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Abstract. It is a key issue to identify influential spreaders in understanding dynam-
ics of information diffusion in complex networks. In existing methods, the edges are
treated equally, but each edge has underlying importance and it may be different. In this
paper, a novel method called evidential k-shell centrality based on potential edge weight
is proposed to identify influential spreaders. First of all, we propose an edge weighting
method based on Jaccard similarity for constructing the weighted networks. Secondly, the
value of modified evidential centrality is calculated by considering real degree distribu-
tion. Thirdly, combining modified evidential centrality and the layer of nodes located in
networks, a new method is proposed to identify influential spreaders. Then, in order to
evaluate the performance of the proposed method, we adopt the susceptible-infected (SI)
model to simulate the epidemic spreading process by using the spreading rate and the
number of infected nodes in real complex networks. Experiment results verify that our
method is effective for detecting the node influence.
Keywords: Complex network, Influential spreaders, Potential edge weight, Dempster-
Shafer theory of evidence, k-shell decomposition

1. Introduction. In complex network studies, the spreading processes of epidemic and
information have gained increasing attention in the recent years. It is extremely significant
for developing efficient methods to either hinder the disease spreading or accelerate the
information dissemination. Hence, how to identify influential nodes is a crucial issue in
complex networks.

It is well-known that degree centrality, betweenness centrality and closeness centrality
[1] are three fundamental centrality measures to identify influential nodes. So far, a variety
of centrality measures are proposed to identify influential nodes in complex networks [2,3].
Kitsak et al. [4] proposed k-shell (or k-core) decomposition to identify influential nodes,
and they found that the influential nodes are those located in the core of the network.
However, the k-shell decomposition assigns many nodes in the same k-shell. Then, Zeng
and Zhang [5] proposed an improved measure, named the mixed degree decomposition
(MDD) method, where both the residual degree and the exhausted degree are considered.
In the latest two years, in [6], a measure named coreness centrality was proposed to
quantify the spreading capability of a node. The method is based on the idea that a
powerful spreader has more connections to nodes that reside in the core of the network.
After that, Gao et al. [7] proposed a local structure centrality (LSC) measure which
considers both the number and the topological connections of the neighbors of a node.
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For nodes with the same number of neighbors, the one with denser connected neighbors
is supposed to be more influential since denser connected neighbors get more chance to
influence each other.

Dempster-Shafer evidence theory (D-S evidence theory for short) was first proposed by
Dempster [8], and then formed by the further expansion of Shafer [9]. D-S evidence theory
has the ability to combine a pair of evidence or belief functions to obtain a new evidence
or belief function. Based on the D-S theory, evidential centrality (EVC) [10] measure is
raised as a tradeoff between degree and strength of each nodes to derive node importance
in weighted network. In [11], evidential semi-local centrality (ESC) measure not only
modifies the evidential centrality by considering real degree distribution of network, but
also extends semi-local centrality in weighted network. The values of centrality measure
for each node are obtained by both these centrality measures, respectively. Then, we can
rank the nodes and achieve the order according to these values. It can be seen that the
higher the value is, the more influential the node is.

In the majority of networks, the edges are treated equally, but each edge may have
potential and different significance in network structure [12,13]. It can be seen that the
edges’ potential importance should be considered. Thus, when we design the centrality
measures to identify influential spreaders for the unweighted networks, it is crucial for
taking the edges’ potential importance into account. However, we find that evidential
centrality only captures the characteristics in the aspect of degree, strength, rather than
location of the network. If a highly connected node exists at the periphery of a network,
it will have a small effect in the spreading process. Conversely, a less connected decision-
maker placed in the core of the network will have more influence on other individuals
through a network. It seems that the more influential spreaders tend to be those located
within the core of a network. Thus, in order to rank nodes effectively, it is better to design
the ranking algorithms which consider the location of node in a network. Here, the k-shell
decomposition is used to identify the location of a node in the network. Inspired by those,
in this paper, a new centrality measure is proposed to identify influential spreaders based
on combining modified evidential centrality with taking degree distribution into account
and the layer of nodes located in networks. The value of the new centrality measure for
each node is ranked in descending order. The higher the value of centrality measure is,
the more influential the node is. Then we adopt the susceptible-infected (SI) model to
validate the spreading influence of the nodes ranked by different centrality.

The main contributions of this paper can be summarized as below.

• An edge weighting method is proposed according to Jaccard similarity.
• A new centrality measure called evidential k-shell centrality based on potential edge

weight (PEW-EKSC) is proposed to identify influential nodes based on combining
modified evidential centrality with taking degree distribution into account and the
layer of nodes located in networks.

• The new method is raised as a tradeoff between degree and strength of each node,
and the layer of nodes located in network is seen as a factor to identify influential
spreaders as well.

The rest of parts are organized as follows. In Section 2, we define the potential edge
weight and introduce evidence theory. In Section 3, a new method for identifying influ-
ential spreaders is proposed. In Section 4, we present data sets and apply the SI models
to evaluate the performance of the proposed method. Finally, some conclusions are sum-
marized in the last section.
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2. Preliminaries.

2.1. Definition. Consider an unweighted and undirected network G = (V, E) with |V | =
N nodes and |E| = M edges. euv ∈ E represents the connection between node u and
node v.

The k-shell decomposition method partitions a network into sub-structures that are
directly linked to centrality [14]. This method which can identify the location of a node
in a network, is an efficient measure at capturing the spreading ability of a node in a
network. The algorithm can be implemented in the following way. First of all, we remove
all nodes with degree one, and keep on removing the existing nodes until all nodes’ degrees
are larger than one. The removed nodes belong to the k − s = 1 shell. Next, we repeat
the pruning process in the same manner for other nodes until all nodes of the network are
removed and assigned to the different k-shell index.

In unweighted networks, the edges are treated equally. Generally speaking, the edges
are different if the degree of overlap among the neighbors of the nodes connected by an
edge is different. Thus, potential edge weights can be defined in the following way.

Definition 2.1. (Potential Edge Weight) The potential weight of edge euv, denoted by
ωuv, is defined as

ωuv =
|Ngu

⋂
Ngv|

|Ngu

⋃
Ngv|

(1)

where Ngu is a set which consists of neighbor nodes of node u and itself.

2.2. Dempster-Shafer rule of combination. In Dempster-Shafer evidence theory,
problem domain Θ = {a1, a2, · · · , an} is a nonempty set which consists of a finite number
of mutually exclusive and exhaustive hypotheses, called the frame of discernment.

Suppose Θ is the frame of discernment, a mass function is mapping m : 2Θ → [0, 1],
(2Θ is the power set of the Θ), which is also called Basic Probability Assignment (BPA),
satisfying

m(Φ) = 0 and
∑

A⊂2Θ

m(A) = 1 (2)

where Φ is the empty set and A is any element of 2Θ, and mass m(A) represents how
strongly the evidence supports A.

Assuming that masses m1 and m2 are both basic probability assignments of Θ, orthog-
onal sum m(A) is calculated from the two sets of masses m1 and m2 in Dempster’s rule
of combination.

m(A) =
1

1 − K

∑

B
⋂

C=A

m1(B)m2(C) (3)

with
K =

∑

B
⋂

C=Φ

m1(B)m2(C) (4)

where A, B and C are elements of 2Θ.

3. Influential Spreaders Identification by Evidential k-Shell Centrality Based

on Potential Edge Weight. In this paper, we mainly consider unweighted networks. In
unweighted networks, although the edges are on an equal footing, the potential importance
of each edge is different. So we present an edge weighting method according to Jaccard
similarity. Then we observe that evidential centrality simply weighs between the degree
and strength of each node, rather than the layer of nodes located in network. Thus, based
on combining modified evidential centrality with taking degree distribution into account
and the layer of nodes located in networks, the influence of the node is identified by a
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Initialization

Step1. Calculate the edges potential weight

Step2. Construct a frame of discernment Θ

Step3. Ascertain a corrected parameter to

modify the BPA of degree

Step4. Calculate BPAs of each node about

degree and strength

Step5. Achieve influence value of node i by

the Dempster s rule of combination

Step6. Calculate the modified evidential

centrality mec(i)

Step7. Assign each node with k-shell value

Step8. Get the final influence value EKSC of

nodes

End

Figure 1. Example of figure

new centrality measure, called evidential k-shell centrality based on potential edge weight
(PEW-EKSC). The flow chart of the proposed method is shown in Figure 1.

In the following, we analyze the algorithm in detail.
Step 1. Since the potential importance of the edges plays a significant role on identifying

influential nodes, the edges’ potential weights in unweighted networks are calculated based
on the definition of the potential edge weight.

Step 2. In the networks with potential edge weights, to evaluate the influence of degree
and strength of node, here, let high or low be evaluation indices. Hence, a frame of
discernment θ is denoted as θ = (high, low).

Step 3. The real degree distribution of a complex network should be taken into con-
sideration. Thus, suppose node i with degree ki follows a degree distribution P (ki). To
modify the BPA of degree, the parameter is ascertained and defined as λi =

∑
j≤ki

P (j),
where j is a set of degree of nodes which is lower than ki.

Step 4. The BPAs of high or low influence for the degree of the ith node are represented
for mid(h) or mid(l) (i = 1, 2, . . . , N), separately; Likewise, BPAs of high or low influence
for the strength of the ith node are represented for miω(h) or miω(l) (i = 1, 2, . . . , N),
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respectively. They are expressed as follows.

mid(h) = λi

|ki − km|

σ
(5)

mid(l) = (1 − λi)
|ki − kM |

σ
(6)

miω(h) =
|ωi − ωm|

δ
(7)

miω(l) =
|ωi − ωM |

δ
(8)

where σ and δ are given as

σ = kM + µ − (km − µ) = kM − km + 2µ (9)

δ = ωM + ε − (ωm − ε) = ωM − ωm + 2ε (10)

where 0 < µ < 1, 0 < ε < 1, [10] demonstrated that the values of µ and ε have no impact
on the ranking orders of nodes in weighted network. kM and km are the maximum and
minimum values of degree, and ωM and ωm correspond to the maximum and minimum
values of weight, respectively. According to the above statement, the BPAs of degree and
strength of ith node are obtained, respectively, as

Md(i) = (mid(h), mid(l), mid(θ)) (11)

Mω(i) = (miω(h), miω(l), miω(θ)) (12)

where

mid(θ) = 1 − (mid(h) + mid(l)) (13)

miω(θ) = 1 − (miω(h) + miω(l)) (14)

where mid(θ) represents the BPAs of high or low influence for the degree of the ith node
and miω(θ) represents the BPAs of high or low influence for the strength of the ith node.

Step 5. For the above BPAs of the ith node with respect to degree and strength, the
BPA of influence value of the ith node is achieved by the Dempster’s rule of combination,
and is given by

M(i) = (mi(h), mi(l), mi(θ)) (15)

where θ = (high, low), and mi(h) and mi(l) represent the BPAs of high or low influence
of the ith node after using the Dempster’s rule of combination, respectively. In Equation
(15), mi(θ) means the probability of high or low of the ith node. Thus, let mi(θ) allocate
to mi(h) and mi(l) normally, then the probabilities of high or low influence of the ith node
are given by

Mi(h) = mi(h) +
1

2mi(θ)
(16)

Mi(l) = mi(l) +
1

2mi(θ)
(17)

Step 6. Apparently, the higher the value of Mi(h) is, the more important the node i is.
In contrast, the lower the value of Mi(l) is, the stronger the spreading influence of node
i is. So the modified evidential centrality mec(i) of the ith node is defined as

mec(i) = Mi(h) − Mi(l) = mi(h) − mi(l) (18)

In Equation (18), the value of mec(i) is a positive or negative number. Thus, to ensure
mec(i) to be a positive number, the numerical treatment and normalization are denoted
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as below.

mec(i) =
|min(mec)| + mec(i)

N∑
i=1

{|min(mec)| + mec(i)}

(19)

where |min(mec)| is the absolute minimum value of mec.
Step 7. Assign each node with k-shell value by employing the k-shell decomposition

analysis. Lastly, normalization is necessary.

Ks(i) =
Ks(i)∑
i

Ks(i)
(20)

Step 8. The final influence value EKSC for each node can be achieved according to the
expression as below.

EKSC(i) = mec(i) × Ks(i) (21)

Finally, the value of EKSC for each node is ranked in descending order. Thus, nodes
located in the core of networks have larger EKSC(i) than ones in the periphery of a
network. To sum up, the higher the value of EKSC(i) is, the more influential the node is.

4. Experimental Analysis. In this section, to validate the performance of the pro-
posed method, we employ the susceptible-infected (SI) model [14] to examine the spread-
ing influence of top-ranked nodes by different methods. In the SI model, there are two
compartments: (i) Susceptible S(t) represents the number of individuals susceptible to
(not yet infected) the disease; (ii) Infected I(t) denotes the number of individuals that
have been infected and are able to spread the disease to susceptible individuals. At the
initial time, we set only a node to be infected to investigate the influence of the node.
At each step, each node in the infected state randomly selects their susceptible neighbors
with probability β and remains infected. The spreading process stops when there is no
infected node. The number of infected nodes at time t, denoted by F (t), can be treated
as an indicator to estimate the influence of initially infected node. The larger F (t) value
of a node is, the stronger the spreading influence of the node is. The results are obtained
by averaging over 500 independent realizations.

4.1. Experimental data. We evaluate the performance of the proposed method in four
real networks. (i) Zachary’s Karate Club Network [15], the undirected and unweighted
network consists of 34 nodes. The data is collected from the members of a university
karate club by Wayne Zachary. (ii) Jazz Musicians Network [16], this is the collaboration
network between Jazz musicians which has 198 nodes. (iii) Dolphins Network [17], this is
an undirected social network of bottlenose dolphins. (iv) Email Network [18]: a network
of e-mail interchanges between members of the University Rovira i Virgili (Tarragona).
The basic topological properties of these four networks including the number of nodes n

Table 1. The basic topological features of the four real networks

Network n m < k > < k2 > β
c

rand

Zachary 34 78 4.5882 35.6471 0.1287
Jazz 198 2742 37.6970 1070.2424 0.0259

Dolphin 62 159 5.1290 34.9032 0.1470
Email 1133 5451 9.6222 179.1640 0.0535
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and links m, the average degree < k >, the second-order average degree < k2 >, and the
spreading threshold (βc

rand = <k>
<k2>

) [19] are shown in Table 1.

4.2. Experimental results. To verify the effectiveness of the proposed method, we com-
pare the spreading ability of the nodes that either appear in the top-L list by PEW-EKSC
or other two centrality measures including k-shell decomposition and closeness centrality
(not appearing in both lists). Note that without considering the effects of common nodes
in both ranking lists, the differences of these methods can be well distinguished. In this
paper, we are more interested in the area when β is around the epidemic threshold βc

rand

since in this area the initially infected nodes are perturbations that can trigger spreading
at all scales. Thus, we use SI model to compare the spreading ability of the nodes on four
real networks. The simulations on the cumulative number of infected nodes, namely F (t),
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Figure 2. The number of infected nodes by initially infected nodes in the
top-5 list

0 10 20 30 40
0

50

100

150

200

t

<F
(t)

> 
(th

e 
nu

m
be

r o
f i

nf
ec

te
d 

no
de

)

 

 

Jazz

PEW−EKSC
k−Shell

(a) Comparison by PEW-EKSC or k-Shell decom-
position

0 10 20 30 40
0

50

100

150

200

t

<F
(t)

> 
(th

e 
nu

m
be

r o
f i

nf
ec

te
d 

no
de

)

 

 

Jazz

PEW−EKSC
CC

(b) Comparison by PEW-EKSC or CC
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top-20 list
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as a function of time for Zachary and Jazz networks are shown in Figure 2 and Figure 3,
respectively, and those for Dolphin and Email network are shown in Figure 4 and Figure
5, separately. The number of cumulative infected nodes increases with time and finally
reaches the steady value.

As shown in Figure 2(a) and Figure 2(b), we can find that the proposed method is better
than CC for the average number of infected nodes at each step during the whole infecting
process. Obviously, the proposed method outperforms k-shell decomposition method in
Zachary Club network. In Jazz network, Figure 3(a) presents the cumulative number
of infected nodes by the proposed method is larger than that by k-shell decomposition
method in each step, that is the proposed method performs a quicker spreading than
k-shell decomposition method, but the average number of infected nodes by the proposed
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Figure 4. The number of infected nodes by initially infected nodes in the
top-10 list
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method and CC is almost the same as shown in Figure 3(b), it means that the proposed
method and CC nearly have the same performance on Jazz. In Dolphin network, it is
obviously that the result for the proposed method is a bit better than the result for k-shell
decomposition method in Figure 4(a). However, comparing the proposed method with
CC, as shown in Figure 4(b), in early stage, the spreading speed of the top-L nodes ranked
by proposed method is faster than that by the CC, but the CC needs less step to reach the
steady state than the proposed method in the later spreading process. Furthermore, when
considering the Email network, the results for the comparison of the spreading ability as
to proposed method, k-shell decomposition method and CC are shown in Figure 5(a) and
Figure 5(b). The proposed method performs completely better than k-shell decomposition
method, but CC outperforms the proposed method to some extent.

Totally speaking, from the comparison with the proposed method and other centrality
measures, our method is effective for identifying the influential spreaders in real networks.

5. Conclusions. In this paper, we propose a new approach to identify influential spread-
ers in complex network called evidential k-shell centrality based on potential edge weight.
Firstly, an edge weighting method is proposed according to Jaccard similarity for con-
structing weighted networks. Secondly, the value of modified evidential centrality is cal-
culated by considering real degree distribution. Thirdly, combining modified evidential
centrality, the layer of nodes located in network is seen as a factor to identify influential
spreader as well. To evaluate the performance of our method, we use the susceptible-
infected (SI) model to estimate spreading influence of the top-L nodes in four real net-
works. By comparing the number of cumulative infected nodes of the top-L spreaders by
different centrality measures, it shows that our method performs a quicker spreading than
k-shell decomposition method and CC in four networks. The experiment results on four
real networks show that our method is capable of identifying influential spreaders well.
Further investigation could be done on identifying influential spreaders in directed net-
works. Also the potential edge weight might be a useful factor in estimating the spreading
ability of a node in unweighted networks.
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