International Journal of Innovative
Computing, Information and Control ICIC International (©)2016 ISSN 1349-4198
Volume 12, Number 1, February 2016 pp. 263-273

MR-ECOCD: AN EDGE CLUSTERING ALGORITHM
FOR OVERLAPPING COMMUNITY DETECTION
ON LARGE-SCALE NETWORK USING MAPREDUCE

Haitao HE!?, PENG ZHANGY?*, JUN DONG"? AND JIADONG REN!?2

1College of Information Science and Engineering
Yanshan University
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China
{ haitao; dongjun; jdren }@ysu.edu.cn; *Corresponding author: peng891025@163.com

Received June 2015; revised November 2015

ABSTRACT. Querlapping community detection is progressively becoming an important is-
sue in complex networks. Many in-memory overlapping community detection algorithms
have been proposed for graphs with thousands of nodes. However, analyzing massive
graphs with millions of nodes is impossible for the traditional algorithm. In this paper,
we propose MR-ECOCD, a novel distributed computation algorithm using MapReduce to
detect overlapping communities efficiently on large-scale network. Firstly, the similarities
of all adjacent edges are calculated by SimilarityMap algorithm to measure the distance
of edges. Secondly, we define the direct edge communities (DEC) and mergeable direct
edge communities (MDEC) based on edge density clustering method. Then, MarkMap
algorithm and ClusteringReduce algorithm are designed to mark DEC and merge MDEC
respectively for getting finally edge communities (FEC). Finally, we transform the FEC
into node communities, and a node is an overlapping node in node communities if it
belongs to different edges in different FEC. MR-ECOCD consists of four magjor stages,
and all operations are executed in parallel using MapReduce. Extensive experiments show
that our algorithm can effectively and fast detect overlapping communities.

Keywords: Overlapping community detection, MapReduce, Large-scale networks, Edge
clustering

1. Introduction. Many complex systems or structures can be represented by the com-
plex networks in the real world. And overlapping community detection from network,
such as social network [1], semantic social network [2], citation network [3], is progres-
sively becoming an important issue. The discovery of network communities provides us a
much better understanding about the structural topology of each community as well as
its organization principles.

At present, some traditional algorithms [4] have been proposed to discover overlapping
communities. Based on the assumption that a community consists of overlapping sets of
fully connected subgraphs, clique percolation method (CPM) [5] detects communities by
searching for adjacent cliques. Therefore, it is suitable for networks with dense connected
parts. However, because of the iterative calculation in memory, it fails to terminate in
large social networks. Local expansion methods [6-8] are based on growing a natural
community or a partial community. Most of them rely on a local benefit function that
characterizes the quality of a densely connected group of nodes. The label propagation
method, in which nodes with same label form a community, has been extended to over-
lapping community detection by allowing a node to have multiple labels. In COPRA

263

264 H. HE, P. ZHANG, J. DONG AND J. REN

9], each node updates its belonging coefficients by averaging the coefficients from all its
neighbors at each time step in a synchronous fashion.

The edge graph partitioning methods discover community structure by partitioning
edges of original graph. And a node in the original graph is called overlapping if edges
connected to it are put in more than one partition. Evans and Lambiotte [10] projected
the network into a weighted line graph, whose nodes are the links of original graph.
Then disjoint community detection algorithms can be applied. The node partition of a
line graph leads toan edge partition of the original graph. Ahn et al. [11] proposed a
hierarchical clustering method based on edge similarity. Given a pair of links e;; and ejp,
incident on a node k, a similarity can be computed via the Jaccard Index. Single-linkage
hierarchical clustering is then used to build a link dendrogram. Cutting this dendrogram
at some threshold yields link communities. Lim et al. [12] proposed a framework of the
link-space transformation which transforms a given original graph into a link-space graph.
Using the link-space transformation is not dependent on a specific community detection
algorithm. Therefore, they adopt the algorithm SCAN since it identifies the hub or outlier
nodes that do not belong to any community.

The previous algorithms focus on how to improve the accuracy of detecting overlapping
communities. However, in big data era, large or super large scale network is becoming
increasingly commonplace. As a result, the traditional methods are unable to meet the
requirements of big data environment. Moreover, the research of overlapping community
discovery algorithm on large scale network is very necessary.

Google released the MapReduce framework [13] in 2004. MapReduce is a program-
ming model for processing large data sets with a parallel and distributed algorithm on
a cluster. And MapReduce is used to speed up the execution in many fields including
community detection. Moon et al. [14] proposed a parallel version of the GN algorithm
under MapReduce model to support large-scale networks and suggested an approximation
technique to further speed up community detection processes. Ovelgonne [15] presented a
distributed ensemble learning algorithm for graph clustering that scales to networks with
billions of edges using MapReduce. Su et al. [16] proposed a distributed computation
method which combines MapReduce and the TTT algorithm to speed up the discovery
of all maximal cliques in large-scale social networks.

The traditional community-detection algorithms can detect overlapping communities
from small-scale network with thousands of vertices; however, these approaches are not
suitable for processing networks with more than millions of nodes, because they are ex-
clusively non-distributed, in-memory and singlethreaded algorithms.

The above issues motivate us to design, implement,and evaluate an efficient community-
detection solution for large-scale networks with millions of nodes or bigger using MapRe-
duce. In this paper, we define direct edge community and mergeable direct edge com-
munity, and then propose a novel distributed computation algorithm using MapReduce
framework. Our algorithm consists of four major stages, and each stage is correspond-
ing a MapReduce job which takes computing on the whole network and can be executed
concurrently in a distributed environment.

The rest of the paper is organized as follows. Section 2 contains some basic definitions.
Section 3 describes the algorithm MR-ECOCD. Section 4 is experiment analysis. Finally,
Section 5 concludes this study.

2. Definitions. Community detection can be transformed into a network clustering. In
this paper, for discovering overlapping communities, we cluster networks by the edges
like structure clustering algorithm SCAN [17] which clusters networks by the nodes. The
community of edges is preferable to that of nodes from a theoretical point of view, because

EDGE CLUSTERING ALGORITHM FOR OVERLAPPING COMMUNITY DETECTION 265

the edge is likely to have a unique identity whereas the node tends to have multiple
identities. And a node is an overlapping node in node communities if it belongs to
different edges in different edge communities.

Edge Clustering: Let G = (V, E) be a given network, where V' is the set of vertices
and FE is the set of edges of G. Then, a collection P of subsets of E is said to be an edge
clustering of G if the elements of P are pairwise disjointed and the union of the elements
of P is equal to F.

The membership of a node is determined by those of its incident edges. Note that a
node participates in multiple communities if the node has multiple incident edges with
different types of relationship.

Neighbor Edges: Given an edge e = (v,w), e € G, the neighbor edges N(e) of e is
all the edges connected to the nodes v and w, except e. N(e) can be described as:

N(e) ={(v,7) € Eli € N(v)} U{(w,j) € E|j € N(w)} — {e} (1)
where N(v) and N(w) denote the neighbor nodes of v and w respectively.
e-Neighbor Edges: Given a parameter ¢, the e-neighbor edges of e, denoted by N.(e),

refers to the set of edges in all neighbor edges of e whose similarity with e is greater than
e. N.(e) can be described as:

Ne(e) ={l e N(e)lo(l,e) = &} (2)
We adopt the edge similarity proposed by Ahn et al. [11] for o(e,). The edge similarity
is defined by Formula (3), then I'(v;) = {i' € V|(i,7') € E}U{i} and e = (k,7), | = (k, j).
Note that two edges of G' have an edge similarity if and only if they share a common
endpoint in G.
[P(vs) N (w;)]
o(e,l) = (3)
[P(vs) U T (u;)]
Core Edge: For given parameters ¢ and pu, edge e is a core edge, if and only if its
e-neighbor edges contains at least u vertices. A core edge can be described as follows.
Core.,(€) = [N.(e)| > p (4)

Direct Density Reachability: For a given core edge e, [is direct density reachability
from e, if [belongs to e’s e-neighbor edges. A direct density reachability can be described
as follows.

Direct. ,(e,l) = Core. ,(e) Nl € N(e) (5)

Based on the above definition, our definitions are given below for distributed parallel
computing using MapReduce.

Definition 2.1. Direct Edge Community (DEC) For a given core edge e, direct edge
community is the set of all edges which are direct density reachability from e and e. A
DEC can be described as follows.

DEC = {l|l € N.(e)} U {e} (6)

Definition 2.2. Mergeable Edge Community (MEC) For two given direct edge
communities DEC; and DEC;, if there is an | that also belongs to DEC; and DEC},
then we call DEC; and DEC; are mutually mergeable edge community.

Remark that the mergeable edge community is a symmetric relation and it is transitive.

Definition 2.3. Final Edge Community (FEC) Final edge community is a set of
mergeable edge communities with same edge.

Final edge communities meet the following criteria:

266 H. HE, P. ZHANG, J. DONG AND J. REN

e If a final edge community is merged by the set S = {DEC,, DECs,..., DEC,},
then there is an edge set E = {ly,la,...,ln} such that the set S can form a unique
connected graph.

o There is an edge | such thatl € DEC; andl € DEC}, if DEC; € S then DEC; € S,
and vice versa.

In fact, the edge clustering of a graph G is translated to calculate all final edge commu-
nities. Then translating the final edge communities to node communities is our ultimate
goal.

3. The Design and Analysis of MR-ECOCD. The algorithm MR-ECOCD consists
of four steps: searching neighbor nodes, calculating edge similarity, marking and cluster-
ing communities, transforming edge communities. These four steps correspond to four
MapReduce jobs, and each job can run itself in a distributed environment. These jobs

are executed sequentially, and the posterior job relies on the output of the prior job. The
following is the outline of MR-ECOCD algorithm.

e Traverse the original network, search the neighbors of each node respectively and
store the result in a distributed database.

e Calculate the similarity of all the adjacent edges, and the result is stored in dis-
tributed file system (DFS).

e According to the similarity of the previous step, get all the direct edge communities,
and merge all the mergeable edge communities to get the final edge communities.

e Transform the final edge communities into the final point communities.

3.1. Searching neighbor nodes. The original network data is a set of edges, and each
row represents an edge which consists of two nodes. In the Map stage, the Mapper collects
all edges and transfers them to the key-value format. Then in the Reduce stage, the
Reducer puts the same-key records together to represent the neighbors of the key node.

NeighborsMap: The Map stage of searching neighbor nodes
Input: < ky,v; >
Output: < ko, vy >
1: get v and w from vy
2: ks =v, 09 =w

3: WriteToDFS(ks, vg)

The input of the Map stage is the rows of the original file, k; is the row identifier and
v; 1s the content of this row.

NeighborsReduce: The Reduce stage of searching neighbor nodes
Input: < v, NList >
Output: < v, neighbors >
1: for each w; in NList do
2: neighbors append w;
3: end for
4: insert < v, neighbors > into distributed database

For each node, we get its neighbors from NList and append to the string variable
netghobrs, then save this node and its neighbors into distributed database. We save
neighbor nodes into distributed database, because in the next step the algorithm will query
some node’s neighbor nodes when calculating edge similarity, and distributed database is
well suited for applications with a large number of query operations.

EDGE CLUSTERING ALGORITHM FOR OVERLAPPING COMMUNITY DETECTION 267

3.2. Calculating edge similarity. In this step, the algorithm traverses the information
saved in distributed database, calculates all the similarities between adjacent edges in the
Map stage, and then writes each edge, neighbor edges of that edge and the similarities
between them to Distributed File System in the Reduce stage.

SimilarityMap: The Map stage of calculating edge similarity
Input: < vy, neighbors >
Output: <e,l — s>
1: for each v; in neighbors do
2: for each v; in neighbors and (j > i) do
3: listy = getNeighbors(v;) add v;
4 list, = getNeighbors(v;) add v;
5: s = getSimilarity(listy, listy)
6: WriteToDFS(ei, e —)
7.
8
9:

WriteToDFS(eji, e, —)
end for
end for

In the Map stage, for each node, such as v, the neighbors is a string variable like
‘i, V9,v3,...,0, , we calculate the similarity between each two edges that all of them
have a common node v;. The method getNeighbors in lines 3 and 4 of SimilarityMap is
to get the neighbors of vy from di|st(ri)bu?e()i| database, and the method getSimilarity in line
_ T(w)NI'(wy

5 uses the formula o (e, €j;) = INCAEYCmI]
i j

to get the similarity of e;; and ejy.

SimilarityReduce: The Reduce stage of calculating edge similarity
Input: < e, SList >
Output: < ey, n_similarities >
1: for each e;; — s in SList do
2: n_similarities append e;; — s
3: end for
4: WriteToDFS(e,, n_similaritys)

In lines 1-3 of the algorithm SimilarityReduce, for each edge e,,,, the SList is a collection
of its neighbors and similarities, the element of the SList likes e;; — s where e;; is the
neighbor of e, and s is the similarity of them, then n_similaritys is a string variable for
saving result to DFS.

3.3. Marking and clustering communities. Based on the similarities of the adjacent
edges, the algorithm marking communities gets all the direct edge communities in the
Map stage, then gets all mergeable edge communities and merges them to get final edge
communities in the Reduce stage.

For given parameters i and ¢, in lines 1-6 of the algorithm MarkMap, the variable Num
is to count the number of e,,’s neighbor edges where the similarity of them meets the
condition s > €, and NList is used to save the list of neighbors which meet that condition.
In line 7, we judge whether a given edge e, is a core edge or not. If it is a core edge, then
we can get a direct edge community, and in lines 8-13 we flag this direct edge community
to comid which is a unique identification to other direct edge communities.

In the algorithm ClusteringReduce, C'List is the collection of e,,’s direct edge commu-
nities and they are mutually mergeable edge communities because they have the common
edge ey, the variable CMap is used to save the map of direct edge community and final
edge community. Based on the judgment of whether someone in CList has been mapped

268 H. HE, P. ZHANG, J. DONG AND J. REN

MarkMap: The Map stage of marking and clustering communities
Input: < ey, n_similarities >, j, €
Output: < ey, TaskID_i >
1: for each (n, s) in n_similarities do
2: if s > ¢ then
3: Num++
4: NList.add(n)
5
6

end if
: end for
7: if Num > p then
8: for each edge in NList do

9: Flag edge’s community to comid
10: WriteToDFS(edge, comid)
11: end for

12: Flag e,,’s community to comid
13: WriteToDFS(eyy,, comid)
14: end if

ClusteringReduce: The Reduce stage of marking and clustering communi-
ties
Input: < ey, CList >
Output: < e,,, endC >, Final Edge Communities
: for each ¢ in CList do
2: if CMap.contains(c) and flag == false then
3 flag = true
4: cnum = CMap.get(c)
5: end if
6
7
8

—_

: end for
. if flag = true then
endC = cnum

9: else
10: endC = newC
11: for each ¢ in CList do
12: CMap.put(c, endC)
13: end for
14: WriteToDFS(e,,, endC)
15: Return Final Edge Communities

to final edge community in lines 1-6, we get the community identification of e, as endC
in lines 7-10, and in lines 11-13, we map others of CList to endC' and save to CMap.
Finally, we get the final edge communities.

3.4. Transforming edge communities. This algorithm will transform the final edge
communities into node communities which may include overlapping communities.

In the Map stage, for a given edge, for example e;; and its community is ¢, we flag the
community of node v; and v; to c. And for a given node, for example v;, we can get all
the communities C'List of it in the Reduce stage.

MR-ECOCD consists of four major stages, and each stage is corresponding to a MapRe-
duce job, and each job can be executed concurrently in a distributed environment on the

EDGE CLUSTERING ALGORITHM FOR OVERLAPPING COMMUNITY DETECTION 269

TransformMap: The Map stage of transforming edge communities
Input: < e;;,c >
Output: < v;,¢c> <wvj,¢c>
1: Flag v;’s community to ¢
2: Flag v;’s community to ¢
3: WriteToDFS(v;, ¢)
4: WriteToDFS(vj, ¢)

TransformReduce: The Reduce stage of transforming edge communities
Input: < v;, CList >
Output: < v;, ¢ >
1: for each ¢ in CList do
2: WriteToDFS(v;, ¢)
3: end for

whole network so that our algorithm does not need in-memory loops or recursive opera-
tion which is not suitable for processing large-scale networks. In addition, MR-ECOCD
is a distributed algorithm, and it can be run on Hadoop platform which is deployed on a
cluster. Therefore, it is easily extensible for different size of the network. In fact, it can
process networks with more than millions of nodes if we have big enough cluster.

4. Experiments. In this section, we examine the performance of our proposed algorithm
MR-ECOCD. We compared the performance of four algorithms including our algorithm.
The three existing algorithms have been recognized as the state-of-the-art overlapping
community detection algorithms.

(1) MR-ECOCD: our proposed algorithm
(2) the CMP (Clique Percolation Method) [5]
(3) the link-partition method [10]
(4) the COPRA (Community Overlap Propagation Algorithm) [9]

4.1. Data generation. In order to demonstrate the performance of our proposed algo-
rithms, we investigated the results on synthetic networks generated by the LFR benchmark
[18].

The parameters we use for the LFR benchmark are described in Table 1. In our experi-
ments, the synthetic network is built with varying the parameter values of N, < k >, mu,
on and om. We set the value of max k to 2 < k >, and default values are used for others.

TABLE 1. Parameters for the LFR benchmark

Parameter Description
N number of nodes
<k> average degree
max k maximum degree
mu mixing parameter
on number of overlapping nodes
om number of memberships of the overlapping nodes

4.2. Evaluation metrics. For the traditional graph partitioning, the Normalized Mutual
Information (NMI) has been most widely used to measure the quality of partition when
the ground-truth is known. Recently, Lancichinetti et al. [6] proposed an extended
version of the NMI, which can be used for the case when a node may belong to more than

270 H. HE, P. ZHANG, J. DONG AND J. REN

one cluster. In recent years, NMI has become the most widely-used community clustering
quality standard. Note that the NMI is based on the information theory that compares the
similarity between the memberships of two groups. Here, one group indicates the results
of community detection, and the other group the ground-truth communities. Thus, the
NMI naturally evaluates the quality of community detection. It ranges from 0 to 1 by
normalization, and a higher value represents a better quality.

For each node i in cover C’, its community membership can be expressed as a binary
vector of length |C’| (i.e., the number of clusters in C’). (x;), = 1 if node i belongs to
the k™ cluster C}; (z;)x = 0 otherwise. The k'™ entry of this vector can be viewed as
a random variable X}, whose probability distribution is given by P(X; = 1) = ng/n,
P(X; =0) =1— P(X; = 1), where n, = |C}| is the number of nodes in the cluster Cj,
and n is the total number of nodes. The same holds for the random variable Y; associated
with the [*' cluster in cover C”. Both the empirical marginal probability distribution
P(X}) and the joint probability distribution P(Xj,Y;) are used to further define entropy
H(X) and H(X},Y)).

The conditional entropy of a cluster X}, given Y] is defined as (X;|V;) = H(X},Y)) —
H(X). The entropy of X; with respect to the entire vector Y is based on the best
matching between X and any component of Y given by

H(XMY) = minl€{1,27... ’|C//‘}H<Xk|Y2).

The normalized conditional entropy of a cover X with respect to Y is
H(X;|Y)
H(X|Y) :
1Y) |C”| Z H(X,)

In the same way, one can define H(Y|X). Finally the NMI for two covers C" and C”
is given by

NMIX|Y) =1 - [H(X|Y) + H(Y|X)]/2.

4.3. Clustering quality. After experiments, we find the result is best in our method
when the parameters 4 = 2 and € = 0.14. For the other algorithms, the impact of each
parameter is investigated with other parameters fixed at the typical values suggested by
Xie et al. [4]. We explain our results with the four aspects below.

e Network scale: In order to validate that MR-ECOCD is suitable for network commu-
nity mining of various scale, we choose a series of networks whose nodes are increased
from 1k to 17k, and MR-ECOCD performs well when the nodes are increasing in
Figure 1 (mu = 0.1, on/N = 0.3, < k >= 10, om = 2 and N from 1k to 17k).

e Degree of overlapping: To generate highly overlapping nodes, we increased the value
of om from 2 to 5. It is very natural that the accuracy goes down as increasing of
degree of overlapping, but MR-ECOCD goes down slowly in Figure 2 (N = 5000,
mu = 0.1, on/N = 0.3, < k >= 10, and om from 2 to 5).

e Fraction of overlapping nodes: To generate high fraction of overlapping nodes, we
increase on/N from 0 to 0.5. In Figure 3 (N = 5000, mu = 0.1, om =2, < k >=5,
and on/N from 0 to 0.5), overlapping community structure is identified successfully
by MR-ECOCD when there exist many overlapping nodes, e.g., 40% or 50%.

e Community density: The mixing parameter mu is the ratio of the number of inter-
community links to the total number of links, and thus, it can be considered as
the internal density of a community. In Figure 4 (N = 5000, om = 2, on/N = 0.3,
< k>= 10, and mu from 0.1 to 0.3), the results show that our algorithm can discover
communities of various internal density.

EDGE CLUSTERING ALGORITHM FOR OVERLAPPING COMMUNITY DETECTION 271

——MR-ECOCD —#—CPM —— MR-ECOCD —#—CPM
—#— LinkPartition COPRA —— LinkPartition —<—COPRA
1 1
0.8
— S
_ 0.6 /KL 1_\—'73'—'/__J _
= A =
Z 4 f\/‘ z
K
0.2
0 T T T T 1 O T 1
1 3 5 7 9 11 13 15 17 2 3 a 5
Number of the nodes(N*1043) Number of cluster per node(om)
FIGURE 1. Effects of the num- FIGURE 2. Effects of the de-
ber of node gree of overlapping
—4—MR-ECOCD —i—CPM ~—4—MR-ECOCD ~——CPM
—#— LinkPartition =s<—COPRA —p— LinkPartition COPRA
1 1
08 - 0.8
71
_ 06 _ 06
04 | 0.4 /
0.2 Ae—y 0.2
0 T T T 0 T
0 01 02 03 04 05 0.1 0.2 0.3
Fraction of overlapping nodes(on/N) Mixing parameter(mu)
FIGURE 3. Effects of the frac- FIGURE 4. Effects of the com-
tion of overlapping nodes munity density

4.4. Running time. We test execution times of algorithm MR-ECOCD, CPM, LinkPar-
tition and COPRA in networks whose nodes are more than 100k. Running times of the
four algorithms are depicted in Figure 5. In our experiments, when the number of nodes
is greater than 100k, the CPM is not able to finish the execution and get the final result
because of the memory overflow error, so it is not shown in Figure 5. In addition to MR-
ECOCD and CPM, the other algorithms are not able to finish the execution also when
the node number is large enough. And it is because of the memory overflow error also.
In the experiment, there are three machines running on the clustering environment for
community detection for MR-ECOCD. The distributed computing architecture is appar-
ently effective, the execution time grows slowly while the size of dataset grows from 100K
to 1000K records, as shown in Figure 5. However, it is not better than some algorithms
such as COPRA when the node number is small in Figure 5.

We can get the following conclusions from the analysis of the results. Using one machine
to execute the traditional classic algorithms is time-consuming and requires large memory

272 H. HE, P. ZHANG, J. DONG AND J. REN

=z

1]

£

o —4—MR-ECOCD
=

£ LinkPartition
=

« ——COPRA

1 2 3 4 5 6 7 8 9 10
Number of the nodes(N*1045)

FiGure 5. Comparison of execution time

space. As dataset sizes increase, execution time increases sharply as well. Based on
the distributed computing architecture the result is effective because of the parallel and
distributed execution on the clustering environment, but it is not effective when the
data is small because of the configuration of environment and the large 1/O operation of
intermediate data on the disk.

5. Conclusions. In this paper, for discovering overlapping communities efficiently on
large-scale network, we define direct edge community (DEC) and mergeable direct edge
community (MDEC) based on edge density clustering method, and then a novel dis-
tributed computation algorithm using MapReduce framework is proposed. Our algo-
rithm consists of four major stages: searching neighbor nodes, calculating edge similarity,
marking and clustering communities, transforming edge communities. These four steps
correspond to four MapReduce jobs, each job can take computing on the whole network
and can be executed concurrently in a distributed environment. We implemented MR-
EOCOD on Hadoop, and conducted comparative experiments on the LFR dataset. The
results sufficiently show that our algorithm can not only detect the overlapping community
from large-scale complex networks accurately, but also complete it within reasonable time.
Future research should continue to look for methods that further reduce computation time
while attaining higher quality in community structure discovery.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61170190, No. 61472341 and the Natural Science Foun-
dation of Hebei Province China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326. The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] Y. Gu, B. Zhang, G. Zou et al., Overlapping community detection in social network based on
microblog user model, 2014 IEEE International Conference on Data Science and Advanced Analytics,
Shanghai, China, pp.333-339, 2014.

[2] X.Yu, J. Yang and Z. Q. Xie, A semantic overlapping community detection algorithm based on field
sampling, Expert Systems with Applications, vol.42, no.1, pp.366-375, 2015.

3]

EDGE CLUSTERING ALGORITHM FOR OVERLAPPING COMMUNITY DETECTION 273

T. Chakraborty and A. Chakraborty, OverCite: Finding overlapping communities in citation net-
work, Proc. of the 2018 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining, Niagara Falls, ON, Canada, pp.1124-1131, 2013.

J. Xie, S. Kelley and B. K. Szymanski, Overlapping community detection in networks: The state-
of-the-art and comparative study, ACM Computing Surveys, vol.45, no.4, 2013.

I. Derényi, G. Palla and T.Vicsek, Clique percolation in random networks, Physical Review Letters,
vol.94, no.16, pp.1-4, 2005.

A. Lancichinetti, S. Fortunato and J. Kertész, Detecting the overlapping and hierarchical community
structure in complex networks, New Journal of Physics, vol.11, p.03315, 2009.

D. Jin, B. Yang, C. Baquero et al., A Markov random walk under constraint for discovering over-
lapping communities in complex networks, Journal of Statistical Mechanics Theory & Experiment,
vol.2011, no.1, pp.75-98, 2011.

E. L. Martelot and C. Hankin, Fast multi-scale detection of overlapping communities using local
criteria, Computing, vol.96, no.11, pp.1011-1027, 2014.

S. Gregory, Finding overlapping communities in networks by label propagation, New Journal of
Physics, vol.12, no.10, pp.2011-2024, 2010.

T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Physical
Review E Statistical Nonlinear € Soft Matter Physics, vol.80, no.1, pp.145-148, 2009.

Y.Y. Ahn, J. P. Bagrow and S. Lehmann, Link communities reveal multiscale complexity in networks,
Nature, vol.466, no.7307, pp.761-764, 2010.

S. Lim, S. Ryu, S. Kwon et al., LinkSCAN*: Overlapping community detection using the link-space
transformation, Proc. of International Conference on Data Engineering, Chicago, IL, The United
States, pp.292-303, 2014.

D. Jeffrey and G. Sanjay, MapReduce: Simplified data processing on large clusters, Communications
of the ACM, vol.51, no.1, pp.107-113, 2004.

S. Moon, J. G. Lee and M. Kang, Scalable community detection from networks by computing edge
betweenness on MapReduce, 2014 International Conference on Big Data and Smart Computing,
pp-145-148, 2014.

M. Ovelgonne, Distributed community detection in web-scale networks, 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining, pp.66-73, 2013.

Y. J. Su;, W. L. Hsu and J. C. Wun, Overlapping community detection with a maximal clique
enumeration method in MapReduce, Advances in Intelligent Systems & Computing, pp.367-376,
2014.

X. Xu, N. Yuruk, Z. Feng et al., Scan: A structural clustering algorithm for networks, Proc. of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.824-833,
2007.

A. Lancichinetti and S. Fortunato, Community detection algorithms: A comparative analysis, Phys-
ical Review E, vol.80, no.5, pp.2142-2152, 2009.

