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Abstract. A semistrongly stabilizing controller is a stabilizing controller that has one
pole at the origin and other poles in the open left-half plane. Using semistrongly stabilizing
controllers, we can overcome the problem of strong stabilization, that is, if an uncertainty
in the plant or a step disturbance occurs, the output of the control system cannot follow the
step reference input without steady state error. Accordingly, Hoshikawa et al. proposed
parameterizations of all semistrongly stabilizable plants and of all semistrongly stabilizing
controllers. In this parameterization, we cannot specify the input-output characteristic
and the feedback characteristic separately. One way to achieve this is to use a two-degrees-
of-freedom control system. However, the parameterization of all two-degrees-of-freedom
semistrongly stabilizing controllers has not been examined. The purpose of this paper is
to propose such a parameterization for semistrongly stabilizable plants.
Keywords: Strong stabilization, Robust servo, Semistrong stabilization, Two-degrees-
of-freedom control system, Parameterization

1. Introduction. In the parameterization problem, all stabilizing controllers for a plant
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and all plants that can be stabilized [11] are sought. Because
this parameterization can successfully search for all proper stabilizing controllers, it is
used as a tool for many control problems.

In practical control problems, both the stability of the closed-loop systems and that of
the stabilizing controllers are important. In certain cases [12], the instability of stabilizing
controllers causes poor overall system sensitivity to variations in plant parameters. On the
other hand, from [13], even if a plant is stabilizable, the plant is not necessarily strongly
stabilizable. In addition, the achievable control characteristic is restricted in comparison
with the case using unstable controllers. It is thus desirable to choose either a stable
controller or an unstable one by the required control specification. Since nonstrongly
stabilizable plants exist, two necessary and sufficient conditions that a plant is strongly
stabilizable have been clarified. One was clarified by Youla et al. and is called the parity
interlacing property, which is a condition on the placement of poles and zeros of strongly
stabilizable plants [4, 13]. They also proposed a method to find strongly stabilizing con-
trollers using Nevanlinna-Pick interpolation [4, 13]. This result was developed further in
several papers about the design method for strongly stabilizing controllers [14, 15, 16, 17].
The other condition was clarified by Hoshikawa et al. and is the parameterization of all
strongly stabilizable plants, which shows that strongly stabilizable plants have a common
feedback structure [19]. They also proposed the parameterization of all strongly stabi-
lizing controllers, thus enabling the systematic design of strongly stabilizing controllers.
The strong stabilization problem has thus been studied extensively.
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With strongly stabilizing controllers, when there is an uncertainty in the plant or a
step disturbance, the output of the control system cannot follow the step reference input
without steady state error. The reason is that strongly stabilizing controllers cannot
have a pole at the origin. If the control requires high tracking performance, stabilizing
controllers require an integrator. Therefore, it is necessary to examine controller designs
that have a pole at the origin and other poles in the open left-half plane. We call such
controllers semistrongly stabilizing controllers [19]. Because plants that are unstabilizable
by strongly stabilizing controllers exist [13], it is expected that plants that cannot be
stabilized by a semistrongly stabilizing controller also exist. Accordingly, Hoshikawa et
al. clarified the parameterization of all semistrongly stabilizable plants [19]. In addition,
Hoshikawa et al. proposed the parameterization of all semistrongly stabilizing controllers
[20].

However, with their parameterization [20], we cannot specify the input-output charac-
teristic and the feedback characteristic, that is, a disturbance attenuation characteristic
and robust stability, separately. When we specify one characteristic, other characteristics
are also decided. From the practical viewpoint, it is desirable to specify the input-output
characteristic and the feedback characteristic separately. One way to achieve this is to use
a two-degrees-of-freedom control system. In addition, because a two-degrees-of-freedom
control system can have no overshoot for the reference input, more accurate control can
be expected.

In this paper, we propose the parameterization of all two-degrees-of-freedom semistrong-
ly stabilizing controllers for semistrongly stabilizable plants, in which the output of the
control system can follow the step reference input without steady state error even if an
uncertainty in the plant or a step disturbance exists.

This paper is organized as follows. In Section 2, we propose the concept of a two-degrees-
of-freedom semistrongly stabilizing controller and formulate the problem considered in
this study. In Section 3, we propose the parameterization of all two-degrees-of-freedom
semistrongly stabilizing controllers for semistrongly stabilizable plants. In Section 4, we
present a design method for the semistrongly stabilizing controllers presented in Section 3.
In Section 5, a numerical example is illustrated to show the effectiveness of the proposed
method. Section 6 gives concluding remarks.

Notation
R The set of real numbers.
R(s) The set of real rational functions with s.
RH

∞
The set of stable proper real rational functions.

U The set of unimodular functions on RH
∞

. That is, U(s) ∈ U implies both
U(s) ∈ RH

∞
and U−1(s) ∈ RH

∞
.

2. Two-Degrees-of-Freedom Semistrongly Stabilizing Controller and Problem
Formulation. Consider the two-degrees-of-freedom control system shown in Figure 1,
which can specify the input-output characteristic and the feedback characteristic sepa-
rately. Here, G(s) ∈ R(s) is the plant, C(s) is the two-degrees-of-freedom controller:

C(s) =
[

C1(s) −C2(s)
]

, (1)

u(s) is the control input:

u(s) = C(s)

[

r(s)
y(s)

]

=
[

C1(s) −C2(s)
]

[

r(s)
y(s)

]

, (2)

r(s) is the reference input, d1(s) and d2(s) are disturbances, and y(s) is the output. In the
following, we call C1(s) ∈ R(s) the feed-forward controller and C2(s) ∈ R(s) the feedback
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G(s)
+

+

+

+

C(s)
r(s) u(s) y(s)

d1(s) d2(s)

Figure 1. Two-degrees-of-freedom control system

controller. From the definition of internal stability [4], when all transfer functions Vi(s)
(i = 1, . . . , 6):

[

u(s)
y(s)

]

=

[

V1(s) V2(s) V3(s)
V4(s) V5(s) V6(s)

]





r(s)
d1(s)
d2(s)



 (3)

are stable, the two-degrees-of-freedom control system in Figure 1 is stable.
Semistrongly stabilizing controllers were defined in [19] as follows.

Definition 2.1. (semistrongly stabilizing controllers) [19]
We call the controller C(s) a “semistrongly stabilizing controller” if the stabilizing con-
troller has only one pole at the origin and other poles in the open left-half plane. That is,
if C(s) is:

C(s) =
s + α

s
Q(s), (4)

then we call C(s) a semistrongly stabilizing controller, where α ∈ R is any positive real
number and Q(s) ∈ RH

∞
is any function satisfying Q(0) 6= 0.

According to Definition 2.1, the difference between strongly stabilizing controllers and
semistrongly stabilizing controllers is whether or not the controllers have only one pole
at the origin. That is, the characteristic of semistrongly stabilizing controllers is to make
the output of the control system follow the step reference input without steady state error
in the presence of an uncertainty in the plant or a step disturbance. In addition, a plant
stabilizable by a semistrongly stabilizing controller, so-called semistrongly stabilizable
plants, is also defined in [19] as follows.

Definition 2.2. (semistrongly stabilizable plant) [19]
We call the plant G(s) a “semistrongly stabilizable plant” if G(s) is stabilizable by a
semistrongly stabilizing controller C(s) in (4).

According to [19], the parameterization of all semistrongly stabilizable plants is defined
by:

G(s) =
β + sQ2(s)

(s + α) (1 + Q3(s) − Q1(s)Q2(s))
, (5)

where β ∈ R is given by:

β =
α

Q1(0)
, (6)

Q3(s) ∈ RH
∞

is given by:

Q3(s) =
α − βQ1(s)

s
, (7)
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and Q1(s) ∈ RH
∞

and Q2(s) ∈ RH
∞

are any functions satisfying Q1(0) 6= 0. That is,
the plant G(s) in Figure 1 is described by the form of (5). In addition, Hoshikawa et
al. gave the parameterization of all semistrongly stabilizing controllers for semistrongly
stabilizable plants in (5) [20].

However, the parameterization of all semistrongly stabilizing controllers [20] was only
considered for one-degree-of-freedom control systems. This means that all characteristics
are specified for a one-degree-of-freedom semistrongly stabilizing controller. From the
practical point of view, it is desirable to specify the input-output characteristic and the
feedback characteristic separately. One way to do this is to use a two-degrees-of-freedom
control system in Figure 1.

From this viewpoint, we consider a two-degrees-of-freedom semistrongly stabilizing con-
troller that makes the output of the control system follow a step reference input without
steady state error, under the existence of an uncertainty in the plant or a step disturbance.
The concept of a two-degrees-of-freedom semistrongly stabilizing controller is proposed as
follows.

Definition 2.3. (two-degrees-of-freedom semistrongly stabilizing controller)
We call the controller C(s) in (1) a “two-degrees-of-freedom semistrongly stabilizing con-
troller” if the following expressions hold true.

1. The feed-forward controller C1(s) in (1) has only one pole at the origin. That is, the
feed-forward controller C1(s) is defined by:

C1(s) =
s + γ

s
Qf (s), (8)

where γ ∈ R is any positive real number and Qf(s) ∈ RH
∞

is any function satisfying
Qf(0) 6= 0.

2. The feedback controller C2(s) in (1) works as a semistrongly stabilizing controller.
That is, the feedback controller C2(s) is defined in the form of (4).

3. The two-degrees-of-freedom control system in Figure 1 is stable. That is, all transfer
functions Vi(s) (i = 1, . . . , 6) in (3) are stable.

From Definition 2.3, the feed-forward controller C1(s) also has a pole at the origin. This
means the transfer function V4(s) in (3) from the reference input r(s) to the output y(s)
in Figure 1 cannot have a zero at the origin with the origin pole of the feedback controller
C2(s), which is to ensure that the output cannot have a steady state error for the step
reference input.

The problem considered in this paper is to obtain the parameterization of all two-
degrees-of-freedom semistrongly stabilizing controllers C(s) defined in Definition 2.3.

3. The Parameterization of All Two-Degrees-of-Freedom Semistrongly Stabi-
lizing Controllers. In this section, we propose the parameterization of all two-degrees-
of-freedom semistrongly stabilizing controllers C(s) for semistrongly stabilizable plants
G(s) in the form of (5).

This parameterization is summarized in the following theorem.

Theorem 3.1. The parameterization of all two-degrees-of-freedom semistrongly stabilizing
controllers C(s) for semistrongly stabilizable plants G(s) in the form of (5) is:

C1(s) =
s + γ

s

Qc1(s)

Qu(s)
(9)
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and

C2(s) =
s + α

s







Q1(s) +
Qc2(s)

1 −
(

β
s + α + s

s + αQ2(s)
)

Qc2(s)







. (10)

Here, α ∈ R and γ ∈ R are any positive real numbers, Qc1(s) ∈ RH
∞

is any function,
Qc2(s) ∈ RH

∞
is given by:

Qc2(s) =
1 − Qu(s)

β

s + α
+

s

s + α
Q2(s)

, (11)

Qu(s) ∈ U is any function that makes Qc2(s) in (11) proper and satisfies:

1

(s − si)mi−1
(1 − Qu(s))

∣

∣

∣

∣

s=si

= 0 (∀i = 1, . . . , n), (12)

si (i = 1, . . . , n) are unstable zeros of β+sQ2(s), and the multiplicities of si (i = 1, . . . , n)
are denoted by mi (i = 1, . . . , n).

Proof: First, the necessity is shown. That is, we show that if the controllers C1(s) and
C2(s) make the control system in Figure 1 stable, that is all transfer functions Vi(s) (i =
1, . . . , 6) in (3) are stable, then C1(s) and C2(s) are defined by (9) and (10), respectively.
The transfer functions Vi(s) (i = 1, . . . , 6) in (3) are:

V1(s) =
C1(s)

1 + C2(s)G(s)
, (13)

V2(s) = −
C2(s)G(s)

1 + C2(s)G(s)
, (14)

V3(s) = −
C2(s)

1 + C2(s)G(s)
, (15)

V4(s) =
C1(s)G(s)

1 + C2(s)G(s)
, (16)

V5(s) =
G(s)

1 + C2(s)G(s)
, (17)

and

V6(s) =
1

1 + C2(s)G(s)
. (18)

From the assumption that all transfer functions in (13) to (18) are stable, C2(s) makes
G(s) stable. From [4], the parameterization of all stabilizing feedback controllers is:

C2(s) =
X(s) + D(s)Q̃(s)

Y (s) − N(s)Q̃(s)
, (19)

where N(s) and D(s) are coprime factors of G(s) on RH
∞

satisfying:

G(s) =
N(s)

D(s)
, (20)

X(s) ∈ RH
∞

and Y (s) ∈ RH
∞

are any functions satisfying:

N(s)X(s) + D(s)Y (s) = 1, (21)
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and Q̃(s) ∈ RH
∞

is any function. Therefore, we must consider the condition to make
C2(s) in (19) work as a semistrongly stabilizing controller. Since the semistrongly stabi-
lizable plant G(s) is defined by the form of (5), when G(s) in (5) is factorized by (20):

N(s) =
β

s + α
+

s

s + α
Q2(s) (22)

and

D(s) = 1 + Q3(s) − Q1(s)Q2(s). (23)

From (22) and (23), a pair of X(s) and Y (s) satisfying (21) are defined by:

X(s) = Q1(s) (24)

and

Y (s) =
s

s + α
. (25)

Substituting (22), (23), (24) and (25) for (19), we have:

C2(s) =
Q1(s) + (1 + Q3(s) − Q1(s)Q2(s)) Q̃(s)

s

s + α
−

(

β

s + α
+

s

s + α
Q2(s)

)

Q̃(s)

=
s + α

s















Q1(s) + (1 + Q3(s) − Q1(s)Q2(s)) Q̃(s)

1 −

(

β

s + α
+

s

s + α
Q2(s)

)

s + α

s
Q̃(s)















. (26)

From the assumption that C2(s) has one pole at the origin, Q̃(s) becomes:

Q̃(s) =
s

s + α
Qc2(s), (27)

where Qc2(s) ∈ RH
∞

is any function. Substituting (7) and (27) for (26), we have:

C2(s) =

Q1(s) +

(

1 +
α − βQ1(s)

s − Q1(s)Q2(s)

)

s
s + αQc2(s)

s
s + α −

(

β
s + α + s

s + αQ2(s)
)

s
s + αQc2(s)

. (28)

By simple manipulation, we have:

C2(s) =
s + α

s







Q1(s) +
Qc2(s)

1 −
(

β
s + α + s

s + αQ2(s)
)

Qc2(s)







. (29)

We have therefore shown that C2(s) is defined by (10). The remaining problem is to
confirm that:

C̄2(s) = Q1(s) +
Qc2(s)

1 −
(

β
s + α + s

s + αQ2(s)
)

Qc2(s)
(30)

is stable. Since Q1(s) ∈ RH
∞

and Qc2(s) ∈ RH
∞

, the condition that (30) is stable if and
only if Qc2(s) in (30) results in:

1 −

(

β

s + α
+

s

s + α
Q2(s)

)

Qc2(s) ∈ U . (31)
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That is, using Qu(s) ∈ U ,

1 −

(

β

s + α
+

s

s + α
Q2(s)

)

Qc2(s) = Qu(s). (32)

This equation corresponds to (11). Since si (i = 1, . . . , n) denote unstable zeros of β +
sQ2(s) and the multiplicities of si (i = 1, . . . , n) are denoted by mi (i = 1, . . . , n),

1

(s − si)
mi−1

(

β

s + α
+

s

s + α
Q2(s)

)

Qc2(s)

∣

∣

∣

∣

s=si

= 0 (∀i = 1, . . . , n) (33)

hold true. From (32) and (33), (12) is satisfied. The fact that Qc2(s) in (11) is included in
RH

∞
is confirmed as follows: From Qu(s) ∈ U , if Qc2(s) in (11) is unstable, then unstable

poles of Qc2(s) are equal to unstable zeros si (i = 1, . . . , n) of β + sQ2(s). Since Qu(s)
satisfies (12), unstable zeros si (i = 1, . . . , n) of β + sQ2(s) are not equal to unstable
poles of Qc2(s). Therefore, (β/(s + α) + sQ2(s)/(s + α))Qc2(s) is stable. That is, when
we select Qu(s) to make Qc2(s) proper, Qc2(s) in (11) is included in RH

∞
. In addition,

using Qu(s), C̄2(s) in (30) is rewritten:

C̄2(s) = Q1(s) +
Qc2(s)

Qu(s)
. (34)

Since Q1(s) ∈ RH
∞

, Qc2(s) ∈ RH
∞

and Qu(s) ∈ U , C̄2(s) ∈ RH
∞

. In this way, the fact
that C2(s) works as a semistrongly stabilizing controller in (4) is shown.

Next, we show that the feed-forward controller C1(s) is described by (9). Using C2(s)
in (10), the transfer functions in (13) and (16) are:

V1(s) = C1(s)Qu(s)

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

(35)

and

V4(s) =
s

s + α
C1(s)Qu(s)

(

β

s + α
+

s

s + α
Q2(s)

)

, (36)

respectively. From (6),

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)
∣

∣

∣

∣

s=0

= 0 (37)

in (35) holds true. For V1(s) in (35) and V4(s) in (36) to be stable, C1(s) ∈ RH
∞

or
C1(s) can have only one pole at the origin and has other poles in the open left-half plane.
Therefore, C1(s) in (8) works as a stabilizing controller. To specify the input-output
characteristic and the feedback characteristic separately, C1(s) in (8) becomes:

C1(s) =
s + γ

s

Qc1(s)

Qu(s)
, (38)

where, Qc1(s) ∈ RH
∞

is any function. In this way, when the plant G(s) takes the form
of (5), then C1(s) and C2(s) take the form of (9) and (10). Thus, the necessity has been
shown.

Next, the sufficiency is shown. That is, we show that if C1(s) and C2(s) are described
by (9) and (10), C1(s) and C2(s) make the control system in Figure 1 stable. Using C1(s)
in (9) and C2(s) in (10), transfer functions Vi(s) (i = 1, . . . , 6) are written:

V1(s) =
s + γ

s
Qc1(s)

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

, (39)
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V2(s) = Qu(s)

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

− 1, (40)

V3(s) = −
s + α

s
(Q1(s)Qu(s) + Qc2(s))

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

, (41)

V4(s) =
s + γ

s + α
Qc1(s)

(

β

s + α
+

s

s + α
Q2(s)

)

, (42)

V5(s) =
s

s + α
Qu(s)

(

β

s + α
+

s

s + α
Q2(s)

)

, (43)

and

V6(s) = Qu(s)

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

. (44)

Since Q1(s) ∈ RH
∞

, Q2(s) ∈ RH
∞

, Qc1(s) ∈ RH
∞

, Qu(s) ∈ U , and α is a positive real
number, (40), (42), (43) and (44) are all stable. In addition, since (37) holds true, (39)
and (42) have no pole at the origin. From this and because Qc2(s) ∈ RH

∞
, (39) and (42)

are also stable. Thus, the sufficiency has been shown.
We have thus proved Theorem 3.1. �

Next, we explain the control characteristics of the control system in Figure 1 using the
parameterization of all two-degrees-of-freedom semistrongly stabilizing controllers in (9)
and (10). First, the input-output characteristic is shown. The transfer function from the
reference input r(s) to the output y(s) is:

y(s)

r(s)
=

s + γ

s + α
Qc1(s)

(

β

s + α
+

s

s + α
Q2(s)

)

. (45)

For the output y(s) to follow the step reference input r(s) without steady state error:

γ

α

β

α
Qc1(0) = 1 (46)

must be satisfied. From (6), (46) is rewritten:

γ

α

Qc1(0)

Q1(0)
= 1. (47)

Therefore, we select Qc1(s) satisfying:

Qc1(0) =
α

γ
Q1(0). (48)

Next, the disturbance attenuation characteristic, which is one of the feedback character-
istics, is shown. The transfer functions from the disturbance d1(s) to the output y(s) and
from the disturbance d2(s) to the output y(s) of the control system in Figure 1 are:

y(s)

d1(s)
=

s

s + α
Qu(s)

(

β

s + α
+

s

s + α
Q2(s)

)

(49)

and

y(s)

d2(s)
= Qu(s)

{

1 − Q1(s)

(

β

s + α
+

s

s + α
Q2(s)

)}

, (50)

respectively. Equation (49) shows that the step disturbance d1(s) = 1/s is attenuated
effectively. In addition, since (37) holds true, the step disturbance d2(s) = 1/s is also
attenuated effectively.
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Furthermore, we find that the input-output characteristic is specified by Qc1(s) in (9),
and the disturbance attenuation characteristic is specified by Qu(s) in (12). That is,
the proposed two-degrees-of-freedom semistrongly stabilizing controller can specify the
input-output characteristic and the disturbance attenuation characteristic separately.

4. Design Method for Qu(s). In this section, we present a design method for Qu(s) ∈
U that satisfies (12) and makes Qc2(s) proper.

1. β/(s + α) + sQ2(s)/(s + α) is factorized:

β

s + α
+

s

s + α
Q2(s) = Qi(s)Qo(s), (51)

where Qi(s) ∈ RH
∞

is the inner function satisfying Qi(0) = 1 and Qo(s) ∈ RH
∞

is
the outer function.

2. Using Qo(s), Q̄(s) ∈ RH
∞

is designed:

Q̄(s) =
q(s)

Qo(s)
, (52)

where

q(s) =
k

(τs + 1)ǫ , (53)

τ ∈ R is an arbitrary positive number, ǫ is an arbitrary positive integer to make
Q̄(s) proper, and k ∈ R is a real number satisfying 0 < k < 1.

3. Using Q̄(s), Qu(s) ∈ U is designed:

Qu(s) = 1 −

(

β

s + α
+

s

s + α
Q2(s)

)

Q̄(s). (54)

Next, we show that Qu(s) in (54) satisfies (12) and makes Qc2(s) proper. First, we show
that Qu(s) in (54) satisfies (12). Substituting (52) for (54), Qu(s) in (54) is rewritten:

Qu(s) = 1 − Qi(s)q(s). (55)

Since si (i = 1, . . . , n) are unstable zeros of β + sQ2(s), mi (i = 1, . . . , n) denote multi-
plicities of si (i = 1, . . . , n), and Qi(s) is an inner function of β/(s + α) + sQ2(s)/(s + α):

1

(s − si)
mi−1

Qi(s)

∣

∣

∣

∣

s=si

= 0 (∀i = 1, . . . , n) (56)

holds true. From this equation and (53):

1

(s − si)
mi−1

Qi(s)q(s)

∣

∣

∣

∣

s=si

= 0 (∀i = 1, . . . , n) (57)

are also satisfied. From (55) and (57), Qu(s) in (54) satisfies (12). Next, we show that
Qu(s) in (54) makes Qc2(s) proper. Substituting (54) for (11), Qc2(s) is rewritten:

Qc2(s) = Q̄(s). (58)

Since Q̄(s) ∈ RH
∞

, Qc2(s) is proper. Therefore, Qu(s) in (54) makes Qc2(s) proper.
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5. Numerical Example. We provide a numerical example to compare responses of a
one-degree-of-freedom control system [20] and a two-degrees-of-freedom control system to
show the effectiveness of the proposed method.

The plant considered in [20] is the angular velocity control of the two-inertia system
in Figure 2. Here, τM is the torque of the motor, JM is the moment of inertia of the
motor, DM is the coefficient of friction of the motor, JL is the moment of inertia of
the load, DL is the coefficient of friction of the load, K is the torsional spring constant,
and ωL is the angular velocity of the load. In [20], JM = 2.0 · 10−4, DM = 0.8 · 10−3,
JL = 2.2 · 10−2, DL = 1.8 · 10−3, and K = 0.4. For this plant, we design a two-degrees-of-
freedom semistrongly stabilizing controller, and contrast the responses of the one-degree-
of-freedom control system in [20] and our two-degrees-of-freedom control system.

JM

DM DL

JL

K
üM !L

Figure 2. Two-inertia system

The plant in Figure 2 is described by:

G(s) =
90.9 · 103

(s + 0.117)
(

s2 + 3.97s + 2.02 · 103
) . (59)

In [20], the plant G(s) in (59) was rewritten in the form of (5). Here, α = 1, β = 3.85 ·102:

Q1(s) = 0.26 · 10−2, (60)

Q2(s) = −
3.85 · 102

(

s2 + 4.08s + 1.78 · 103
)

(

s2 + 0.234s + 0.117
) (

s2 + 3.85s + 2.02 · 103
) , (61)

and

Q3(s) = 0. (62)

First, we design the feedback controller C2(s) in (10). To show that the feedback char-
acteristics of the two-degrees-of-freedom control system can be equal to that of the one-
degree-of-freedom control system, we set C2(s) equal to C(s) in [20]. That is, Qi(s) and
Qo(s) in (51) are:

Q̃i(s) = 1 (63)

and

Q̃o(s) =
90.9 · 103(s + 1)

(

s2 + 0.234s + 0.117
) (

s2 + 3.85s + 2.02 · 103
) , (64)

respectively. In addition, τ , ǫ, and k ∈ R in (53) are set to τ = 0.02, ǫ = 3, and k = 0.99,
respectively. Using these parameters, Qu(s) in (54) and C2(s) in (10) are given by:

Qu(s) =
(s + 0.167)

(

s2 + 1.50 · 102s + 7.48 · 103
)

(s + 50)3
(65)

and

C2(s) =
1.36

(

s2 + 0.241s + 0.118
) (

s2 + 4.12s + 2.03 · 103
)

s(s + 0.167)
(

s2 + 1.50 · 102s + 7.48 · 103
) , (66)



PARAMETERIZATION OF 2DOF SEMISTRONGLY STABILIZING CONTROLLERS 367

respectively.
Next, we design the feed-forward controller C1(s) in (9). Since the transfer function

from the reference input r(s) to the output y(s) is described by V4(s) in (42), Qc1(s) in
(9) is designed as:

Qc1(s) =
s + α

s + γ

1

(τc1s + 1)ǫc1

1

β

s + α
+

s

s + α
Q2(s)

, (67)

where τc1 ∈ R is an arbitrary positive number and ǫc1 is an arbitrary positive integer to
make Qc1(s) proper. When γ, τc1, and ǫc1 are set to γ = 1, τc1 = 0.02, and ǫc1 = 3, Qc1(s)
and C1(s) in (9) are given by:

Qc1(s) =
1.38

(

s2 + 0.234s + 0.117
) (

s2 + 3.85s + 2.02 · 103
)

(s + 1)(s + 50)3
(68)

and

C1(s) =
1.38

(

s2 + 0.234s + 0.117
) (

s2 + 3.85s + 2.02 · 103
)

s(s + 0.167)
(

s2 + 1.50 · 102s + 7.48 · 103
) , (69)

respectively.
Using the designed C1(s) in (69) and C2(s) in (66), the responses of the output y(t)

for step disturbance d2(t) = 1 of the one-degree-of-freedom control system using C2(s)
and two-degrees-of-freedom control system in Figure 1 are shown in Figure 3 and Figure
4, respectively. The solid line shows the response of the output y(t) and the broken line
shows that of the step disturbance d2(t) = 1. Figure 3 and Figure 4 show that the step
disturbance d2(t) = 1 is attenuated effectively. In addition, we find that the response of
the two-degrees-of-freedom control system is the same as that of the one-degree-of-freedom
control system.

On the other hand, the response of the output y(t) for the step reference input r(t) = 1
of the one-degree-of-freedom control system using C2(s) and the two-degrees-of-freedom
control system in Figure 1 are shown in Figure 5 and Figure 6, respectively. The solid line
shows the response of the output y(t) and the broken line shows that of the step reference
input r(t) = 1. Figure 5 and Figure 6 show that these control systems are stable and
the output y(t) follows the step reference input r(t) = 1 without steady state error. In
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Figure 3. Response of y(t) with the one-degree-of-freedom control system
for d2(t) = 1
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Figure 4. Response of y(t) with the two-degrees-of-freedom control system
for d2(t) = 1
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Figure 5. Response of y(t) for the one-degree-of-freedom control system
for r(t) = 1
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Figure 6. Response of y(t) for the two-degrees-of-freedom control system
for r(t) = 1
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Figure 7. Enlarged view from 0[sec] to 2[sec] of Figure 5
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Figure 8. Enlarged view from 0[sec] to 2[sec] of Figure 6

addition, to compare the responses of Figure 5 and Figure 6, enlarged views from 0[sec] to
2[sec] are shown in Figure 7 and Figure 8. Figure 7 and Figure 8 show that the response
of the two-degrees-of-freedom control system has no overshoot and the settling time of the
two-degrees-of-freedom control system is shorter than that of the one-degree-of-freedom
control system.

We see that with the proposed two-degrees-of-freedom semistrongly stabilizing con-
troller C(s), the disturbance attenuation characteristic of the two-degrees-of-freedom con-
trol system can be the same as that of the one-degree-of-freedom control system and the
input-output characteristic of the two-degrees-of-freedom control system can be differ-
ent from that of the one-degree-of-freedom control system. That is, with the proposed
controller, we can realize more accurate control for the reference input.

6. Conclusions. In this paper, we have proposed the parameterization of all two-degrees-
of-freedom semistrongly stabilizing controllers for semistrongly stabilizable plants. We
then presented a design method for Qu(s) ∈ U that satisfies (12) and makes Qc2(s)



370 T. HOSHIKAWA, K. YAMADA AND Y. TATSUMI

proper. Finally, a numerical example was presented to compare the responses of the one-
degree-of-freedom control system [20] and the two-degrees-of-freedom control system to
show the effectiveness of the proposed method.

In future work, we will consider two-degrees-of-freedom semistrongly stabilizing con-
trollers for plants with time delay.
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