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ABSTRACT. Soft sensor model is basically an approximation of the actual objective pro-
cess model. As the process model is almost time-variant, soft sensor shall be calibrated
reqularly such that it keeps pace with the changes of the process. However, the sampling
interval of the hard-to-measure variable is usually far longer than that of the easy-to-
measure variables. Consequently soft sensor cannot make calibration timely due to the
lack of estimation error, and the performance of soft sensor inevitably degrades. To
solve this problem, we proposed a soft sensor calibration method based on the Bayesian
Gaussian process regression (GPR). When soft sensor deteriorates, the target variable
is estimated by GPR-based interpolation over the sparse history data. Then we obtain
a missing data zone of the target variable. By selecting several datasets from the data
zone, we can train several candidate models based on the soft sensor model. The soft
sensor is finally calibrated by weighted combination of the trained candidate models. The
feasibility and effectiveness of the proposed calibration method is verified by experiments
on a pH neutralization facility and comparative simulation experiments on a continuous
stirred tank reactor with a Kalman filter based calibration method.

Keywords: Deterioration, Calibration, Gaussian process regression, Multiple candidate
models

1. Introduction. In chemical processes, the main difficulty for effective quality control
lies in the lack of realtime measurements of the critical variables, due to lag time and
some other technical or economic reasons. As an effective solution, soft sensor technology
is proposed and developed rapidly in the past two decades [1]. Soft sensor mainly builds
predictive models for the hard-to-measure critical variables by using the available stored
measurement data or/and mechanism information.

Soft sensor model is commonly built by statistical or mechanistic modeling approaches.
There are various modeling methods [2]. As every technique has its limitations, the prac-
tical application of soft sensor technology is also troubled by the technique’s limitation.
The significant problem of the soft sensor application is that soft sensor will inevitably
run into the performance deterioration because of the inevitable model mismatch between
soft sensor and the process. When soft sensor’s performance starts to deteriorate, the pre-
diction of the soft sensor becomes unreliable due to the decreasing precision. Usually the
built soft sensor can only serve reliably within certain application domain [3]. Because
the model mismatch within the application domain is acceptable, the sensor’s accuracy is
considered reliable. The actual processes are usually time-variant and nonlinear. And the
model behaviors of the industrial processes are usually changed constantly due to pro-
cess variation such as changes of temperatures, pressures, reactant concentrations, and
catalyst activity [4-7]. However, the soft sensor model is not updated during a working
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period. As a consequence, the model mismatch tends to diverge, which can weaken the
estimation accuracy of the soft sensor, especially when the degree of the process’s nonlin-
earity is considerably high. Under that circumstance the model mismatch problem will
become significant if soft sensor fails to adapt itself to the changing model behaviors of the
processes. To avoid the performance deterioration of the soft sensor during its service, the
regular calibration of soft sensor is a must. In practical applications of soft sensors, there
are mainly two directions on soft sensor calibration: the output compensation method
and the model self-adjustment method. The output calibration method is usually used by
field operators because of its simplicity and low cost [8]. When the operating condition
does not change greatly, this method can usually get good performance. Apparently the
output compensation method cannot solve the problem essentially and the effectiveness is
highly constrained. By contrast, the model self-adjustment method has drawn more and
more attention from academia [9-14]. The implementation of the model self-adjustment
method varies. Generally the difference can be mainly summarized as modeling with
model parameters updated regularly and modeling with model(s) rebuilt regularly. In
this paper we only discuss modeling with parameters updated regularly. Basically it is
that the soft sensor model continuously stays in service after being built while the model
parameters are updated regularly. Under this framework, the used model is usually com-
plicated and nonlinear to meet the demand of effectively describing the behaviors of the
complex processes. Therefore, it is significant to update the model parameters timely
to avoid the performance deterioration. However, when the feedback of target variable
is far less frequent, it is difficult to update the model parameters of the soft sensor due
to the lack of estimation error. In such situations the soft sensor cannot be calibrated
timely to avoid performance deterioration. To solve this problem, a calibration method
based on Kalman filtering was proposed [15]. However, the proposed method requires a
considerably reliable mechanism model of the process since it uses Kalman filter. The
difficulty to obtain the required mechanism model limits the method’s application.

In this paper we proposed a calibration method based on Gaussian process regression.
The schematic diagram of the proposed soft sensor calibration method is given in Figure
1. For simplicity, the process variables and the target variable are denoted as £ and y,
respectively. Assuming that the sampling cycle of the target variable y is T. The objective
variable y is available on a less frequent basis than the process variables x. It is desirable to
estimate the missing target variables {y;; }, |j=x within the latest sampling cycle T} so as
to update the parameters of the soft sensor model. According to the proposed calibration
method, when the behavior of the process changes, we use the technology of Bayesian
Gaussian process regression (GPR) to estimate the missing values of the target variable y
by interpolation over the sparse history data {y;; };?:k_n. Thereby we can obtain a missing
data zone as shown in Figure 3. Then a proper number of datasets are obtained from the
missing data zone. By using the datasets several candidate models are obtained based on
the soft sensor model. Finally the soft sensor is calibrated by a weighted combination of
multiple candidate models.

The rest of the paper is organized as follows. Section 2 gives an introduction of the
Bayesian Gaussian process regression. Section 3 presents the mechanism of the proposed
calibration method. Section 4 gives cases which verify the effectiveness of the proposed
calibration method. Section 5 is the summarization part.

2. Bayesian Gaussian Process Regression. Bayesian GPR is a probabilistic regres-
sion. Suppose that we have a training data set D consisting of m pairs of n-dimensional
inputs vectors {z;} and m noisy observed scalar outputs {y; }:

D={(zi,y;) |i=1,---,m} ={X,y}
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FIGURE 1. Schematic of the proposed soft sensor calibration method

where, X = {z;}™, and y = {y}, respectively.

For the purpose of building a statistical model for the training data set, the observed
output y; can be handled as the combination of the real value f(z;) and the additive
observed noise £;. For simplicity, we assume that the noise ¢; is independent and identically

distributed Gaussian noise, i.e., &; i N(0,0?). Hence, we have
yi = f(xi) + e (1)

where, f is the latent function and &; % N(0,0?) is the noise.

Basically Bayesian GPR mechanism learns about the latent function f from the given
training set D and infers the potential values f(z*) at the test location z*. Bayesian
GPR aims to crack the latent function f by using Bayesian rule. The Bayesian framework
requires three basic components: prior, likelihood and evidence. In a Gaussian process,
a Gaussian process prior is assumed over latent function f so that we can obtain the
prior component as p(f | X,0,). As required, the likelihood component and the evidence
component can be expressed by p(y | f,0,) and p(D | 6,,6,), respectively. Therefore,
according to Bayesian rule [16,17], the posterior can be computed from likelihood and the
prior with information of empirical observed data D integrated to update our belief by

p(y | f,0)p(f | X,0,)

p(f | Daglagp) p(D | 9p,91) (2)
where, p(f | D, 0,,0,) is the posterior, 6, and 6, denote hyper parameters of distributions
of the likelihood and the prior, respectively; and p(D | 6,,6;) presents the normalization
constant.

The expression of Equation (2) gives a solution of learning the latent function f from
given training data set D and infers the unknown output value at a new point *. There-
fore, the main difficulty lies in the solution of Equation (2), mainly the computation of
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the prior and the likelihood. A Gaussian process is a stochastic process, finite numbers of
which have a consistent joint Gaussian distribution [18]. The assumed Gaussian process
prior over the latent functions is presented by

p(f |z, 20, -+ ,2) = N(m(X),K)

where, f = [f1, f2,- -, fm] is the vector of latent functions, m(X) is the vector of mean
function and K is the kernel matrix. Basically a Gaussian process can totally be deter-
mined by the mean function and this kernel matrix. The elements k;; of matrix K are
calculated by kernel function k(z;,z;). A valid kernel function shall be capable to guar-
antee a positive semi definite K. A commonly used kernel function is Gaussian kernel
function

2
r, —T;
k@i,z;) = vexp (—%) )

where ©2 denotes the prior variance and \ controls rate of decay of the kernel function
value. An understanding of the kernel function is that kernel function defines the relation-
ship between z; and z; by their distance, the idea behind which is close to the automatic
relevance determination (ARD) [19]. The parameters v and A are also termed hyper pa-
rameters. As previously assumed, the observed outputs {y;} are mixed with Gaussian
noise. Therefore, the likelihood p(y | f,6;) can be computed by

p(ylf,Hz)zp(y|f,a)=HN( i0°) = N(f,0°Lysm) (4)

For simplicity, the mean function m(z) is set to be zero. According to Bayesian decision
theory [20], the posterior distribution can be obtained by

p(f|D,U,K) OCN(f,O'ZIme)N(O,K) (5)
x N(K(K + 0 m) 'y, K™ + 0 i)
The outcome of Equation (5) can further be used to compute f(z*) at the test location
z* by
p(f*|f,$*,X,K) X N(k*Kilfak** N (k*)TKilk*)

p(f*|D,z*,0,K) = [p(f*|f,z*)p(f|D, 0% K)df (6)
x N(()TCy, k- (k)TCR)
where k* = [k(z*,x,), k(z*,22), -+ , k(z*,2,,)]" and k** = k(z*,z*), respectively.

Therefore,
fr=&)Cly
2 *k $\Ty—1g.% (7)
ope = k™ — (k")'C™ 'k
where C = K (X) + 0?1,,xm is the kernel matrix which contains all the potential informa-
tion of the given data set D. The expression of Equation (7) is used for the interpolation
over the sparse history data of the objective variable y, which is introduced in Section 3.

3. Mechanism of the Proposed Calibration Method.

3.1. Interpolation over the sparse history data of actual output y. The situation
is that there are only some sparsely sampled y values and lots of densely sampled explana-
tory variables z, which is illustrated in Figure 2. This is also mentioned and described
as the multirate property [15]. In order to make it tractable to update the soft sensor
model sufficiently, those missing values of objective variable y, due to the considerably
slow sampling rate, shall be estimated such that x corresponds to y pair wise. In the pro-
posed calibration method, the interpolation of missing y is handled via Bayesian Gaussian
process regression.
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Before the interpolation, the window width which represents the number of the sampled
history data of y is selected properly. Suppose that the window width is L, and then we
have Y orse = {¥i f;“kL . Apparently the obtained y,,,., can be considered as a time series
and the interpolation over y,,,. is actually the imputation of a time series. Similar to
Equation (1), we can formulate the relationship between real y values and the noisy y

values by
yi =i tei (8)

As previously mentioned the obtained y,,,.. is handled as a time series regardless
of the explanatory variables z, because it becomes complex and unnecessary to involve
the explanatory variables z to formulate Equation (8) exactly the same as Equation
(1). Instead, the z is replaced by the time variable ¢; which is simplified as subscript i.
For instance, the above k(z;, ;) is formulated as k(¢, j). Suppose that the ratio between
sampling cycle of y and that of 2 is 7. Then we can use {k+i}/y and {{k+i+2}i_}L; to
denote the time variables of sampled y,,,,;, and that of the missing y values, respectively.
According to Equation (7), the expectations of the missing data of y are obtained as well
as the corresponding variances by

g = {{?)k+i+$}§:o}iL:0 (9)
0 = {{OkrirsYomotizo

When the GPR interpolation over the sparse history y data is handled, as we can see
in Figure 3, a zone of missing data is obtained. The zone between the two dash lines
describes that the real y values are distributed in this zone with a certain high possibility.
Although we have obtained the expectations of those missing data, data involved in the
dash circle is selected to update the soft sensor, because these selected data can describe
the latest behavior of the process.

FiGURE 3. Missing data zone by GPR-based interpolation over history data y
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3.2. Training candidate models to update soft sensor. In this section a proper
number of candidate models of the soft sensor are trained by using the above selected
datasets to update the original soft sensor model. Note that the thought of ensemble
is an effective and widely used solution to incorporate multiple sources of information
[21-24]. The soft sensor model is ultimately calibrated by an ensemble of the multiple
candidate models.

By using Bayesian Gaussian process regression over the sparse history data y within
a data window, a missing data zone of target variable y can be obtained. As shown in
Figure 3, only the part of the data zone within the dash circle is chosen to update the soft
sensor. Properly the width of this zone is chosen to be the 95% confidence interval, i.e.,
i+ 1.960. For the purpose of better understanding, this local data zone is presented in
Figure 5. The two dash lines represent the boundaries of 1+1.960. Then a proper number
of datasets are selected from this data zone to train candidate models. We evenly divide
this data zone into several sub-zones. As we can see in Figure 5, the data zone is divided
into N sub-zones and correspondingly we can obtain N datasets. We assign a weight
to each dataset because the values of each dataset correspond to a probability of being
the actual values. Given the obtained datasets {D;}Y,, a total of N candidate models
{fi(z,0)}¥, are trained based on the soft sensor model f(z, ) as shown in Figure 1. The
N trained models are weighted by the probability of the used dataset. For simplicity, we
use Wprior to denote the prior weight of the candidate model. It makes sense that values
near 4 have the larger wy,, than those far away from . The sum of all wy,o, shall equal
one. Assuming that N equals 7 for simplicity, the weights of the candidate models are
illustrated in Figure 4.

weight
A

—

1966 - ——-—-—-—-—-——-— p——————=== > u+1.96%

\4

FIGURE 4. Prior weights of candidate models

Furthermore, we also use a validation point to validate the accuracy of the candidate
models. An additional weight is assigned to each of the candidate models according to
their estimation errors at the validation point. Let us use w,4q to denote the additional
weight. As designed, smaller estimation error is awarded with larger wq4y. The final
weight of the candidate models is the product of the prior weight and additional weight,
i.e., Wprior X Weqq- The next important thing is to integrate the candidate models so as to
calibrate the soft sensor model. By using the final weight the integration is handled by
weighted sum of the candidate models. The algorithm for this process is given as below.
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Algorithm of updating the soft sensor

1. According to results of Equation (9), obtain multiple datasets

(N=1)/2
1.96¢

DN, =g+ —"— 5

i {y (N—l)/z"}

2. Based on the soft sensor model f(z,0), use {D;}~, to update soft sensor model so
that multiple candidate models are obtained by {f;(z, 0. 1.)}¥, and assign prior weight
{wprior ()}

3. Use the obtained {f;(z,0k )}, to predict the value of the validation point,

according to the estimation error {e;}Y , calculate the additional weight by wegq(i) =
1

N
€; Zi:l e%—
Wprior (Z)}f\;b

4. The parameters of the soft sensor model are then updated by integration of the
N

parameters of the multiple candidate models: 0y — 0x, = Y Wbkt
i=1

)
c=0

and the final weights of the candidate model are calculated by {w; = wgeqq(7) X

4. Case Studies. Previously we have given the implementation of the calibration method.
Experiments on a real pH neutralization reactor were conducted to test the validation and
the results are given.

Since the process of pH neutralization has high nonlinearity [25], it has been widely
used by many people to test their proposed methods. First a basic introduction of the
facility used in the experiment is given.

As shown in Figure 6(a), the facility has three plastic barrels, four pulse pumps and a
reaction tank in the upper right. The three barrels are for acid solution (HySO,), alkali
solution (NaOH) and waste solution, respectively. Only three pulse pumps are used for
pumping acid, alkali and waste solution with the fourth pump spared. The reaction tank is
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where pH neutralization proceeds. In Figure 6(b), we can see that acid solution and alkali
solution are pumped into the reaction tank where a stirrer keeps stirring to facilitate the
neutralization reaction. When the level of the waste solution is high, the waste solution
pump starts to work. The pH neutralization curve is given in Figure 6(c).

H. MIN AND X. LUO

shows that the pH neutralization has severe nonlinearity.
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FIGURE 6. Experiment facility and pH neutralization property: (a) pH
neutralization reactor; (b) schematic diagram of the pH neutralization fa-
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We give the mechanism model of pH neutralization reaction as below.

(48O ) ap(e) - pleyu(o
A%t) —u(t) + F (1) — p(t) (10)
\ DH() = Ig y(t) + 2y[‘i(t) + 4K,

where pH(t) is the pH value; h(t) is the level of the reactor; y(¢) is defined as y(t) =
[OH™] — [H"]; u(t) is the alkali pump flow; F'(¢) is acid pump flow; p(¢) is the effluent
flow. A, a, b and k,, are constants: A is base area of the reactor; a and b are concentrations
of acid and alkali solutions; k,, = 10~'* is water equilibrium constant.

In this experiment the soft sensor model is built by using the mechanism of Equation
(10). Also the concentration of the alkali solution i.e., b is considered as the changeable
parameter, which influences the process behavior of the neutralization reaction. During
the experiment, b was manually changed so that the model mismatch between the soft
sensor model and the real process model becomes considerably large. At the beginning
of the experiment the soft sensor was programmed not to calibrate itself timely. Then
the performance of soft sensor deteriorated and the estimation of the soft sensor became
unreliable as shown in Figure 7(a). Then the proposed calibration method was then
launched to update the soft sensor. The symbol ‘+’ denotes a sampled data which is
used for Bayesian GPR interpolation. As we can see that the selected sampled data
are not evenly distributed which is intentionally caused by ‘data loss’, and this usually
occurs during practical industrial processes. Fortunately when handling GPR, it is not
strictly required to make the input z evenly distributed. In Figure 7(b), we can see in the
region where the sampled data are denser the corresponding variances are smaller and
that means the estimation in the region is more precise. The grey area is the obtained
missing data zone. As shown in Figure 7(b), we only used the data zone which is drawn
in the dash circle and ranges from 910s to 920s on the time line. By using the method
presented in Section 3.2, the soft sensor model can update the distorted parameter so as
to decrease the model mismatch. After the soft sensor model was calibrated, from 920s
to 925s, the estimated pH value was drastically regulated from about 3.7 to about 4.26
while the real pH value shifted from about 3.95 to about 4.03. Although the regulation
was first overshot, the estimated pH value was then gradually regulated to trace the
trajectory of the real pH value from 925s to 1024s as shown in Figure 7(c). Therefore,
from the experiment results the proposed calibration method for soft sensor model can
be proved feasible.

In order to further validate the proposed calibration method, we also conducted a
comparative experiment with another calibration method based on Kalman filter. This
comparative calibration method is a dual-rate Kalman filter based calibration method
[15]. The idea behind the method is: when the real target variable is available, the
method uses the real value to obtain innovation so as to process the computation of
Kalman filter; otherwise, the method uses the estimated values of the soft sensor to
get innovation so that the Kalman filter model can be computed. In such a way, the soft
sensor is calibrated. In the above individual experiment, we have preliminarily proved the
feasibility of the proposed calibration method. For a better comparison, the experiment
shall be conducted under the same condition. However, this is practically difficult. Also
note that the ultimate goal of solving the sensor drift problem is to calibrate the estimated
target values as close to the real values as possible and that a simulation experiment
is quite perfect to provide the same condition for comparative experiments. Thus, we
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decided to simulate on a continuous stirred tank reactor (CSTR). As shown in Figure
8, the simulation facility used is a CSTR where an irreversible and exothermic reaction
takes place with the reactants mixed perfectly. The governing equations of this CSTR
are given as below [26].

dT(t) F AHkoCq(t) —F
a — v T T e e <RT> (11)
pCCpC _h/A
+pCpVFc(t) (1 — exp <W>> (Tci - T(t))
dC,(t) F; —E
dt = V(Cai — Ca(t)) - kOCa(t)eXp <RT> (12)

where C, is the product concentration, 7" is the product temperature and F, is the coolant
flow rate. The parameters of the CSTR and some steady state operating conditions are
given in Table 1.

TABLE 1. The parameters of the CSTR and some steady state operating conditions

Parameters Symbol Value

Feed flow-rate F; 100 L/min

Feed concentration C,i 1 mol/L

Feed temperature T; 350 K

Reactor volume V 100 L

Reactor rate constant ko 7.2%x10% min—!
Activation energy term E/R 1x10* K

Heat of reaction AH —2 x 10° cal/mol
Reactant density p 1000 g/L
Reactant specific heat Cy 1 cal/g/K

Heat transfer term h A 7x10° cal/min/K
Coolant inlet temperature | T,; 350 K

Coolant density Pe 1000 g/L
Coolant specific heat Cpe 1 cal/g/K

For simplicity, during the simulation temperature T'(¢) was selected as the process
variable, and product concentration C,(t) was chosen as the objective variable. The
reactor rate constant kq is usually affected by factors such as temperature, and activation
energy. Note that the reactor rate constant ky greatly affects the reaction. Thereby
it was selected as the process’s volatile parameter. During the simulation experiment,
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FIGURE 9. Comparative experiment results: (a) comparative results of cal-
ibration performance; (b) comparative results of prediction error

the reactor rate constant ky was programmed to vary such that the real values of the
product concentration C,(t) varied as shown in Figure 9(a). The relevant parameters of
the working point are specified: the coolant flow rate was fixed at 97 L/min and other
parameters referred to those corresponding values in Table 1. As we can see in Figure
9(a), the calibration performance of the proposed calibration method is better than that
of the dual-rate Kalman filter based calibration method. If the prediction error of the soft
sensor model after calibration is large, the corresponding calibration method is obviously
not that effective. The conclusion that the proposed soft sensor calibration method is
effective can be verified by the comparative results of prediction error in Figure 9(b).
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Through results of the individual experiment on a pH neutralization facility and com-
parative simulation experiments on a CSTR with the chosen Kalman filter based cali-
bration method proposed by other scholars, the proposed calibration method based on
Gaussian process regression is proved feasible and effective.

5. Conclusions. In this paper, we proposed a calibration method based on Gaussian
process regression. By handling interpolation over finite number of sparse history target
values, the missing data zone of the target variable is obtained. A proper number of
datasets are selected from the missing data zone. By using the datasets several candidate
models are trained based on the soft sensor model. Finally the soft sensor is calibrated
by a weighted combination of multiple candidate models. The experiment results show
that the proposed soft sensor calibration method is feasible. However, there is still an
important issue which is not discussed in the paper. The background of the proposed
calibration method is that the sampling cycle of the target variable is far larger than that
of the process variables. The cycle ratio between the two sampling cycles directly affects
the performance of the calibration method. Our future work will involve the study of the
relationship between the cycle ratio and the calibration performance.
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