, s) is convex quadratic in €.
For any = € Q, let Nqg(x) denote the normal cone of Q at the point x € Q, i.e.,

No(x):={deR":(d,s —x) <0,Vs € Q}.
A point z* € Q is said to be a stationary point of Problem (4) if
0 € V) (z*) — 862(2*) + Nq(z*), (8)
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thrf V0, (x*) is the gradient of ) at z* and 9’ (x*) is the subgradient of 62 at z*.
e

a:={ic[l:m]:z" (A — B) + (a; — b;) > 0},

B={ie[l:m]:a" (A — B]') + (a; — b;) = 0},

v i= {Z € [1 : m] : (AT — BT)ZZ' + (ai — bz) < 0}
Then the differential properties of 02(-) at x can be described as the following results.

Theorem 2.1. 02(-) is continuously differentiable at x if and only if B =0, and then we
have 002(x) = {V02(x) = p>_,c. (AT — B]')}, where VO2(x) is the gradient of 02 at .

Theorem 2.2. Assuming that 3 # 0, we have

002 (x) = {g:g:p (Z (AT =B+ N (AZ-T—BZ.T)) i € [0,1]}.
1€ 1€l
Proof: Letting f;i(z) = max{a”(A] — B}) + (a; — b;),0} then: (1) if i € a, we
have Vf;(z) = (AT — BI'); (2) if i € v, we have Vf;(z) = 0; (3) if i« € 3, we have
Ofi(x) = Mi(AT — BI') where \; € [0,1]. Then, we can get the following from Theorem
23.8 in [31]:

39,2;(55) = pd (Z fz(@) =P (Z 8fi(x)) =p <Z(AZT - BZT) + Z)\i(AzT - BZT)) :

i€a 1ep
Now we are ready to state the majorization algorithm based on the majorization func-
tion 6,(-, s) at any s € Q for solving Problem (4).

A Majorization Algorithm [M A(p)]
Step 0. Given a penalty parameter p > 0. Choose 2° € Q. Set j := 0.
Step 1. Find the optimal solution

2! = argmin {é']o(x) = 0,(z, :1:7)} ,
HASY)

where 0,(-,27) is the majorization function of #,(-) at 27 € Q defined as in (7) and
& € 00%(x7). That is, z7*" is the optimal solution of the following problem:

min ép(x,a:j) = Hé(x) — Qg(ﬁj) — (&) (z — a?)

s.t. x €.

(9)

Step 2. If 27! = 27, then stop; otherwise, set j := j + 1 and go to Step 1.

Theorem 2.3. Let {27} be the sequence generated by the M A(p). Then, the following
properties hold.

(a): The sequence {0,(z7)} is monotonically nonincreasing.
(b): If 27! = 7 for some integer j > 0, then 27! is a stationary point of Problem
(4). Otherwise, the infinite sequence {0,(x?)} satisfies
Bya™) ~ 0,(a) < L@ - M@ ), j=L2.. ()

where the matriz M is given by

G 00
M=]0 00 |. (11)
0 0 0
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(c): Moreover, suppose that the matriz G is positive definite, then the sequence Qp{xj}
is convergent, the sequence {x’} is bounded and any accumulation point of {2’} is a
stationary point of Problem (4).

Proof: (a) For any j > 0, since 27" is the optimal solution to min {éi,(x)} and 77 € (,
e
we obtain that
i A
O3(a™) < Bi(a),
which, combining with §,(27+") < 64(27*') and 6,(27) = 67 (27), yields that {6,(z7)} is a
monotonically nonincreasing sequence. .
(b) If 27 = 2! for some integer j > 0. Note that 27! is the optimal solution to

min {éi,(x)}, then we know that there exist &/ € 965 (27) such that
€N

0€ VO, (27*") — & + No(2/). (12)
By 27 = 27!, one has &/ € 965(2’*"). Thus, (12) shows that
0 € VO, (a/™) — 002(2 ) + No(a?*h),

which implies 27+ is a stationary point of Problem (4).
If 7 # 27+ for any j > 0, for each j > 0, since 277! solves the problem of minimizing
07(-) over Q, we have there existing (D’*!)T € Nq(27*") such that

VoI (@7t = (D7) (13)

Recalling that 6,(z/+!) < 63(27*1), 0,(27) = 07(27), the function 6(-) is quadratic and
the definition of A, in (11), we can easily derive that

0,(@*1) — By(a?)
< 0(27+1) — 03(27)
= (V) 15 = ) + (@ = M a?))

= (VO (27T1) + M (27 — 27%1), 27t —27) + §<ZL‘J+1 — !, M (27Tt — 27)) (14)

= (DIt + M (29 — 27T1), 27 % — 27) + §<ZL‘J+1 — a2, M (27! — 27))

= (DIt It — g0y — (20T — 2 M (297 — 27)) + §(x7+1 — 27, M (27 — 27))

< —%(xﬂ'l — 2, M (27t — 27)).

(c) Since the matrix G is positive definite, then, éf)() is strongly convex for all 7 > 0,
which implies that 27*! is bounded. Thus, the sequence {27} is bounded. Assume that z*
is an accumulation point of {2/} and {z7*} is a subsequence such that limy_,,, 2/ = z*.
Since the sequence {6,(z7)} is monotonically nonincreasing and has a lower bound, we
know that the sequence {,(z7)} is convergent. Moreover, by (10), we know that

i )

1 ) ) ) ) ) )
: _ J+1 g J+1 g < T Jy _ Jj+1
dim =3 @I ol M@ o) < lim Y7 (6,(7) — 0,(a7H))

j=1 j=1
= 0,(2°) — lim 0,(2" ")
1— 00
< 00,
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which, together with the positive semi-definiteness of M,, implies that

lim 7+ = lim 2/ = 2%, (15)
k—00 k—o00

Noting that 27+*! = argminf’(z), we have
TEQ

0= VO (z/+*+) — ¢, — D, (16)
where
Diktl ¢ Nﬂ(l‘jk—i—l), (17)
and
& € 892(36“).
Noting that 62(-) is proper convex, then {&;,} is bounded [31]. By taking a subsequence
if necessary, we assume that there exists £* € 062(2*) such that
kgr-i{loo gjk N 5 '

From (16), we have { D/**1} having a limit denoted by D*. To verify that z* is a stationary
point of Problem (4), we only need to show that £* € 96%(z*) and D* € No(z*). In fact,
if £ ¢ 002(x*), then there exists Z € Q such that

02(7) < 02(a™) + (£)7(% — o).
Noting that &, € 002 (x7¢) for all j, > 0, it holds that
02(%) > 02(a") + (&)" (2 — 27+).
Taking the limit £ — 400 in the above formula, we obtain that
02(2) > 2(a) + (€)1 (@ — ),
which is a contradiction.
Now, we will show that D* € No(z*). By D?**' € Ng(2/+T!), for each 7 € Q we have
<Djk+1, 7 — l‘jk+1> <0
which implies
(D*, % —2*) <0.
Then x* is a stationary point of Problem (4). This completes the proof.

2.3. Implementation issues. Associating the penalty method and the majorization
method, we obtain the following so-called majorized penalty algorithm for solving Problem
(3).

A Majorized Penalty Algorithm [M P A]

Step 0: Given the tolerance ¢ > 0, penalty parameter p; > 0 and a real number
i > 1. Choose 2° € Q.
Step 1: For k=1,2,...
Step 1.1 Starting with #*~! as the initial point, apply the majorization algorithm
M A(py.) to find z* such that
k

o = argmin{t, (1) 1= £(x) + pip(e)}.

Step 1.2 If p(z*) < ¢, then stop; otherwise, goto Step 1.3.
Step 1.3 Update pgy1 by pri1 = k-

Remark 2.1. By the classic convergence results of the penalty methods (cf. [11, Chapter
12.1]) and Theorem 2.3, we can obtain the convergence of the M PA.
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In this subsection, we shall address some practical issues in the implementation of the
majorized penalty method for solving Problem (3).
(1) The choice of the subdifferential §;. In order to make the calculation fast, we select
the &7 € 902 (a7) satisfying that § = p -, (AT — BY).
(2) The choice of the initial point 2° € Q. We take the solution of mingcq f(z) as the
initial point with the Matlab command “quadprog”.

(3) The solver for the subproblems. In the algorithm M A(p), we need to solve the
following quadratic optimization problem with linear constraints:

1 . .
mingcy §$TGSL’ + "z + ple, Az + a) — (&) (z — 27)
s.t. Ar+a>0, Bxr+b>0.

(18)

In the implementation, we consider X = R™ and use “quadprog” to solve (18).
4) The stopping criterion. In the implementation, we terminate the algorithm M A
g g P
for a given penalty parameter p, if

[V0,(7) = /O] _
max{1, \/0,(z7)} =10

and terminate the outer part of the penalized majorization algorithm if

|27t — 29| <107% or

Ip(27)] < 1078,

3. Numerical Results. In this section, we report our numerical experiments conducted
for demonstrating the performance of our algorithm.

Many functions can be selected to be penalty term. For instance, if we denote u = Azx+a
and v = Bx + b, we can set p(u,v) by:

Method 1: p(u,v) =" u; — Y v, max{u; — v;,0};

Method 2: p(u,v) := (u,v);

Method 3: p(u,v) == || Y00, u; — Y v, max{u; — v;, 0}||,(p # 1).

In this paper, we select p(u,v) as Method 1 (see (4)). There mainly exist three reasons.
One is the exactness of Method 1. The second is that, when we apply majorization method
in Subsection 2.2, we can discover that, the error only exist at the break points (it is just
the same with the original problem at most points). The third is that: in Method 2, AT B
is not necessarily positive definite and then it may bring difficulty in solving the parital
penalized problem; moreover, the quadratic objective function will be majored by a linear
function, and then it may bring a larger error for the approximation according to the
analysis of the following majorization method; as a general case of Method 1, Method 3
is obviously more complicated to deal with than Method 1.

If we set P(x) = (Az+a, Br+0b) as the penalty term (denoted Method 2), with the con-

1
sideration that (Az+a, Bx+b) = 1 ([[(Az + a) + (Bz + b)||> = ||(Az + a) — (Bz + b)[?),
the corresponding penalty function, majorization function and the objecctive function ©,,
©,, and © can be written as

1
0,(2) = 5" Gr+ e+ LA+ Bz + (a+ )| = LI(A = Bla+ (a - D)1,

Ol(x) = %xTGHcTH PI(A+ By + (o + )|,
P
OX(z) = A= Bz +(a—~ b)|1?,
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Opla,5) = 327G+ "o+ Bl(A+ By + (a+ DI~ LA~ B)s + (a— )P
~L((A=B)s+(a—b)" (A= B)(x - s).

&Y(x) = 34" G+ "a + Bl(A+ Bl + (@ + DI — 2l(A - B + (a— D)
~L((A=B)al + (a= b)) (4= B)(w — 7).

In Method 1, a piecewise linear function Qg(x) is approximated as a linear function with
the majorization function. In Method 2, a quadratic function @%(x) is approximated as a
linear function with the majorization function. The figures (Figure 1 and Figure 2) are to
show the error of the Method 1 and Method 2. When weset m=n=1, X = R, A =2,
B=1,a=b=0,p=1and s =0, then we have Hg(x) = max{z,0}. By applying the
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FIGURE 2. The error with Method 2
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majorization method in Subsection 2.2, we know Gz(x) is approximated as the function
£x, £ € [0,1] (see Figure 1). At this time, ©2(z) = 2°, and it is approximated as 0 (see
Figure 2).

To show the efficiency of our penalty term, we select the following examples are to
illustrate the difference between Method 1 and Method 2. The algorithm is implemented
in MATLAB language. All numerical experiments are performed on a Laptop of Intel Core 2
Duo CPU 2.8GHz with 4GB RAM memory, running Windows 7 and MATLAB 8.3 (R2014a).

Example 3.1. Consider the following optimization problem

mingep 122+

X (19)
st. 0<(z+1)L(z+3)>0.
Obuviously, we know the optimal solution is x* = —1. Now we apply the penalty majoriza-

tion approach to solve (19).

Example 3.2. Let x € R*. Now we consider the Problem 2 in [7] by removing the box
constraint. To do this, we re-describe the problem in the formation (1):

a = (—36,-25)", b=(0,0)", ¢ = (-30,-30, —15, —15)7;

2 211
2 2 11 8/3 2 2 8/3 0010
G = ;A= ; B= .
1 110 2 5/4 5/4 2 00 01
1 101

Let “infeas” denote the infeasibility of Problem (4) at the final iteration of the algorithm,
ie.,
infeas := p(z"),
where * is the finally iterative value when the majorized penalty algorithm terminates.
The numerical results are shown in the following tables.

TABLE 1. Example 3.1

x* infeas time

Method 1| —1 0 0.018
Method 2 | —1 | 5.8091e-12 | 0.04

TABLE 2. Example 3.2

*

x infeas time
Method 1 | (5.95,6.17,1.83,1.55)7 | —7.1054e-15 | 0.17
Method 2 | (5.95,6.17,1.83,1.55)7 | 6.5743e-11 | 0.5
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4. Conclusions. This paper has studied the inverse linear second order cone program-
ming problem in which the parameters in both the objective function and the constraint
set need to be adjusted. This inverse problem can be formulated as a linear second order
cone complementarity constrained optimization problem. To solve the formulated prob-
lem, we propose the majorized penalty method. The main idea of the majorized penalty
method is to first consider a sequence of penalized problem and then to apply the ma-
jorization method to the penalized problems. Numerical results conducted for randomly
generated inverse LSOCP problems demonstrate that our approach is quite effective. Fu-
ture research work related to this paper is in progress studying the majorized penalty
algorithm for solving other inverse linear/quadratic conic optimization problems.
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