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ABSTRACT. In this paper, the computer searches a large number of Almost Difference
Set Pairs on two times prime v of residual class ring Zs, by using generalized cyclotomic
classes based on cyclotomic classes and Chinese Remainder Theorem. From the instance
of the Almost Difference Set Pairs, seven construction methods of Almost Difference Set
Pairs are presented. We can obtain more perfect discrete signal by utilizing the con-
structed Almost Difference Set Pairs.

Keywords: Generalized cyclotomic classes, Chinese Remainder Theorem, Almost Dif-
ference Set pairs, Perfect discrete signal

1. Introduction. In the fileds of spread spectrum communication, coding theory, applied
mathematics and others, the ideal sequence with good autocorrelation properties [1] and
high linear complexity [2] is scholars’ research highlight.

The ideal optimum signal refers to sequence, which of out-phase cyclic autocorrelation
function value is zero and in-phase cyclic autocorrelation function value is not zero [3,4].
Due to the limited number of such ideal sequence, scholars have begun to study multi-
value sequence [5,6], sequence pairs [7,8] and other forms of sequence [9]. Difference Set
[10] and Difference Set Pairs [11] are effective theory of combinatorial design of studying
sequence and sequence pairs. In this paper, our study is about Almost Difference Set
Pairs [12] that is an extended form of the Difference Set Pairs; this research can enrich
theory of combinatorial designs, and provide more perfect discrete signal.

In the previous related works, some achievements are about making use of generalized
cyclotomic classes [2] based on two times prime v of residual class ring to construct the
kinds of sequence and sequence pairs and Difference Set Pairs, but no one uses it to
construct Almost Difference Set Pairs.

This paper is on the basis of generalized cyclotomic classes based on two times prime v
of residual class ring, drawn seven construction methods of Almost Difference Set Pairs.
Section 2 gives some existing definitions and lemmas. In Section 3, we acquire three lem-
mas about generalized cyclotomic classes and construct seven kinds of Almost Difference
Set Pairs of order e < 6 by using generalized cyclotomic classes. Not only do these con-
struction methods enlarge the number of the Almost Difference Set Pairs, but also provide
a greater range of options for practical engineering demand.

2. Preliminaries.

Definition 2.1. Let Z, = {0,1,--- ;v —1} be the mod v residual class ring, U, W be two
subsets of Z,, {U| = ki, |W| = ko, e = |UNW|, if t nonzero element a in Z, lets the
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equation: x —y = a(modv) have exactly A ways, where X < t, (x,y) € (U, W), and other
v —1—1t nonzero element has exactly A+ 1 ways, then (U, W) is called a (v, ki, ks, e, A, t)
Almost Difference Set Pairs.

Definition 2.2. Let v =ef + 1 be a prime power, [ be a positive integer, F, be a finite
field of order v, set w be a primitive element of F,, ¢ = w®, and let

Hf = {w',wle,wie? -+ wiel 1}, 0<i<e—1
Then H§, HY, ---, HS | is called e-order cyclotomic classes.

Definition 2.3. Let v = ef + 1 be a prime power, H; is called cyclotomic classes of
order e, Zy, = {0,1,---,2v — 1} be the mod 2v residual class ring, by the Chinese Re-
mainder Theorem, Zy, = Zy @ Z,, relatively to isomorphism f(w) = (wi,ws), where
wy =w mod 2, wy = w mod v. Let denote f~'({j} x H;) as Hj;, 7 =0,1;i=0,--- ,e—1,
and then H;; is called e-order generalized cyclotomic classes.

For example: Let 17 = 4f + 1, then Hy = {1,13,15,4}, H, = {3,5,14,12}, Hy, =
{9,15,8,2}, H; = {10,11,7,6}, so generalized cyclotomic classes are Hy o = {18, 30, 16, 4},
Hyp = {1,13,33,21}, Hy, = {20,22, 14,12}, Hy, = {3,5, 31,29}, Hyo = {26, 32,8, 2},
Hy,= {9,15, 25,19}, Hys = {10, 28, 24,6}, Hy 3= {27,11,7,23}.

Lemma 2.1. Let g € Hy, then the equation x + g =y, ¥ € Hf, y € H, has ezactly
(1 — k,j — k) solution.

Lemma 2.2. Some properties of cyclotomic number are as follows:
(1) ( ) (z Tes when i =i(mod e), j = j(mod e)

(2 (e—1 ]
{ if 2|f
(j +e/2 i+e€/2), otherwise
-1 o —1€Hf
(4) Z ( Pe = { otherwise

e—1,. ~ _ ) =1 if3=0
(5) 2io (i 7)e = { f otherwise
3. New Construction of Almost Difference Set Pairs. In this section, we will give
three lemmas about generalized cyclotomic classes and prove them. Afterwards we will
use the generalized cyclotomic classes to construct seven kinds of Almost Difference Set
Pairs.

Lemma 3.1. Let v = ef + 1 be a prime number, H;; (j = 0,1; ¢ =0,---,e — 1) be
generalized cyclotomic classes of order e in the Zy,, then
(1) If f be an even number,

- . 1 gEHj,i
|(H],Z+g)m{0}|_{ 0 g%Hj,i

(2) If f be an odd number,
1 g e H; (i+e/2)mod e
Hji+g)N{0}| = 3
|( > g) { }| { 0 g é Hj,(i+e/2)mod e
Proof: When f be an even number, set H; is cyclotomic classes of order e, H; =
(ho, by, -+ hy1), Hjz = (v, 21, ,27-1),0< i < f/2—1, s—t = f/2, by the Chinese
Remainder Theorem, we can get the following equation:
xy mod 2 =3
{ z; mod v = hy
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and .
{:Ef/2+t mod 2 = j
Ty/ope mod v = hgjopy
Since (h + hyja14) mod v = 0, then (z¢ 4+ x5/244) mod v =0 ().
No matter when j is 0 or 1, we can get (z; + Z/24¢) mod 2 = 0. With Formula (x), we
have
(¢ + 2 f/244) mod (2v) =0
Therefore, Formula (1) is proved, and similarly we can prove Formula (2).
Lemma 3.2. Let v = ef + 1 be a prime number, H;; (j = 0,1;4 = 0,---,e — 1) be
generalized cyclotomic classes of order e in the Zy,, then
(1) If f be an even number,

1 g€ Hijt1)mod 2,
Hj;+g) N {v}| = ’ ’
|(Hj,i + g) N {v}] { 0 9¢ Hijs1ymod 2,
(2) If f be an odd number,
1 g € H('+1)mod 2,(i+e/2)mod e
Hj;+g) N {v}| = ! |
|(Hji + g) N {v} { 0 g¢ H (1 1)ymod 2,(i+e/2)mod e

Proof: When f be an even number, set H; be cyclotomic classes of order e, H; =

(hﬂahla"' 7hf—1)7 Hj,z - (1‘071.17"' 7'Tf—1)7 H(j-l—l)mod 2,0 — (yﬁayla"' 7yf—1)7 0 S { S
f/2—1, s —t = f/2, by the Chinese Remainder Theorem we can get the following
equation:

x; mod 2 =]
x; mod v = hy

and
{yf/2+t mod 2 = (j + 1)mod 2

Yr/o+e mod v = hyopy
Since (hy 4 hygjaq)mod v = 0, then (z, 4+ 25044 )mod v = 0 (xx).
And as account of (; + xf/214)mod 2 = 1, with Formula (+x), we have
(ZCt + yf/2+t) mod (2'U) =
Therefore, Formula (1) is proved, and similarly we can prove Formula (2).
Lemma 3.3. Let v = ef + 1 be a prime number, H;; (j = 0,1; 1 =0,---,e — 1) be
generalized cyclotomic classes of order e in the Zy,, then

[(Hji +{v}) 0 Hj11)ymod 2, = f

Proof: Set H; to be cyclotomic classes of order e, H; = (ho, h1, -+ ,hp_1), Hj; =
(o, 1,y T5-1), H(j41)mod 2 = (Yo, Y1, »Ys—1). By the Chinese Remainder Theorem
we can get the following equation:

0(mod 2) = z,
{ hn(mod v) = z,

and
1(mod 2) =y,
hn(mod v) =y,
where 0 < n < f, down from the above two equations can be obtained.

v+ 2, = yn(mod 2v)
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so [(Hj; +{v}) N H 4 1ymod 92il = f

In the following section, by search through the computer, summarize seven kinds of the
construction methods of Almost Difference Set Pairs by using the nature of generalized
cyclotomic classes.

Theorem 3.1. Let v = ef + 1 be a prime number, H;; (j = 0,1; ¢ = 0,- - 1)
be generalized cyclotomic classes of order e in the Zs,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2ef + 2,2ef, nf,nf,nf —1,2nf), n=1,--- e.

Proof: Let
U= U (HUZUHM) W= Um 1 szw

where j, = 0,1, 4, =0,--- ;e — 1, and iy # 19 # - - - F# 1y,.

Obviously, |U| = 2ef, |W| =nf, [UNW|=nf. For every nonzero element g € H;,
let

A=|U+g)nW|

In the following we discussed three cases of nonzero element g.
a) When g € Hyy, (k=0,1,---,e—1),

_ . . . nf_]- ke{ila"'ain}
A_Z(m—k,zl—k)+...+ (m—k,ln—k)—{nf k¢ {iy, - i}
b) When g € Hyy (k=0,1,---,e—1),

e—1 e—1

A=S"(m—hyiy— k) 4+ (m—kzn—k):{2§—12231§ﬁ

3
Il
)

m=0
c) When g € {v}, A =nf
SoA=nf —1, A+ 1 =nf. Therefore, the theorem is proved.
Example 3.1. When 11 = 2f + 1, Hyo = {12,4,16,20,14}, H,o, = {1,15,5,9,3},
HO,I = {2, 8, ]_0, ]_8, 6}, Hl,l = {15, 2]_, ]_9, ]_]_, 7}, then (H()’()UHLOUHOJ UHl’l, H(),()UHO’I)
constructs an Almost Difference Set Pair (22,20, 10, 10,9, 20).

Theorem 3.2. Let v = ef + 1 be a prime number, H;; (j = 0,1; ¢ = 0,---,e — 1)

is generalized cyclotomic classes of order e in the Zs,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2ef + 2,ef, 2nf,nf,nf —1,2nf), n=1,--- e.

Proof: (1) Let
U= Ue p o Hjpor W = UZ:I(Hinz U Hl,iz)

where 7, =0,--+,e—1, j, = 0,1, and jp, J1,-*+ , Je—1 cannot be equal at the same time.

Obviously, |U| = ef, |W| = 2nf, [UNW| = nf. For every nonzero element g € H,;,
let

A=|U+g)nW|

In the following we discussed three cases of nonzero element g.
a) When g € Hyy (k=0,1,---,e —1),

e—1 e—1

_ | [ nfe1 B i)
A_Z(m—k,zl—k)+...+ :O(m—k,zn—k)—{nf k%{li,,ln}

b) When g € Hyj, (k=0,1,---,e —1)
1

3
&
3

e—1 e—

o . nf—1 ke{i, iy}
A—mzo(m—k,h—k)"‘ +z:0m ki, — ) {nf k%{li,,ln}
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c) When g € {v}, A =nf
SoA=nf—1, A+ 1 =nf. Therefore, the theorem is proved.
(2) Let
U= Uiz (Hi U Hig), W=Up_ (Hoi, UH, )

where i,4,,i, = 0,---,e — 1,7 =0,1.

Similarly, this formula can be proved easily.
Example 3.2. When 19 = 3f+1, Hyo = {20,8, 26,18, 30,12}, H, o ={1,27,7,37,11, 31},
Hl,l = {2, ]_6, ]_4:, 36, 22, 24}, H(],Q = {4, 32, 28, 34, 6, 10}, then (H0,0 U H171 U HO,Q, H(),O U
Hy,) constructs an Almost Difference Set Pair (38,18,12,6,5,12).
Theorem 3.3. Let v = ef + 1 be a prime number, H;; (j = 0,1; ¢ = 0,---,e — 1)
is generalized cyclotomic classes of order e in the Zs,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2ef + 2,ef + 1,2nf + 1,nf + 1,nf,2nf + 1),
n=1---e.

Proof: (1) Let

U=U;Zo Hjw U {v}, W=Uj (Hos, UHy,) U {v}

where 7, =0,--+,e —1, j, = 0,1, and jp, J1,-** , Je—1 cannot be equal at the same time.
Obviously, |U| =ef + 1, |W|=2nf+1, |[UNW|=nf+ 1. For every nonzero element
gc Hj,ia let
A=|U+g)nW|
In the following we discussed three cases of nonzero element g.
a) When g € Hyy, (k=0,1,---,e—1),

e—1 e—1
B . , nf=140 ke {i, -, i}
A_Z})(m_k,zl_k)jL...jLz_:o(m—k,zn—k)+9—{ nf+0 ke {iy, - ,in}

When f mod 2 =0 and Hy, € U or f mod 2 =1 and H e/ € U,
A nf+1 ke{i, -, i}
Tl nf+1 k& iy, in}
When f mod 2=0and Hy; ¢ U or f mod 2 =1 and Hy j1./» ¢ U,
A = nf ke{ila"'ain}
b) When g € Hyj, (k=0,1,--+,e —1),
When f mod 2 =0 and Hyy € U or f mod 2 =1 and Hojye2 € U
A nfHL kefin i)
Tl nf+1 k& iy, in}
When f mod 2 =0 and Hoy ¢ U or f mod 2 =1 and Hypyeo € U
Ao [ nf ke i i)
nf kg—f{llvaln}
c) When g € {v}, A =nf
SoA=nf—1, A+ 1 =nf. Therefore, the theorem is proved.
(2) Let
U= (Hj; UHy), W= (Hy, U Hy )
where i,im,i;:O,--- ,e—1,7=0,1.
Similarly, this formula can be proved quickly.
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Example 3.3. When 11 = 5f + 1, HO,U = {12,10}, HI,O = {1,21}, HO,I = {2,20},
Hl,l = {13,9}, H0,2 = {4, 18}, Ho’g = {8, 14}, H0’4 = {16,6}, then (HU’() U H()’l U H()’g U
Hys UHy U{v}, HygUH gUHy UH, U{v}) constructs an Almost Difference Set Pair
(22,11,9,5,4,11).

Theorem 3.4. Let v=4f+1=4y*>+1 be a prime number, H;; (j =0,1;4=0,---,3)
be generalized cyclotomic classes of order 4 in the Z,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2(t +1),t,t/2,t/4, (t —4)/4,t/2), t = v — 1.

Proof: (1) Let

2
U=, Hj+1iUHjoUHj3, W=HyUHy ;.

where i’ =0,2; 7,5 =0,1.
Obviously, |[U| =4f, [W|=2f, [UNW]| = f. For every nonzero element g € H,;, let
A=|U+g)nW|

In the case of v = 4f +1 = 4y* + 2> = 4y*> + 1, then x = 1, and = = 1(mod 4), by Lemma
2.2 derived calculation shows, cyclotomic classes of order 4 have five basic cyclotomic
number; if f be an even number, they are recorded as (0,0), (0,1), (0,2), (0,3), (1,2);
if f be an odd number, they are recorded as (0,0), (0,1), (0,2), (0,3), (1,0). When
x = 1(mod 4), reference [3] provides the formula of these five basic cyclotomic number,
as shown in Table 1.

TABLE 1. Formula of cyclotomic classes of order 4

f = 0(mod 2) f = 1(mod 2)
16(0,0)|  v— 11— 62 |16(0,0) — T+ 2
16(0,1) | v —=3+2x+8y | 16(0,1) | v+ 1+ 22 — 8y
16(0,2) v—342zx|16(0,2) v+1—6z
16(0,3) | v — 3+ 2x — 8y | 16(0,3) | v + 1 + 2z + 8y
16(1,2) v+1—22|16(1,0) v—3 -2

When i’ = 1,2, 3, corresponding H, ; is a sample of Hj, 0 and corresponding H i +2) 1 i
a sample of H;,, so we may only prove the case i =0,7,7 =0.

In the following we discussed three cases of nonzero element g.
a) When g € Hyy (k=0,1,---,e — 1),
A=0—-k0—-k)+0—k1—-k+B—-k0—k) +3—Fk1—k)
If f be an even number, then

Ngp = (0,0)+ (0,1) + ( 0)+(3,1)=(4v—16—4z)/16 = f — 1
Aoy =(3,3)+(3,0) +(2,3) + (2,0) = (dv — 8+ 4x) /16 = f
A0,2:(272) ( ) (17 ) (173) (4?}—4.%‘)/16—

Nos = (1, 1)+(12) (0,1) +(0,2) = (4v — 8+ 4x)/16 = f
If f be an odd number, then

Ao =(0,0)4+(0,1)+ (3,0) + (3,1) = (dv — 8+ 4z)/16 = f

Aoy =(3,3)+(3,0) +(2,3) +(2,0) = (dv — 16 —4z) /16 = f — 1
Nop=1(2,2)4+(2,3)+(1,2) + (1,3) = (4v—8+4x)/16—
Aoz =(1,1)+(1,2) + (0,1) + (0,2) = (dv — 4x)/16 =

b) When g € Hyj, (k=0,1,--+,e —1),

A=1-k0-k+Q—-kl1-k+2-k0—k +(2—Fk1-k)
If f be an even number, then

Ap=1(1,004+(1,1)+ (2,0) + (2,1) = (dv — 8+ 4z) /16 = f

Ay =1(0,3)4+(0,0)+ (1,3) + (1,0) = (4v — 16 — 4x) /16 = f — 1
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AI,Z - (37 2) + (373) + (07 2) + (073) = (4U - 8 —|—4l‘)/16 - f
A1,3 - (27 1) + (27 2) + (37 1) + (37 2) = (4U - 4.%')/16 = f
If f be an odd number, then

Arg = (1,0) 4 (1,1) + (2,0) + (2,1) = (40 — 16 — 4z) /16 = f — 1
A =(0,3)+(0,0) + (1,3) + (1,0) = (4v — 8+ 4x) /16 = f
c) When g € {v}, A=f
SoA=f—-1=(t—4)/4, \+ 1= f =1t/4. Therefore, the theorem is proved.
(2) Let
U=, (HowUHiz),W=H;;UH; .,
or U=U;2(HowUHie),W=H;;UHy,_,

or U= U;:O Hj,x U Ui:Z Hj+1,:1:a W = Hj,i U Hj,ifl
where i,im,i; =0,---,e—1,5=0,1.
Similarly, this formula can be proved easily.

Example 3.4. When 37 = 4f + 1 = 4% + 1, Hy, = {38,16,34,26,46,70,10,12, 44},
Hoy = {2,32,68,52,18,66,20,24, 14}, Hy, = {41,27,25,67,73,21,3,11,65}, Hys =
{8,54,60,72,42,6,22,56}, H, 5 = {45,17,13,23,35,5,43,59, 19}, then (Hy gUHp 1 UH; U
H,3,HyoU Hys) constructs an Almost Difference Set Pair (74,36,18,9,8,18).

Theorem 3.5. Let v=4f +1=4y*+1 be a prime number, H;; (j =0,1; i =10,---,3)
be generalized cyclotomic classes of order 4 in the Z,, the presence of set pair (U’, W’)
constructs Almost Difference Set Pairs (2(t +1),t+ 1, (t +2)/2,t/4,t/4,1/2), t = v — 1.

Proof: According to the U and W of Theorem 3.4, we can let
U =Uu{0}, W =Wu{v}
Combining Theorem 3.3 and Theorem 3.4, this formula can be proved quickly.

Example 3.5. When 37 = 4f + 1 = 4y + 1, Hy, = {1,53,71,63,9,33,47, 49,7},
Hy, = {39,69,31,15,55,29,57,61,51}, Hys = {4,64,62,30,36,58,40,48,28), Hys =
(8,54,60,72,42,6,22,56}, H, 4 = {45, 17,13, 23,35, 5, 43,59, 19}, then (H, yUH, , UHq2U
Hy3U{0}, Hi gUH, 3U{v}) constructs an Almost Difference Set Pair (74,37,19,9,9, 18).

Theorem 3.6. Let v=4f+1=4y*+1 be a prime number, H;; (j =0,1; i =0,---,3)
be generalized cyclotomic classes of order 4 in the Z,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2(t +1),t,t,t/2,(t —2)/2,t), t = v — 1.

Proof: Let
U — Hj’() U Hj’g U U?:l Hj+1,i;
W = U;:U Hj',z’ U U?:2 H.. or W= Ujl-:o H;;U U;-H/ Hj',x

J st 75 =1
1 3 1 3
or U=UisgHji YUy Hjrriy W=U;oHji VU, Hy
where i, =0,2; j,5,7 =0,1.
This formula combining Theorem 3.4 can be proved easily.

Example 3.6. When 101 = 4f+1 = 4y2+1, Hy, = {102, 16, 54, 56, 88,196, 106, 80, 68, 78,
36,172,126,198, 138,188, 180, 52, 24, 182, 84, 132, 92, 58,120}, H, o= {1, 117,155, 157, 189,
95, 5,181,169, 179, 137, 71, 25,97, 37,87, 79, 153,125, 81, 185, 31, 193,159,119}, Hy, = {7,
103,133,11,75,89, 111,59, 35, 55, 173,41, 151,93, 175, 73,57, 3, 149, 61, 67, 163, 83,15,139},
Hyo= {4,64,14,22, 150,178, 20,118, 70, 110, 144, 82,100, 186, 148, 146, 114, 6, 96, 122, 134,
124, 166,30, 76}, Hy 5= {105, 165, 115, 123,49, 77,121,17,171,9,43, 183, 201, 85, 47, 45, 13,
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107,197, 21,33,23,65, 131, 177}, then (Hoo U Hos U Hyy U Hyy, Hoo U Hig U Hoy U Hy )
constructs an Almost Difference Set Pair (202,100, 100, 50, 49, 100).

Theorem 3.7. Let v=4f+1=4y*+ 1 be a prime number, H;; (j =0,1; i =10,---,3)
be generalized cyclotomic classes of order 4 in the Z,, the presence of set pair (U, W)
constructs Almost Difference Set Pairs (2(t+1),t+1,3t/2,3t/4, (3t—4)/4,3t/2), t = v—1.

Proof: Let
U=HjyUH;sUUL Hjpri W =Uj_o(Hja U Hj) WU, Hy

Tr=13
1 3 i 1
or U=U,_gHji UUi—y Hiriy W=U,y 1 Hy , UUj—o(Hjir1 U Hjipo)
where 4,y,49,i3 =0,---,3; 7,7 =0, 1.
Combining Theorem 3.4, this formula can be proved easily.

Example 3.7. When 101 = 4f+1 = 4y*+1, Hy,={102, 16, 54,56, 88, 196, 106, 80, 68, 78,
36,172, 126,198, 138, 188, 180, 52, 24, 182, 84, 132,92, 58, 120}, Hy, = {2, 32,108,112, 176,
190, 10, 160, 136, 156, 72, 142, 50, 194, 74,174, 158, 104, 48, 162, 168, 62, 184, 116,38}, H, 1 =
{103,133,7,11,75,89, 111,59, 35,55,173,41, 151,93, 175, 73,57, 3,149, 61, 67, 163, 83, 176,
15,139}, Hyo={4, 64, 14,22, 150, 178,20, 118, 70, 110, 144, 82, 100, 186, 148, 146, 114, 6, 96,
122,134,124, 166,30, 76}, Hy ., = {105,165, 115, 123,49, 77,121,17,171,9, 43, 183, 201, 85,
47,45,13,107,197, 21, 33,23,65,131,177}, Hy3={8, 128,28, 44,98, 154, 40, 34, 140, 18, 86,
164,200, 170,94, 90, 26, 12, 192, 42, 66, 46, 130, 60, 152}, H; 3 = {109,27,129, 145,199, 53,
141,135, 39,119, 187,63,99, 69, 195, 191, 127, 113,91, 143, 167, 147,29, 161, 51}, then (Hop
UHy 1 UH, s UH, 3, HyyUHy 1 UH,  UHy2UH, 2 UHg3) constructs an Almost Difference
Set Pair (202,100, 150, 75,74, 150).

4. Conclusions. In this paper, seven construction methods of Almost Difference Set
Pairs on two times prime v of residual classes ring 2v are proposed by using generalized
cyclotomic classes based on cyclotomic classes and Chinese Remainder Theorem. The
first three theorems of Almost Difference Set Pairs have high universality; the later four
theorems only apply to the case of v = 4f + 1 = 4y? + 1. So through these construction
methods we could construct a lot of Almost Difference Set Pairs with different parameters.
Further more, according to equivalence relations between Almost Difference Set Pairs and
all kinds of perfect discrete signal, we can also construct more and more perfect discrete
signal of practical engineering demand.
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