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Abstract. We have proposed the method of the neural network based on quantum the-
ory (wave equation and path integrals) of polaritons, and made some relation’s tools and
descriptions for calculations for arbitrary neural circuits developed. The most important
difference between the common (classical) neural network and quantum one existed in
whether there were interferences between both systems. The quantum system had essen-
tially many interferences’ relationships in its system, and so its probability was related to
the probability amplitude, wave functions and propagators, which were commonly complex
functions. On the other hand, the classical probability never contained any interferences
since it had in the real number field. And concretely we showed how those quantum
methods, whose system contained much interference, were applied to the Bayes’ theory,
entropy of information theory, and the two-step neural network of multi channels. And
we found that our quantum neural network and polariton’s model were connected with
the common quantum information theory, classical neural system and information the-
ory, and quantum network contained many branches of soft science. Moreover, when we
attempt to practice that calculation on classical fuzzy probability and quantum amplitude,
we immediately find that fuzzy probability is equivalent to Choquet integral. However, we
recognize the difference between Choquet integral and path integral. As Choquet integral is
always real number, but quantum integral means complex number. Thus, Choquet integral
has sometimes divergence of integral values in spite of finite integral value of quantum
computation. Thus, we showed that our methods were related to various areas as appli-
cations of fuzzy controls, classical neural systems, the classical information theory and
so on.
Keywords: Neural network, Quantum computation, Interference, Path integral, Wave
function, Propagator, Bayes’ theory, Entropy, Quantum neuron, Fuzzy probability, Cho-
quet integral, Quantum mechanical expectation value

1. Introduction. The most famous research on muscular systems is a model of actin-
myosin proposed by Hodgkin & Huxley, whose theory is based on mathematical cable
theory, ionic current (Na+, K+), local currents and conductions of action potentials [1].
This model won the great success in branch of biological and physiological neuron’s model
and neural networks. Modern various neuro-physiology is constructed on their theory,
whose theory mentions each of neural impulse never interferes with each other, for each
neural axon is insulated by its myelin sheath. Arvanitaki, however, proved an existence
of ephapse, which is an electrical interference between two axons of neuron [2,3]. His
discovery and experiment are thought to be made up a kind of artificial neuron [4,5]. So,
we have been studying a model of electromagnetic interferences between each of neural
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axon and the network, and finally we proposed new engineering neuron’s model based on
the polaritons.

They are quantum quasi particles, massive photons and quantized polarization waves,
arising on the axon through the physiological process. In the other word, its process is
a series of neuron’s activities, polarization-depolarization-re-polarization [2]. Then, we
have begun to study the theory and tools of description for neural circuits and logical
circuits (AND, NOT, OR) by Feynman path integrals [5]. Thus, we could perform to give
an expression of path integral for various neural networks and Beyes’ system [1,5].

In this paper, differences and similarities between classical system and quantum one
have been shown. For example, classical neural network and quantum network, fuzzy
probability, Choquet integral and Feynman path integral, common Bayes’ theory and
quantum style, classical entropy and quantum expression.

2. Porariton’s Equation and Rules of Quantum Neural Conduction. In previous
paper, we showed the equation of polaritons on neural axons, and the polarities are exactly
governed by Proca equation, Equation (1), which was relativistic one [18]

(∂µ∂
µ +m2)Aµ = Jµ

Jν(x) ≡ (ρ(x, t), i(x, t)) ≈ jν
Na + jν

K

(1)

The symbol m is polariton’s mass, and the Jν means the quaternary vector currents.
According to classical neural theory as Hodgkin & Huxley model, the polariton means a
quantized polarization wave, which is an impulse from neurons and an action potential.
So, the total current jν

a , (a = Na or K) is generated by major two ionic currents, which
correspond to the sodium current jν

Na and to the potassium current jν
K through neural

axon. To derive non-relativistic polariton’s equation from relativistic Equation (1), we
need return from the wave function Aµ of natural unite to that of MKS unite:

Aµ(x, t) = ϕµ(x, t) · exp

(

−
i

~
mc2t

)

(2)

Then, we split the time dependent of Aµ into two terms, then the one containing the rest
polariton’s mass, m. In the non-relativistic limit, the kinetic energy Ek is so small that
we can define it as

Ek = E −mc2, E ′ << mc2 (3)

non-relativistic kinetic energy Ek means
∣

∣

∣

∣

i
∂ϕµ

∂t

∣

∣

∣

∣

≈ Ekϕ
µ << mc2ϕµ (4-1)

∂Aµ

∂t
≈ −i

mc2

~
ϕµ · exp

(

−
i

~
mc2t

)

(4-2)

∂2Aµ

∂t2
≈

[

−i
2mc2

~

∂ϕµ

∂t
− i

m2c4ϕµ

~2

]

· exp

(

−
i

~
mc2t

)

(4-3)

Inserting this results into following relativistic relation:

pµpµA
ν +m2c2Aν = jν/c (5)

We finally obtain the 4-components’ non-relativistic expressions as Schrödinger equation.
The result is non-relativistic polariton’s relationship,

i~
∂Aµ

∂t
=

[

−
~

2

2m
∇2 + V̂

]

Aµ

Aµ = (φ,A), jν
~

2/(2mc) ⇔ V̂ Aν

(6)
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We reach the final polariton’s equation with 4-components. The motion of polaritons is
described by above 4-components’ equations: they are scalar potential A0 = φ and vector
potential is A. If the quaternary vector potential of electromagnetic field of polaritons are
having A = constant or A changing much slowly (i.e., stationary magnetic field), then
Equation (6) becomes common Schrödinger equation for polariton with only having the
scalar potential φ,

i~
∂φ(x, t)

∂t
=

[

−
~

2

2m
∇2 + V̂

]

φ(x, t) = Ĥφ(x, t)

∵ B(x, t) = rotA(x, t) ≈ 0, E(x, t) = −grad φ(x, t)
(7)

To simply our problem we discuss the near static magnetic field being accompanied with
scalar potential case, whose quaternary solution nearly equals Aµ = (φ,Constant A).

3. Description of Quantum Neural Network Using Feynman Path Integral.
According to our previous papers, we have developed quantum description tools of po-
lariton’s models [17,18]. We would like to write down the useful relationships between
kernels and wave functions, whose expressions are based on quantum mechanics and path
integral method [13,14,19-22].
(1) The solution φ of Equation (7) is written down by using kernel K(B,A) of φ for free
propagation of polariton (φ(A) is an initial condition):

Quaternary potential

i~
∂φ

∂t
= Ĥφ⇒ φ(x, t) =

∫

K(B,A)φ(A)dA⇒ Aµ = (φ(x, t), constant Ac) (8)

∵ B ≡ (x, t), A ≡ (x0, t0)

The K(B,A) of free polatriton is represented as

K(B,A) =

[

2πi~(t− t0)

m

]

−1/2

exp

[

im(x− x0)
2

2~(t− t0)

]

= t 〈B/A〉0

(9)
And the position B becomes

x(t) = x0 +
x− x0

t− t0
(t− t0) (10)

(2) If the kernel KC(B,A) is divided into two parts by a relay’s point C, then its kernel,

KC(B,A) ≡ t

〈

B
∣

∣

C
A
〉

0
=

∫

K(B,C)K(C,A)dC (11-1)

is given by Feynman path integral.
If the polariton is diffracted by potentials at point D, then we have a similar relation

with using slit width δ:

KC(B,A) ≡ t

〈

B
∣

∣

C
A
〉

0
=

δ
∫

0

K(B,D)K(D,A)dD (11-2)

The kernel K(B,A) should be governed with Schrödinger equation:

i~
∂K(B,A)

∂t
= ĤK(B,A) (12)
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(3) When a state vector |φ(t)〉 is projected into x-axis of Cartesian coordinate, the wave
function φ(x, t) has an expression,

φ(x, t) ≡ 〈x|φ(t)〉 , ∵ |φ(t)〉 = U(t, t0)|φ(t0)〉 (13)

(4) When we substitute Equation (13) into Equation (8), an explicit description of unitary
operator U(t, t0) obeys the same Schrödinger equation. The unitary operator,

U(t, t0) = exp
(

−iĤ(t− t0)/~
)

(14)

is finally applied for the kernel K(B,A), so the time-development’s form of kernel becomes

K(B,A) = t 〈B|A〉0 =
〈

B
∣

∣

∣
Û(t, t0)

∣

∣

∣
A
〉

(15)

(5) The special case of kernel,

KC(B,A) = t 〈B|CA〉t =
〈

B
∣

∣

∣
Û(t, tC)Û(tC , t)

∣

∣

∣
A
〉

(16)

equals this delta function at fixed time t, and we have

∫

K(B,C)K(C,A)dC =

∫

t〈B|C〉tc〈C|A〉tdC = 〈B|A〉t = δ(x − x0) (17)

∵

∫

dX|X〉〈X| = 1

(6) If the free polariton is scattered by general potentials V as being observed in atomic
structures or by switch function S of electronic circuit at point C, we have a similar
scattering representation to the diffraction’s Equation (11-2) by using Equation (15):

KC(B,A)

≡ t

〈

B
∣

∣

∣
ŜC

∣

∣

∣
A
〉

0
=
∫

K(B,C)S(C)K(C,A)dC

=

∫

〈

B
∣

∣

∣
Û(t, tC)

∣

∣

∣
C
〉

S(C)
〈

C
∣

∣

∣
Û(tC , t0)

∣

∣

∣
A
〉

dC

(18)

(7) When the scalar potential of polariton is governed by φ of that quaternary Schrödinger
Equation (8), then a time-development state |φ(t)〉 of the formal expression for Equation
(8) is

|φ(t)〉 = e−iĤt/~|φ(0)〉 (19)

And completeness of the eigen-state vector |Ψi(t)〉, which is applied for Equation (16),
leads us to the kernel expression of proper wave function Ψi(x, t).

K(B,A) = t〈B|A〉0 =
∑

j

ψj(x)ψ∗

j (x0) exp(−iEj(t− t0)) (20)

∵ |φ(t)〉 = e−iĤt/~|φ(0)〉,
∑

j

|ψj(x)〉
〈

ψ∗

j (x0)
∣

∣ = 1, 〈x|φ(t)〉 = φ(x, t)
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(8) Both rules of the diffraction at point D and the potential scattering at point C are
described by the form of path integral, and then we have the kernel KDC(B,A):

KDC(B,A)

= t

〈

B
∣

∣

∣
ŜC

∣

∣

∣

D
A
〉

0

=

∫

dDdCdEK(B,E)K(E,C)S(C)K(C,D)K(D,A)

=

δ
∫

0

∫

dCK(B,C)S(C)K(C,A)

(21)

If we use those kernels descriptions, we can transform many classical neural networks
into quantum neural ones. For example, we would like to obtain a quantum expression of
the network by applying above relations for following classical neural network.

Figure 1. Quantum calculation of neural network

When an action potential, which is quantized polarization vector (polariton in our
models), conducts from neuron-1 to neuron-5 (point F ) or to neuron-11 (point G), we are
able to calculate the state of wave function at the point F or the point G. In the other
word, an initial wave function Ψ(1) propagates from the point-1 to the point F or point
G, and our methods enable to know the final wave function Ψ(F ) or Ψ(G). The Ψ(F ) is
given as

Ψ(F ) =

∫

K(F, 1)Ψ(1)dx1, K(F, 1) ≡ K(F, x1) (22)

from using Equation (8). And if we can write down the expression of the kernel K(F, 1),
the final result of wave function at the point F :

K(F, 1)

=

∫

dx5 · · · dx1dβdαK(F, 5)S(5)K(5, 4)S(4)K(4, β)K(β, 3)S(3)K(3, 2)S(2)K(2, α)K(α, 1)

We apply the same method for the point G, and the wave function Ψ(G) at point G
becomes the sum of two different paths, which are both 1 ⇒ 2 ⇒ 3 ⇒ 7 ⇒ 11 ⇒ G &
1 ⇒ 8 ⇒ 9 ⇒ 10 ⇒ 11 ⇒ G. The one path is shown as

KA(G, 1)

=

∫

dx11 · · ·dx1dβdαK(G, 11)S(11)K(11, 7)S(7)K(7, β)K(β, 3)S(3)K(3, 2)S(2)K(2, α)K(α, 1)

and another is

KB(G, 1)

=

∫

dx11 · · · dx1dαK(G, 11)S(11)K(11, 10)S(10)K(10, 9)S(9)K(9, 8)S(8)K(8, α)K(α, 1)
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So, notice that the final wave function Ψ(G) is given as the sum of two paths,

K(G, 1) = KA(G, 1) +KB(G, 1) ∵ Ψ(G, 1) =

∫

K(G, 1)Ψ(1) (23)

Thus, we can rewrite various classical neural networks into the quantum ones by using
above formulas, and those expressions are not the static expressions of quantum state but
they are dynamic descriptions of the propagations and the time developments of systems,
which correspond to polariton conductions and their motions. We would like to mention
the state vectors |φ(t)〉 or 〈x|φ(t)〉 in the following section.

4. Similarities and Differences between Classical and Quantum Neural System.
We would like to show two examples of simple application of the quantum neural systems.
One is an example of quantum neural network, which looks like classical neural network’s
model; the other is probability of fuzzy set theory called the fuzzy probability.

4.1. Quantum expression of neural network. The classical neural networks are de-
scribed as famous following relations: if inputs signal Xj (j = 1, N), weighted by WKj,
are added to the K-th neuron, then the changes of activity of membrane potential Uk are
commonly expressed as

UK =
N
∑

j

WKjXj − hj (24)

A classical output, which is controlled signal, YK is determined by propagator function
f( ) and the potential UK . Thus, the YK becomes output of the classical networks:

YK = f(UK) =
1

1 + exp(−aUK)
(25)

On the other hand, if we pay attention to a quantum neural network, its networks can
be written by the same manner to classical network, and then the state

∣

∣AB
K(t)

〉

is

∣

∣AB
K(t)

〉

=

N
∑

j

CKj(t) |Aj(t)〉 =

N
∑

j

{

CKj(t) exp

(

−iεjt

~

)

|Aj〉 − hj |Aj(0)〉

}

, (26)

∵ |Aj(0)〉 = const

The weight WKj and signal Xj correspond to the weight CKj (coefficient) of super-
position of the quantum state vector |Aj(t)〉, and the final state

∣

∣AB
K(t)

〉

is regarded as
the classical potential term UK . The classical output YK is determined by propagator
function f( ) and potential UK . By the same reason, the quantum outputs are given by
the following relation

ΦK =
〈

x
∣

∣AB
K(t)

〉

=
N
∑

j

CKj(t) 〈x|Aj(t)〉 − hjCj0

=

N
∑

j

CKj(t) exp

(

−iεjt

~

)

〈x|Aj〉 − hjCj0 (27)

=

N
∑

j

{

CKj(t) exp

(

−i(px + εjt)

~

)

− hjCj0

}

, ∵ Cj0 = 〈x|Aj(0)〉
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in the projection of the coordinate space. So, we easily find, the classical output Yk can
be replaced by the quantum expression ΨK . Thus, we have an equation of

ΨK = f(ΦK) =
1

1 + exp(−aΦK)
(28)

Two expressions of output functions are much similar to each other; however, the
quantum outputs truly contain various quantum effects which are essentially different
from the classical networks, because the quantum output function ΨK allows complex
number’s functions, and it does not mean the probability but corresponds to the proba-
bility amplitude. The other hand, the parameters of classical networks Yk, UK and Xj,
are quite real numbers since they do not have interferences among others.

4.2. Formal similarity between fuzzy probability and quantum expectation
value. We would like to refer to an example of a fuzzy probability by taking up a dice.
The A is defined as the set of numbers of the dice

Set A: A(X) = {1, 2, 3, 4, 5, 6} (29)

We consider a fuzzy event as an element of set A taking nearly equal to the value 6, which
means the fuzzy probability PE(≈ 6). To calculate the fuzzy probability P (≈ 6), it is
necessary to introduce a membership function of the set A. For example, each element of
the membership function is given as A(X), (X = 1, 6),

A(1) = 0, A(2) = 0.1, A(3) = 0.3, A(4) = 0.6, A(5) = 0.9, A(6) = 1 (30)

Then we can calculate the fuzzy probability by using probability P (X), since we are
having the membership function. Thus, the fuzzy probability PE(≈ 6) is obtained by
procedure,

PE(≈ 6) = A(1)P (1) + A(2)P (2) + A(3)P (3) + A(4)P (4) + A(5)P (5) + A(6)P (6) (31)

We assume that the dice has an equivalent probability for each value:

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6

So we have final result PE(≈ 6) = 0.483. According to common probability method, the
probability, that we can obtain the value 5 or 6 of the dice, has the same expression,

A(1) = 0, A(2) = 0, A(3) = 0, A(4) = 0, A(5) = 1, A(6) = 1 (32)

Thus, we have

PE(5 ∨ 6) = A(1)P (1) + A(2)P (2) + A(3)P (3) + A(4)P (4) + A(5)P (5) + A(6)P (6)

= 1 × 1/6 + 1 × 1/6 = 1/3 (33)

Hitherto based on the above discussion, both probabilities, PE(XJ) can be written down
by using the probability density Pρ(X) and membership function FJ(X) for X = XJ ,

PE(≈ XJ) =

∫

all X

Pρ(X)FJ(X)dX (34)

In order to expand Equation (34) by regarding sub index J , we consider, a set of mem-
bership function F , that of probability density Pρ. We make an inner product of the
elements:

F = {F1(X), F2(X), · · · , FM(X)}, Pρ = {Pρ1(X), Pρ2(X), · · · , PρM(X)} (35)

−−−−→
product

I =







∫

all X

Pρ1(X)F1(X)dX,

∫

all X

Pρ2(X)F2(X)dX, · · · ,

∫

all X

PρM(X)FM(X)dX
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So we have an expression of fuzzy probability of two variables, when we regard the indexes
of Pρ(X) and FJ as variable y:

PE(≈ y) =

∫

Pρ(X, y)F (X, y)dX (36)

That is the fuzzy probability when it takes the value to be about y. Thus, we find that
those equations from Equation (34) to Equation (36) show the fuzzy probability, and we
notice that the quantum description of the expectation value has mathematically a kind
of similarity between each other. As the quantum mechanics mentions, its probability
density PE(≈ X) is defined as |Ψ|2, and it is possible to translate the fuzzy probability
into quantum language. Then an expectation is to be, according to quantum mechanics,

〈FJ(≈ XJ)〉 =

∫

Pρ(X)FJ(X)dX =

∫

Ψ∗(X)FJ(X)Ψ(X)dX (37)

Notice that the fuzzy probability Equation (34), by the membership function, has simi-
larity to the expectation value of quantum mechanics. Thus, we can estimate the various
physical quantities and the controls of quantum neural networks, since the fuzzy prob-
ability is contained in a kind of quantum probability. The fuzzy probability PE(≈ X)
can directly be translated into the expectation value of membership function 〈FJ(X)〉.
And we find the membership function FJ(X) to be equal to a physical observable, which
means the operator of physical quantity FJ(X)-hat. If the polariton, conducting on axon,
has an eigen value EJ and eigen function ΨJ belonging to Schrödinger Equation (7), then
the quantum mechanical expectation of the membership function (strictly speaking, that
is a membership operator) is given by
〈

F̂J(≈ XJ , P )
〉

=

∫

ψ∗

J(X)F̂J(X,P )ψJ(X)dX, ∵ F̂J(X,P ) ≡ FJ (X,−i~∇) (38)

After all, those equations, from Equation (34) to Equation (38), show the similarity of
the fuzzy probability and the quantum description of the expectation process.

4.3. Equivalence of fuzzy probability and Choquet integral [22,23]. We showed
that the fuzzy probability PE(≈ 6) was obtained by Equation (31),

PE(≈ 6) = A(1)P (1) + A(2)P (2) + A(3)P (3) + A(4)P (4) + A(5)P (5) + A(6)P (6) (39)

If we consider an independent variable X to have continuity, then Equation (34) is de-
scribed by an integral form,

PE(≈ 6) =
∑

X

P (X) · A(X) ∼=

∫

P (X) ·A(X)dX (40)

as we wrote in Equation (32). The Choquet integral of this case, the value A(X) means
to be fuzzy measure and the probability P (X) corresponds to its counter grade. So we
are able to have an expression for the Choquet integral (Figure 2) [42,43].

PChoquet(≈ 6) ≡ (C)

∫

X

fdµ = (P (1) − P (0)) ·
X=6
∑

X=1

A(X) + (P (2) − P (1)) ·
X=6
∑

X=2

A(X)

+ (P (3) − P (2)) ·
X=6
∑

X=3

A(X) + (P (4) − P (3)) ·
X=6
∑

X=4

A(X) (41)

+ (P (5) − P (4)) ·
X=6
∑

X=5

A(X) + (P (6) − P (5)) ·
X=6
∑

X=6

A(X)
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Figure 2. Choquet integral of fuzzy set theory

And we define as P (0) = 0. Simplifying Equation (41), we immediately notice that the
fuzzy probability PE(≈ 6) of Equation (39) or Equation (40) is equal to the results of
Equation (41), which is the definition of Choquet integral in real number’s area.

4.4. Difference between Choquet integral and quantum integral. Calculating
fuzzy probability (Choquet integral or Sugano integral), all functions, A(X), P (X) and
its variable X are always real numbers. And we never encounter complex numbers under
its calculation process. However, the quantum mechanical expectation is essentially dif-
ferent from those fuzzy integrals except the similarity of formal style. The wave function
(probability amplitude) Ψ of Equation (37) generally means complex function. However,
its expectation and variable X have to take real values, because the expectation should
be observable and X is coordinate of our space. In Equation (37), we assume that the
Ψ takes a plane wave exp(−ikX), and we adopt its complex conjugate wave function
Ψ∗ = exp{i(k + ∆k)X} with slight difference of momentum. And if FJ(X) (i.e., A(X))
is momentum operator, then the quantum mechanical expectation becomes

〈FJ(≈ XJ)〉 =

∫

Pρ(X)FJ(X)dX

=

∫

Ψ∗(X)FJ(X)Ψ(X)dX

=

∫

eikX

(

−i~
d

dX

)

e−i(k+∆k)XdX

= −

∞
∫

−∞

e−i∆kX · ~(k + ∆k)dX

= −2πδ(∆k) · ~(k + ∆k) (42)

So, δ(∆k) means Dirac delta function. The ∆k is nearly to zero, and then δ(∆k) becomes
a very sharp function, and we perform an integral for Equation (42) at near to zero. We
have the result:

∫

〈FJ(≈ XJ)〉 d(∆k) = −

ε
∫

−ε

2πδ(∆k) · ~(k + ∆k) · d(∆k) = −2π~k (43)
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It is much important to notice that the result of calculation is not infinite, but it becomes
a finite value. In the case of Choquet integral, we can adopt Ψ = cos(kX), and Ψ∗ is
cos{(k + ∆k)X}, and moreover, FJ(X) means momentum operator. And we obtain the
calculating result of Equation (34):

PE(≈ XJ) =

∫

all X

Pρ(X)FJ(X)dX

=

∞
∫

−∞

cos(kX) ·

(

−i~
d

dX

)

cos(k + ∆k)XdX

= i~

∞
∫

−∞

cos(kX) · (k + ∆k) sin{(k + ∆k)X}dX = 0 (44)

The result of Equation (44) always takes zero value because of orthogonality of trigono-
metric function. If the above FJ(X) takes real number A, its result becomes divergence
and infinite,

PE(≈ XJ) =

∫

all X

Pρ(X)FJ(X)dX =

∞
∫

−∞

cos(kX) · (A) cos{(k + ∆k)X}dX = ∞ (45)

if the ∆k is much near to zero. And if the ∆k is not equal to zero, we always obtain
zero momentum, and those results are not significant. Thus, if we adopt probability
amplitude Ψ which is complex number, we should naturally be led to quantum mechanical
expectation so as to prevent from giving a nonsensical result, instead of Choquet integral
or fuzzy probability.

5. Bayes’ Theory and Its Quantum Expression. We would like to mention the fa-
mous classical Bayes’ theory and to our style of quantum Bayes’ form. As you know,
Bayes’ statistics, which is often used in an inferential of causality, is said to be subjective
probability when the Bayes’ method is compared with normal probability theory [6-12].
The classical system is essentially an apparent pathway independently, and it is determin-
istic method. On the other hand, quantum mechanics is essentially world of interference
and superposition, and is described by complex numbers [13,14]. We showed polariton was
governed by massive relativistic equation, Proca equation, or non-relativistic quaternary
Schrödinger equations [17,18].

5.1. Concept of quantum Bayes’ system. When we know a final result for an event
B, the Bayes’ probability is defined as the ratio that an event Ak (where k = 1 to N)
arises. Then we have the common formula of Bayes’:

PCl(AK |B) =
P (B|AK) · P (AK)

P (B)
, ∵ P (B) =

n
∑

K

P (B|AK) · P (AK) (46)

We are able to regard P (AK) as a probability of occurrence of event A, and P (B|AK)
means to be a correspondence probability when initial probability is P (AK). The probabil-
ity P (B|AK) represents a condition that an event AK is propagated to the state B, when
the event AK took place at an occurrence probability P (AK). So, the symbol P (B|AK) is
regarded as a kind of classical propagator of probability P (AK), or transitional probabil-
ity. We are ordinary able to regard Equation (46) as the theory of classical Bayes’ theory.
And we attempted to expand the propagator’s concepts from the classical standpoint into
the quantum mechanical one. To expand from the above classical Bayes’ theory to the
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quantum versions, we need a rule that the classical Bayes’ theory should be reproduced
if expectation values of quantum operators are expressed by eigen values and pure states.
The expectation values of quantum Maxwell equations (quantum electrodynamics) should
obey the rule of the classical Maxwell equations. Thus, P (AK) and P (B|AK) should be
regarded as operators of quantum expression, and those eigen functions of both operators
should be regarded as complex probability amplitudes. Performing to reinterpret classical
relation into quantum one, we would like to show one of the simplest cases of quantum
expressions. Notice that the simplest quantum form is given as following forms:

〈

AK

∣

∣

∣
P̂ (A|B)

∣

∣

∣
B
〉

≡

〈

B
∣

∣

∣
P̂ (B|A) · P̂ (A)

∣

∣

∣
AK

〉

n
∑

j

〈

B
∣

∣

∣
P̂ (B|A) · P̂ (A)

∣

∣

∣
Aj

〉

(47)

The quantum form is similar to classical Bays’ theory; however, all probabilities’ relations
are not c-numbers but q-numbers of operators in quantum Bayes’.

One of initial state vectors is |AK〉, and the final state vector is represented as |B〉.
Equation (47) should be more simplified by a relationship between the initial vectors and
the final vector (Figure 3). We know, Figure 3 mentions that quantum neural network
Figure 3A is similar to natural neural one, Figure 3B. And some quantum neural networks
are composed of many axons and many synapses, which cause the quantum interferences.

Figure 3. Connection type of state vectors and Bayes’ form in quantum
system (propagators and convergence of neural network)

In order to calculate Equation (47), we would like to introduce some rules that define
eigen state vectors having the completeness and orthonormality.

5.2. Multi classical and quantum channels with errors. We are discussing quantum
channel without noise and its Bayes’ form, and herefrom would like to study the channels
with multi-dimensional channels with errors in this subsection. Now we have two channels,
whose one is classical case and another means quantum system as shown in Figures 4(a)
and 4(b).

According to explanation of previous section, the P (As) and the P (Bj|As) correspond
to the occurrence of probability of an event As and the propagating probability from the
event As to the final result Bj . Thus, we know the classical channels of Bayes’ form:

PCl(AK |Bj) =
P (Bj|AK) · P (AK)

P (B)
, ∵ P (Bj) =

n
∑

K

P (Bj|AK) · P (AK) (48)
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(a) (b)

Figure 4. (a) Classical multi channels; (b) Quantum multi channels

That representation is a Bayes’ probability of multi channels as same as Equation (46).
On the other hand, quantum case is acquired by practicing to change those probabilities
into the corresponding quantum operators, P (As)-hat and P (Bj|As)-hat. On the other
hand, the classical event As is translated into a state vector |As〉. The simplest multi
quantum channels are drawn as following forms of above Figure 4(b), and then we have
following relation Equation (49).

〈

AK

∣

∣

∣
P̂ (A|B)

∣

∣

∣
Bj

〉

≡

〈

Bj

∣

∣

∣
P̂ (B|A) · P̂ (A)

∣

∣

∣
AK

〉

n
∑

j

〈

Bj

∣

∣

∣
P̂ (B|A) · P̂ (A)

∣

∣

∣
Aj

〉

(49)

We would like to introduce both classical and quantum expressions of error’s propagating
probability, 1−P (Bj|As) and 1−P (Bj|As)-hat, into our Equation (48) or Equation (49).
Thus, we define the similar rules to simplify quantum calculations and observations as
previous subsection.

1. Base set: the state vectors |As〉, (s = 1 to n) make a complete set, and they are in
pure state. States vectors |Bj〉, (s = 1 to q) are in not pure states but they belong to
the mixed states of all pure |As〉.

2. Orthonormality of base set: the pure state vectors hold on orthonormality.

〈Aj(tj)|AK(tK)〉 = δjKδ(tj − ts) (50)

We introduce the following relation being used in ordinary quantum mechanics: we have
completeness between the following bra vectors & ket vectors by Dirac’s expression.

n
∑

j

|Aj〉 〈Aj | = 1 (51)

3. An eigen function and eigen state, and propagating operators. The probability of
occurrence of state As becomes

P̂ (A) |Aj〉 = βj |Aj〉 (52)

4. Propagating operators with errors and correct propagation in quantum channels: If the
correct probability P (Bj|As)-hat is in state |As〉, then the error probability’s operator
is expressed as 1−P (Bj|As)-hat. We have the p-numbers correct channels, and so the
rests (n− p) numbers are in wrong. Then the correct and wrong propagating cases are
Correct case:

P̂ (B|A) |Aj〉 ≡ η̂(A) |Aj〉 = ξjηj |Aj〉 , 1 ≤ j ≤ p (53-1)
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Wrong case:
{

1 − P̂ (B|A)
}

|Aj〉 ≡ η̂w(A) |Aj〉 = ξj(1 − ηj) |Aj〉 (53-2)

The propagating operator η-hat commonly conveys probability amplitude of a cor-
rect information and ξ means a conduction’s rate of propagating processes; however,
sometimes it fails to transmit the correct information from |As〉 to |Bj〉. If we assume
that the p channels are in correct states and the other (n− p) channels propagate the
signals to be wrong, we can define two cases, which one to be correct and another
to correspond to wrong case. Our propagating operator of neuron’s model is to have
four effects, which mainly contain neural conductions, ephapse among axons, thermal
noise, and interferences nearby synaptic junction. And errors are induced by various
interference and noise. The correct propagating operators η(A)-hat is composed of
those factors:

η(A) = (neural conduction) + (ephapse) + (noise & attenuation)
+ (synaptic interferences)

5. Each final state |Bj〉, (j = 1 ∼ q) is written down as summing up pure initial states.
Thus, the |Bj〉, (j = 1 ∼ q), is mixed and superposed by a lot of pure states |As〉.
So, final mixed states enable to be expanded by n-numbers bases of orthonormal pure
states.

So we have some final states written down as

A final state of B: |Bj〉 =

q
∑

s

Cj
s |As〉 , 1 ≤ j ≤ q (54)

As we assume that the p channels are in correct and the others (n − p) are in wrong
conditions, the numerator of Equation (58) becomes by applying Equations (50)-(57),

〈

Bj

∣

∣

∣
P̂ (B|A) · P̂ (A)

∣

∣

∣
As

〉

=
〈

Bj

∣

∣

∣
P̂ (B|A) · βs

∣

∣

∣
As

〉

= βs

〈

Bj

∣

∣

∣
P̂ (B|A)

∣

∣

∣
As

〉

= C∗j
s βsξsηs

(55)

The denominator’s Equation (49) is given by the similar way as Equation (55), except
an existence of both channels being correct and wrong. We can decide the expression of
denominator,

n
∑

s

〈

Bj
∣

∣

∣
P̂ (B|A)P̂ (A)

∣

∣

∣
As

〉

=

n
∑

s

〈

B
∣

∣

∣
P̂ (B|A)

∣

∣

∣
As

〉

βs

=

n
∑

s=p+1

C∗j
s βsξs(1 − ηs) +

p
∑

s=1

C∗j
s βsξsηs (56)

=

p
∑

s=1

C∗j
s βsξsηs +

n−p
∑

s=1

C∗j
p+sβp+sξp+s(1 − ηp+s)

and final quantum Bayes’s form for state |Bj〉 becomes

〈

As

∣

∣

∣
P̂ (A|B)

∣

∣

∣
Bj

〉

≡
C∗j

s βsξsηs

p
∑

s=1

C∗j
s βsξsηs +

n−p
∑

s=1

C∗j
p+sβp+sξp+s(1 − ηp+s)

(57)
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The denominator of Equation (57) contains two kinds of term. So, we notice that the
first term represents the correct propagating amplitude, and that the second term is the
case of the wrong (an error) propagation or communication. We can find, the result has
complex interferences between correct channels (i.e., axons of neurons) and wrong ones,
because of taking absolute value of Equation (57). They are two types of interferences:
one type belongs to each of correct channel, and the other is in wrong channels. Moreover,
we know that a new interference Zq in Equation (58), emerges in the term of PQ as shown
in Equation (58):

PQ(As|Bj) =

∣

∣C∗j
s=1βsξsηs

∣

∣

(

∣

∣

∣

∣

p
∑

s=1

C∗j
s=1βsξsηs

∣

∣

∣

∣

2

+

∣

∣

∣

∣

n−p
∑

s=1

C∗j
p+sβp+sξp+s(1 − ηp+s)

∣

∣

∣

∣

2

+ Zq

)1/2
(58)

Zq ≡

(

p
∑

s=1

C∗j
s=1βsξsηs

)

·

(

n−p
∑

s=1

C∗j
p+sβp+sξp+s(1 − ηp+s)

)

That Zq says an existence of interferences in between correct channels and wrong channels.
So we calculate both an amplitude of entropy for all paths σtA(Bj |A), from As (s = 1, n)
to Bj, and finally we obtain the total amplitude of entropy for the mixed state for all Bj,
(j = 1, q). That is described by the symbol σ(B|A). We know the result σ(Bj|As):

σtA(Bj |A) ≡

n
∑

s

σ(Bj|As) =
〈

Bj

∣

∣

∣
P̂ (B|A)P̂ (A) · log

(

P̂ (B|A)P̂ (A)
)
∣

∣

∣
As

〉

= −

p
∑

s=1

C∗j
s βsξsηs · log2(βsηs) −

n−p
∑

s=1

C∗j
p+sβp+sξp+sη̄p+s · log2 (βp+sη̄p+s) (59)

∵ η̄p+q ≡ 1 − ηp+s

And then σ(B|A) is expressed as

σ(B|A) ≡

q
∑

j

σtA(Bj|A)

= −

q
∑

j

(

p
∑

s=1

C∗j
s βsξsηs · log2(βsηs)

)

(60)

−

q
∑

j

(

n−p
∑

s=1

C∗j
p+sβp+sξp+sη̄p+s · log2 (βp+sη̄p+s)

)

(ξ means a conduction’s rate of propagating processes). The total entropy H(B|A) from
state A to state B is calculated as

H(B|A) ≡ − [σ∗(B|A) · σ(B|A)]1/2

= −

∣

∣

∣

∣

∣

q
∑

j

(

p
∑

s=1

C∗j
s βsξsηs · log2(βsηs)

)

(61)

+

q
∑

j

(

n−p
∑

s=1

C∗j
p+sβp+sξp+sη̄p+s · log2 (βp+sη̄p+s)

)
∣

∣

∣

∣

∣

From Equation (61), we find not only interferences of correct channels and those of wrong
ones, but also a lot of interferences between correct and wrong channels, which are truly
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quantum effects without being in classical systems. In following section, we would like to
discuss an approximate solution’s method, being called perturbation.

6. Summary and Conclusions. We, at first, showed an expression of motion of po-
lariton based on Proca equation, which we can reduce into Schrödinger equation with
only scalar potential φ by ignoring vector potential A, if polariton’s mass is so large that
it cannot move fast on axons. The interference among many neurons was expressed by
description of path integral. And its method of path integral is closely related to Feynman
kernel, whose expression corresponds to the states of motion and propagation of polariton.

We attempted to compare classical Bayes’ theorem with quantum Bayes’ form. The
quantum Bayes has a kind of operator (q-number) style, and whose expression is related
to operator and complex value. However, those counter observable and eigen values are
real numbers. On the other hand, the classical Bayes’ form takes only real observable and
c-number. The essential difference between the quantum neural system and the classical
one is whether those concerned systems have some kind of interference or not. Thus,
quantum Bayes’ form contains much interference between each quantum states vector.
However, there is not interference among neural systems based on the classical Bayes’
theory. And, we knew that result of the quantum Bayes’ form was equivalent to the
classical Bayes’ theorem if it were not for the interferences and superposition between
each quantum state vector; for example, both types of entropy, probabilities, and neural
networks.

We knew that there were formal similarities between in the fuzzy probability (equivalent
to Choquet integral) and the expectation values of quantum theory. Both fuzzy proba-
bility’s calculation and the above quantum integral take same formal style except either
those numbers are complex or not. That difference is much important, because quan-
tum integral for momentum is convergence (some definite value) and fuzzy probability’s
calculation runs to infinite (divergence).

The fuzzy set theory and soft computing are thought to be much similar to human sense
compared with ordinary physics, mathematics and engineering. And quantum calculation
method has a formal commonality with fuzzy probability and Choquet integral, except
either complex or real numbers. Human has some kind of fuzziness, and fuzziness exists
in human thing and actions. Thus, it is safe to say that our thinking of brain mimics a
kind of quantum calculation, if we introduce complex number and variable into ordinary
real fuzzy number. So, we have some problems of complex fuzzy theory, which is possible
to make up some similar theory to quantum mechanics. What kind of inclusive relations
between quantum theory and complex fuzzy theory? The quantum expectation’s expres-
sions had the same descriptions with the fuzzy probability or Choquet integral, and so
the membership function is regarded as the corresponding potentials of the wave function.
Wave function corresponds to complex fuzzy probability function, and we shall have con-
ditions or some equation governing phenomena based on principle of least action (action
S) like physics.

Moreover, if our brain has quantum computation process, various characters of human
fuzziness can be created by quantum interference between many neural networks.

We will notice that our brain should be a kind of quantum computer, and quantum
process be related to generate a part of our feeling.
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