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Abstract. Cyberattacks become more sophisticated than before, as they involve intel-

ligent planning with respect to the target machine. The current defense products might

not be able to correlate diverse sensor input. For example, a client with low security

awareness is in the distributed network environment where the target resides might be

compromised and unnoticed, which in turn is used as a stepping stone to intrude the tar-

get. The conventional signature-based intrusion detection systems might not be able to

identify such planned attacks. A state-based classification model is suitable for detecting

the attacks composed of a sequence of attack stages. This study defines a sequence of

attack states corresponding to the attack stages and the proposed detection system adopts

a stated-based classification model, Hidden Markov Model, for detecting such advanced

planned attacks. The experimental results show that the proposed detection system can

identify the attacks efficiently.

Keywords: Distributed computing, Hidden Markov Model, Intrusion detection

1. Introduction. Nowadays computing environments involve distributed computing ser-
vices. The interconnecting relationship with multiple machines and multiple platforms in
the distributed computing environments complicates the security control and brings up
potential security threats. An administrator is overwhelmed by the vast amounts of logs
from different sensors and might not be able to connect the event of password guessing
attack to the event of database query failure, if these are not presented together. Current
security systems can collect event logs but contain many false positives and are lack of an
efficient correlation algorithm to make links among the events of different sensors.

Advanced cyberattacks often involve a sequence of suspicious activities, where the ac-
tivities are reported as separate events and distributed across various data sources. Under
such advanced attacks described above, the administrator of a distributed computing net-
work might not be able to identify the anomalies due to the massive overload of data.
Furthermore, conventional signature-based IDS fail to correlate event data observed from
various systems.

Hidden Markov Models (HMM) have been applied to anomaly detection since 1996 [1].
The previous researches [2,3] applying HMM were limited to small data sets or sensitive to
the data errors. The contributions of this paper are: (1) proposing a correlation algorithm
which efficiently processes big amount of event logs and identifies the temporal relation of
anomalous events; (2) proposing a state-based detection model for identifying multi-stage
advanced attacks; and (3) the experimental results show that the proposed detection
system performs efficiently on a large amount of network event logs.
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The rest of the paper is organized as follows. Section 2 briefly reviews the related
research on network intrusion detection followed by an introduction of the Hidden Markov
Model and its related researches on anomaly detection. Section 3 describes the proposed
detection based on HMM. The experimental results are presented in Section 4 and the
concluding remarks and future studies are stated in the last section.

2. Related Work. Intrusion detection is vital in a distributed computing environment,
as the large amounts of computing and storage resources attract attackers. Intrusion
detection is a defense mechanism for detecting suspicious activities and protecting the
perimeter from attacks. Intrusion detection and alert correlation will be studied in the
beginning of this section. The theory of the Hidden Markov Model (HMM) will be intro-
duced, followed by the detection researches based on HMM.

Lo et al. [4] proposed a framework for detecting distributed denial-of-service attacks by
exchanging alert information with other intrusion detection systems. Zargar et al. [5]
proposed an intrusion detection framework for a distributed computing environment
where the service providers collaborate together to cope with attacks. A comprehen-
sive trust management scheme is required to support the trust relationship among the
service providers. Kumar et al. [6] proposed a clustering approach based on the Hidden
Markov Model, since the distributed computing environment generates a large volume of
security related data.

Liu et al. [7] proposed an alert correlation model for plotting attack scenarios. The
work relies on the given attack graphs and signature rules to correlate security events, and
the correlation method applies inductive and abductive reasoning. As IDS produce a large
amount of alerts with many false positives, Raftopoulos and Dimitropoulos [8] proposed
a correlation method which reduces the alerts and resulted in 15% false positives. The
alerts used in this literature are pre-classified by the Snort classification rules and the work
applies entropy-based information theoretic criterion to finding the recurring alerts. The
evaluation demonstrated that the detection method performed better than the extant
botnet detection. Siraj et al. [9] proposed a framework of intrusion alert prediction,
which includes the following components: alert normalization, reduction, prioritization
and attack scenario construction and prediction. The ensemble detection proposed by
Amini et al. [10] combines different classifiers to obtain better detection results, including
neural network, fuzzy clustering, and stacking combination method. The experimental
results showed that the proposed ensemble approach performed better than the single
classifiers.

2.1. Hidden Markov Model. A Hidden Markov Model (HMM) is a doubly stochastic
process with an underlying stochastic process which is not observable and can be exam-
ined through another set of stochastic processes [11]. A state of Markov model is directly
visible, while that of HMM has a probability distribution over a set of outputs (obser-
vations). Therefore, a sequence of observations generated by HMM does not directly
indicate the sequence of states.

A Hidden Markov Model is denoted as λ = [A, B, π], where A is the state transition ma-
trix, B is the observation probability matrix, and π is the HMM initial state probabilities.
Three basic problems need to be solved:

(1) Given a set of observations O = {O1, O2, · · · , OT} and the HMM λ = [A, B, π], the
probability of the given observation sequence Pr(O|λ) is computed.

(2) Given a set of observations O = {O1, O2, · · · , OT} and the HMM λ = [A, B, π], an
optimal state sequence I = {i1, i2, · · · , iT} is computed.
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(3) Given a set of observations O = {O1, O2, · · · , OT}, the parameters of the HMM
model λ = [A, B, π] are adjusted such that Pr(O|λ) is maximized.

Problem (1) can be solved by either the forward method or the backward method [12];
the Viterbi algorithm [12,13] finds the answer of problem (2); the Baum-Welch algorithm
(BW) solves the last one [13]. The approaches to apply the above algorithms are explained
below.

In order to estimate the parameters of HMM, problem (1) should be solved first by
calculating the probability value of an observation sequence. After the parameters are
estimated, the forward or backward method can be applied to training the model. The
forward variable αt(i) = P (O, qt = si) denotes the probability of the partial observation
sequence that qt is the current state produced when state si are at time t, given the
model λ. Once the forward variable αt(i) = πtbt(ot) is initialized, an optimal model is

obtained by applying the induction formula, αt+1(j) =
[

∑N

i=1 αt(i) × aij

]

× bj(ot+1), until

Pr(O|λ) =
∑N

i=1 αt(i) converges and is maximized, where aij = P (qt+1 = sj |qt = si),
i, j = 1, 2, · · · , N denotes the probability of state si at time t moving to sj at time t + 1
and bj(ot+1) is the probability of the observable state at time t + 1 given the hidden state
at j.

The next problem is to find the most likely sequence of the hidden states, given the
HMM model and the observation sequence O = {O1, O2, · · · , OT}. The Viterbi algorithm
is a dynamic programming algorithm for finding the most likely sequence of the states,
i.e., the Viterbi path results from the given sequence of the observations. Initially, δ1(i) =
πibi(o1) and the induction formula is δt(j) = max1≤i≤N δt−1(i)aijbj(ot) for 2 ≤ t ≤ T and
1 ≤ j ≤ N , where δt(j) is the probability of the most likelihood state sequence of the first
t observations and j as its final state. By applying dynamic programming algorithm, the
Viterbi algorithm finds the most likely hidden state at time T which is q∗t = arg max

1≤i≤N
δT (i)

for a given observation sequence, when P ∗
t = max1≤i≤N δT (i) is maximized.

The Baum-Welch algorithm optimizes the HMM model. It re-estimates the parameters

of HMM λ′ = [A′, B′, π′] as π′
t = γ1(i), a′

ij =
∑

T

t=1 ξt(i,j)
∑

T

t=1 γt(i)
and b′j(k) =

∑

T

t=1 s.t.ot=k
γt(j)

∑

T

t=1 γt(j)

recursively until the model converges when Pr(O|λ) is maximized.
HMM is known for its application in temporal pattern recognition such as speech recog-

nition [14] and bioinformatics. Forrest et al. [1] proposed the first research that applied
HMM to identifying abnormal system call sequences. Many studies were conducted based
on HMM which found anomalies in system call sequences. Hoang and Hu [15] presented an
efficient training scheme for intrusion detection based on system calls. The HMM training
scheme divides the observations into subsets and integrates the sub HMM incrementally
into the final one. The results showed that the training time improved significantly.

2.2. Detection based on Hidden Markov Model. Ourston et al. [2] applied HMM
to detecting coordinated network attacks and the results showed that the HMM approach
has better performance than the decision tree and neural network approaches. This study
was evaluated by a small set of one-day event logs. The advanced attacks nowadays
may last for a longer duration and the past research might not be able to identify such
attacks. Ye et al. [3] discovered that HMM has a high detection rate in low error data
but is sensitive to noise. To reduce the effect of the sensitivity of noisy data, this study
correlates the related logs by extracting the relevant attack events and an attack plan is
characterized by a sequence of attacks in a time series. According to the previous studies
and our analysis, HMM is suitable for identifying such state-based attacks.
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3. Proposed Approach. Based on our preliminary study and the security reports [16],
the modern attacks often involve a sequence of attack stages with an attack plan composed
of the following three stages: (1) Reconnaissance (attack state R): Machine X is under
low frequency scans from various sources; (2) Attack (attack state A): Once machine X’s
vulnerability is discovered, the machine is exploited; (3) Stepping stone (attack state S):
The compromised machine X becomes a stepping stone and starts attacking others.

The proposed detection system applies a state-aware classification approach for iden-
tifying the attack stages of the attacks. As the attack stages (states) are hidden by the
event logs, Hidden Markov Model (HMM) is adopted, in which the sequence of attack
state transitions is a hidden process and is observed through a sequence of emitted ob-
servations. As illustrated in Figure 1, the activities observed from event logs are emitted
observations and the sequence of the hidden states becomes a sequence of attack steps
shown at the upper layer, where the observations are shown in the lower layer.

The proposed system architecture is plotted in Figure 2. As the logs from different
sources have different formats, the preprocess module collects and normalizes them into
a uniform format. Module Feature Extraction extracts features from the collected logs.
Module Event Correlation aggregates and correlates the related events using the extracted
features.

Figure 1. Illustration of the attack

Figure 2. System architecture
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The survey [16] indicated that the complexity and training time of HMM may depend
on the data size and the number of the states, and Ye et al. [3] pointed out that HMM
is sensitive to error data. Therefore, to reduce the number of the states, the Event
Correlation module aggregates the same attacks within a given time frame into one event
with weight and hit count. To reduce error data, it correlates the attack events targeted at
the same host in a time sequence. Once a temporal sequence of observations is aggregated
and correlated, it will be examined by the HMM-based classification model. It should be
noted that training the HMM involves a similar process by feeding the training data.

As the duration of a stealthy attack might be diversified, the Event Correlation module
applies the adaptive sliding window approach to performing temporal correlation. It (1)
aggregates the events of the same attack strategy from one log, (2) correlates with the
events of different strategies from multiple logs, and (3) identifies possible observable
actions targeting at the specific machine in a temporal sequence. An adaptive dynamic
length sliding window is used to accumulate events related to the current stage in which
a target machine is identified in the log. The Event Correlation algorithm is shown in
Table 1.

The links between the attack stages may rely on the events of a target machine from
different data sources. For example, an internal machine with weak password is com-
promised and becomes a stepping stone attacking a target. Therefore, the destination
IP address of a password guessing attack (a victim of password guessing attack) might
appear at the source IP address of an event of the target (the attacking side). Based on
the attack states shown in Figure 1, the event time of one state occurs before that of the
next state. Therefore, the time dependency could further reduce the possible correlation
events and improve the performance. The proposed correlation module links anomalous
events from different data sources by the relationship of the IP addresses and the temporal
dependency as illustrated above.

The proposed HMM based classification model illustrated in Figure 3 consists of three
layers: the hidden states at the first layer, the observable events emitted from the hidden

Figure 3. The proposed Hidden Markov Model
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Table 1. Event Correlation algorithm

EventCorrelation( )
{

Input: a set of logs from devices, {L1, L2, · · · , Lh};
Output: a sequence of aggregated and correlated attack events;

// Variable definition:
// Gi(p) is a set of aggregated attacks on IPp at time frame ti.
// ti < ti+1 < ti+2.
// Aggregation is performed within a time frame.
// Correlation is done in a sequence of time frames, ti, ti+1, and ti+2.

Initialize Gi(p) for all i and IPp;
For each log Li

{
For each IPp in log Li

{
Aggregate the same attack events for Destination IPp at time frame ti to Gi(p);
If the event type of Gi(p) ∈ the category of Reconnaissance
{

// Aggregate all the same types of attack events into Gi(p).
Continue to group and unite log records of reconnaissance attacks
for Destination IPp into Gi(p);
Update HitCount value accordingly;

// Set the next time frame ti+1 to the timestamp of the last event log
from Gi(p), indicating the start of the next stage.

Let start time of time frame ti+1 be the latest timestamp of group Gi(p);

// Aggregate all attack events of the category of Attack.
Collect the attack events intended for p and belonged to the category
of Attack into group Gi+1(p);
Update HitCount value accordingly;

// Set the next time frame ti+2 to the last timestamp of Gi+1(p),
indicating the start of the next stage.

Let time ti+2 be the latest timestamp of group Gi+1(p);

// Aggregate all attack events of the category of Stepping Stone.
Collect the attack events initiated from p and belonged to the category
of Stepping Stone into group Gi+2(p);
Update HitCount value accordingly;

} // end if the first reconnaissance attack event found for IPp

} // end for each IP in log Li

} // end for each log
// Complete correlation of all logs

// output
For all IPs found on the logs
{

Output the aggregated and correlated attack events in the following order:
Gi(p), Gi+1(p), and Gi+2(p);

}
}
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states at the second layer, and the feature set used for correlation at the bottom layer.
Different attack events might refer to different features.

4. Performance Evaluation. The performance evaluation consisted of two phases: (I)
validating the proposed detection model by a controlled environment and comparing with
an existing detection system, and (II) evaluating the detection performance using the
event logs of a real network. Experiment I was conducted in a controlled and surveillant
environment. For Experiment II, the five-week event logs were extracted from a real
network with the average of four million web requests and over ten thousand IDS alerts
per day.

In Experiment I, the controlled network environment consisted of three parts: attack
sites, a controlled network accessible through some access mechanisms and a basic defense
mechanism using netflow and syslog. The attacks were injected to the network under
surveillance. The total of 48 thousand log records was collected including network flow
logs and system logs.

The detection measurements, TP, TN, FP, and FN, are defined as follows, where TP
is the number of true positive decisions, and TN, FP, and FN refer to the number of true
negative, false positive and false negative decisions, respectively. The measurements are
summarized in Table 2.

Table 2. Detection measurements

`
`

`
`

`
`

`
`

`
`

`
`

`
`

Actual
Detected

Benign Attacks

Benign True Negatives (TN) False Positives (FP)
Attacks False Negatives (FN) False Positives (FP)

4.1. Experiment I: controlled network. To validate the proposed model, attacks were
injected to the network. As an attacker might attempt to intrude a target host stealthily
to evade detection, Experiment I injected stealth attacks over a long period of time. The
injected attacks imitated the real attack patterns found in real networks.

For illustration, a sequence of injected attacks is explained below. The logs related to
the multi-stage attack are shown in Table 3. First, scanning attacks from multiple source
IP addresses to the simulated network were injected covertly on an hourly basis. Once a
vulnerability of the victim (*.*.241.171) was discovered, the low frequency login attempts
BFA (Brute Force Attacks) from different source IP addresses were sent to the victim.
Finally, one successful login attempt, Brute Force Attack Success (BFAS) was performed
on the victim.

In the controlled environment, stepping stone attacks were terminated to prevent real
damage. The detection report shown in Figure 4 illustrates the state sequence given the
observation sequence from Table 3, where state 1 represents the Reconnaissance state,
state 2 denotes the Attack state, and state 3 represents the Stepping stone state. The
detection performance in Experiment I shown in Table 4 indicates that the proposed
detection can identify true stealth attack sequences efficiently with a precision rate of
93.2%.

The detection results of the existing system are shown in Table 5. The existing defense
is lack of efficient correlation. The existing defense mechanism failed to alert stealthy
login attempts, while the proposed system could correlate suspicious events and identify
the multi-stage attacks.
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Table 3. A sequence of injected stealth attacks

Obs. # Time Source IP Destination IP Action
1 4/14 03:00:00 *.*.21.186 *.*.0.0 Scan
2 4/14 04:00:00 *.*.21.186 *.*.0.0 Scan
3 4/14 04:00:00 *.*.162.69 *.*.0.0 Scan
4 4/14 04:00:00 *.*.162.69 *.*.0.0 Scan
5 4/14 05:00:00 *.*.162.69 *.*.0.0 Scan
6 4/14 05:00:00 *.*.190.102 *.*.0.0 Scan
7 4/14 05:00:00 *.*.211.98 *.*.0.0 Scan
8 4/14 06:00:00 *.*.190.102 *.*.0.0 Scan
9 4/14 06:00:00 *.*.126.69 *.*.0.0 Scan
10 4/14 06:00:00 *.*.211.98 *.*.0.0 Scan
11 4/14 06:00:00 *.*.180.155 *.*.0.0 Scan
12 4/14 06:00:00 *.*.249.242 *.*.0.0 Scan
13 4/16 01:00:00 *.*.252.158 *.*.241.171 Login attempt
14 4/16 02:00:00 *.*.252.158 *.*.241.171 Login attempt
15 4/16 10:00:00 *.*.7.111 *.*.241.171 Login attempt
16 4/16 22:00:00 *.*.35.148 *.*.241.171 Login attempt
17 4/17 02:00:00 *.*.242.180 *.*.241.171 Successful login attempt

Figure 4. An attack sequence detected in the proposed HMM

Table 4. Detection performance in Experiment I

`
`

`
`

`
`

`
`

`
`

`
`

`
`

Actual
Detected

Benign Attacks

Benign 43 5
Attacks 13 69

Accuracy = 0.862; Precision = 0.932; Recall = 0.841

Table 5. Comparison with the existing detection system

Incidents Results from existing IDS
Scan 21

Login attempt attack N/A
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4.2. Experiment II: real network. In order to demonstrate the applicability to real
networks, logs from a real network, audit log (from web traffic) and alert log (from IDS),
were applied in Experiment II. The log records of five consecutive weeks were collected
with an average of four million web requests and ten thousand IDS alerts per day. To
evaluate the detection performance in a real environment, the attacks reported by the pro-
posed detection system were analyzed and verified by the administrators. Two detected
cases are explained below to demonstrate that the proposed detection system could iden-
tify the multi-stage attacks.

4.2.1. Case A. For the attack case A, a machine was under stealthy scanning attacks,
followed by worm download once it was explored; the machine became a stepping stone
attacking others by password guessing attacks. To illustrate the state transitions of the
proposed HMM model, the logs and the detection reports were divided into two parts:
state 1 to state 2 and state 2 to state 3. Table 6 shows the log records of the attack from
state 1 to 2, wherein the machine *.*.4.72 was scanned covertly from different attack sites.
Given the observable events in Table 6, the detection report shown in Figure 5 indicates
that the victim was under scan attacks and was finally exploited. By correlating the
related log records shown in Table 7, the system was able to identify the complete attack
sequence from state 1 to 3 shown in Figure 6. The proposed detection system discovered
the stealthy attack successfully.

Table 6. Logs demonstrating attack case A from state 1 to 2

Obs. # Time Source IP Destination IP Action count
1 02/05 14:22:19 *.*.201.167 *.*.4.72 Scan 1
2 02/05 20:20:30 *.*.102.136 *.*.4.72 Scan 1
3 02/05 21:35:19 *.*.102.136 *.*.4.72 Scan 1
4 02/05 21:37:01 *.*.102.136 *.*.4.72 Scan 2
5 02/05 22:59:02 *.*.11.178 *.*.4.72 Scan 1
6 02/05 23:01:01 *.*.11.178 *.*.4.72 Scan 1
7 02/05 23:17:58 *.*.123.7 *.*.4.72 Scan 1
8 02/05 23:19:01 *.*.123.7 *.*.4.72 Scan 2
9 02/06 08:18:45 *.*.113.23 *.*.4.72 Scan 1
10 02/06 08:20:01 *.*.113.23 *.*.4.72 Scan 2
11 02/06 20:24:49 *.*.159.24 *.*.4.72 Scan 1
12 02/06 21:26:01 *.*.159.24 *.*.4.72 Scan 2
13 02/06 21:35:42 *.*.182.87 *.*.4.72 Scan 1
14 02/06 21:37:01 *.*.182.87 *.*.4.72 Scan 2
15 02/10 10:41:50 *.*.2.182 *.*.4.72 Scan 1
16 02/15 22:50:01 *.*.236.13 *.*.4.72 Worm 1

Table 7. Log results of the state transition to state 3 of attack case A

Obs. # Time Source IP Destination IP Action
17 02/24 11:23:57 *.*.4.72 *.*.115.155 Login Attempt
18 02/29 08:43:57 *.*.4.72 *.*.115.155 Login Attempt
19 02/29 14:46:36 *.*.4.72 *.*.115.155 Login Attempt
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Figure 5. Attack case A detected from 1 to 2

Figure 6. Attack case A identified

Table 8. Logs of attack case B from state 1 to 2

Obs. # Time Source IP Destination IP Action
1 02/29 10:18:36 *.*.148.94 *.*.11.138 Login attempt
2 03/01 10:32:55 *.*.198.25 *.*.11.138 Login attempt
3 03/07 19:34:39 *.*.198.25 *.*.11.138 Login attempt
4 03/13 14:07:55 *.*.148.94 *.*.11.138 Login attempt
5 03/20 15:28:29 *.*.148.94 *.*.11.138 Login attempt
6 03/21 10:13:10 *.*.148.94 *.*.11.138 Login attempt
7 03/21 11:35:15 *.*.148.94 *.*.11.138 Login attempt

4.2.2. Case B. Attack case B used different attack tactics. First, a machine (*.*.11.138)
was attacked by login attempts. Once it was compromised, it became a stepping stone
attacking others. The log records shown in Table 8 illustrate the sequence of low frequency
attacks identified by the proposed system, but it did not trigger any IDS rule in the real
network. The detection report in Figure 7 plots the observations and the corresponding
attack states. Table 9 and Figure 8 show the corresponding logs of the transition to state
3 and the detection report. Based on the evaluation, it can be observed that the proposed
detection system can identify the multi-stage attacks and is also useful for forecasting
on-going attacks to prevent further damage.

5. Conclusions. This paper proposed a state-based Hidden Markov Model classification
method for detecting the advanced attacks with a sequence of attack stages. The proposed
system has been evaluated on a controlled network environment and a real network.
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Figure 7. Attack case B detected from state 1 to 2

Table 9. Logs of attack case B on state 3

Obs. # Time Source IP Destination IP Action
8 03/21 11:35:15 *.*.11.138 *.*.148.94 Login attempt
9 03/21 11:33:21 *.*.11.138 *.*.148.94 Login attempt

Figure 8. Attack case B of state 1 to 3

The mass amount of log records from a distributed network is not feasible for adminis-
trators to analyze manually. The proposed system could efficiently correlate logs, reduce
the false positives, and improve the efficiency of the security administration work. Based
on the results from Experiment II, the proposed detection system reports the attack stage
of an attack and is suitable for predicting an on-going multi-stage attack and preventing
further damage to the network. The proposed detection system yields a good detection
performance with a precision rate of 93.2%, while the existing detection system might
produce many false positive alerts and fail to report the multi-stage attacks.

As intrusion detection systems, firewalls, and servers generate different types of logs,
further investigation can be done on classifying attacks to reduce the space of suspicious
events. In addition, different attack strategies can be applied by attackers in different
stages. It is important to categorize the possible attack strategies used in each stage to
adopt different state-based classification model to evaluate the detection performance.
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