International Journal of Innovative
Computing, Information and Control ICIC International ©)2016 ISSN 1349-4198
Volume 12, Number 2, April 2016 pp. 603-613

FUZZY ADAPTIVE PRESCRIBED PERFORMANCE CONTROL
FOR A CLASS OF UNCERTAIN CHAOTIC SYSTEMS
WITH UNKNOWN CONTROL GAINS

WEI XIANG, YEGUO SUN AND HENG Liu

Department of Mathematics
Huainan Normal University
Dongshan Road (West), Huainan 232038, P. R. China
xlangwei27@126.com

Received September 2015; revised January 2016

ABSTRACT. This paper proposes a fuzzy adaptive control method for uncertain chaotic
systems with unknown control gains. Firstly, an error transformation is introduced to
transform the original constrained system into an equivalent unconstrained one. Then,
based on the error transformation technique and the predefined performance technique,
a fuzzy adaptive feedback control method is developed. It is shown that all the signals of
the resulting closed-loop system are bounded. Finally, two illustrative examples are given
to demonstrate the effectiveness and usefulness of the proposed technique.
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1. Introduction. Controlling chaos has attracted increasing interests in recent years.
Various theories and applications have been investigated. Nowadays, chaos has lots of
useful applications in information processing, secure communication, biological engineer-
ing, lasers, chemical processing, and many other areas [1,2]. However, chaotic behavior
can also result in destructive effects; therefore, the undesired chaotic phenomenon needs
to be suppressed. Many control techniques have been successfully applied for the control
of chaotic systems, including adaptive feedback control, sliding mode control, adaptive
backstepping control [3-5]. However, most of the aforementioned methods have assumed
that the model of the chaotic system is known in advance. In practice, most of the chaotic
systems are disturbed by external disturbances and model uncertainties. It is worth men-
tioning that the existence of uncertainties may lead to notable performance degradations
or even instability of the control system. So it is more advisable to take the effects of the
system uncertainties and external disturbances into account.

In recent years, adaptive fuzzy control design for uncertain chaotic systems has received
increasing attention; based on Lyapunov stability theory and backstepping design tech-
nique, many adaptive fuzzy control design approaches have been developed for uncertain
chaotic systems, see [6-12]. Li et al. [6] proposed an adaptive control strategy to increase
the efficiency of adaptive control by combining T-S fuzzy modeling and the GYC partial
region stability theory. Yu et al. [7] proposed an adaptive fuzzy control method to sup-
press chaos in the permanent magnet synchronous motor drive system via backstepping
technology. Boulkroune et al. [11] investigated fuzzy adaptive control schemes for a class
of MIMO unknown nonlinear systems with known and unknown sign of the control gain
matrix, while Boulkroune and Saad [12] developed a fuzzy adaptive variable-structure con-
trol scheme for a class of uncertain MIMO chaotic systems with both sector nonlinearities
and dead-zones. In order to realize the robust compensator, most of the aforementioned
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control schemes are obtained with the restriction that the control gains are known in
advance. However, this assumption does not appear to be realistic in a general case [13].
In practice, most of the chaotic systems are disturbed by model uncertainties. It is worth
mentioning that the existence of uncertainties may lead to notable performance degra-
dations or even instability of the control system. When there is no a priori knowledge
of control gain, the fuzzy control technique is a valid solution for solving the problem of
unknown gain. For example, Xiang et al. [14] proposed an adaptive fuzzy sliding mode
control scheme for a class of uncertain chaotic systems with mismatched uncertainties
and unknown control gains. However, the general chaotic systems with unknown control
gains are not considered in [14]. So it is more advisable to take the effects of the unknown
control gains into account for uncertain chaotic systems.

Recently, a design solution called prescribed performance control (PPC) for the problem
has been proposed in [15]. Utilizing a transformation function that incorporates the
desirable performance characteristics, PPC suggests transforming the original controlled
system into a new one. Guaranteeing the uniform boundedness of the states of the latter,
through proper control action, proves necessary and sufficient to solve the problem for the
former. [16] established a control scheme to control unknown pure feedback systems of
known high relative degree, exhibiting prescribed performance with respect to trajectory
oriented metrics. Na et al. [17] proposed an adaptive control for a class of nonlinear
mechanisms with guaranteed transient and steady-state performance. Sun and Liu [18]
presented a fuzzy adaptive control method for MIMO uncertain chaotic systems, which is
capable of guaranteeing the prescribed performance bounds. However, the main limitation
in [17,18] is that the effect of the unknown control gains for uncertain chaotic systems has
not been taken into account.

To the author’s best knowledge, there are few studies dealing with the prescribed per-
formance control problem with unknown control gains. Inspired by the works in [17,18],
we investigate the tracking control with guaranteed prescribed performance for uncertain
chaotic systems. Compared with related works, there are four main contributions that
are worth to be emphasized.

(1) Compared with the results in [18], the uncertain chaotic systems with unknown
control gains are considered.

(2) The prescribed performance function (PPF) is incorporated into the control design.

(3) An adaptation law is proposed to update the fuzzy parameters.

(4) The system we considered is nonstrict feedback form.

So, the prescribed performance adaptive fuzzy output feedback control design method-
ology still remains an open problem for MIMO uncertain chaotic systems with unknown
control gains, which is important and more practical, and thus has motivated us for this
study.

Motivated by the aforementioned works, this paper focuses on the problem of adaptive
fuzzy control for a class of uncertain chaotic systems with unknown control gains. Based
on Lyapunov function, it is proved that all the signals of the closed-loop system are
bounded and that the tracking error remains an adjustable neighborhood of the origin
with the prescribed performance bounds.

The organization of this paper is described as follows. In the next section, system model
is derived, and the assumptions are also given. In Section 3, the design of the proposed
control strategies is discussed. The simulation results are presented to demonstrate the
effectiveness of proposed control scheme in Section 4. Conclusion is presented in Section
5.
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2. System Descriptions and Problem Formulations. Consider the following chaotic
system:

i‘l - fl(ta x) + gl(ta x)ul(t)ﬂ

Ty = fo(t,x) + ga(t, v)ua(t), (1)
Ty = fn(ta x) + gn(ta x)un(t)a
where T = [, T9,...,,]" is the system state vector which is assumed to be available for
measurement. u = [, Uy, - . ., Uy|" is the control input and f(¢,x) = [f1(t, x), f2(t, ), ...,

fn(t,2)]" is the unknown continuous nonlinear function with uncertainty and disturbance,
and g(t,7) = [g1(t, ), g2(t, ), ..., gn(t,2)]T is unknown control gain.

Then, system (1) can be rewritten as
where diag(g(t,)) = diag(gi(t, ), a(£, 7). .. gn(t, 7).
Remark 2.1. There have been many chaotic systems that belong to the proposed system
(1), for example, Lorenz system, and Li system.

The objective of this paper is to construct a fuzzy adaptive controller for system (2)
such that the system state x tracks the reference signal x4, € R™ and all the signals in the
closed-loop system remain bounded.

To meet the objective, the following assumptions are made for the system (2).

Assumption 2.1. f(t,z) and diag(g(t,x)) are unknown but bounded. And there ezists
d > 0 such that diag(g(t,z)) > 61, where I,, is an n X n identity matriz.

Assumption 2.2. The desired trajectory xq is a known bounded differentiable function.

2.1. Prescribed performance. The prescribed performance is achieved by ensuring

that tracking error e = z—x4 = [eq, €, ..., e,]" evolves strictly within predefined decaying
bounds as follows [14,15]:
—(Siminui(t) < el(t) < 5imax,ui(t), t> 0, 7= 1, 2, e, n, (3)

where §;min and 0;ma are design constants, and the performance functions p;(t) are
bounded and strictly positive decreasing smooth functions and tlim wi(t) = pio > 0.
—00

Choosing the performance function p;(t) and the constants d; i, and 0; max appropriately

determines the performance bounds of the error ¢;, i = 1,2,...,n.
To represent (3) by an equality form, we employ an error transformation as
61,(t) :Mz(t)sz(zl)a I = 1,2,...,7’l, (4)

where z; is the transformed error, and s;(-) is smooth, strictly increasing function, and
satisfies the following condition
—0imin < 5i(2i) < 0jmax;
limziﬁfoo Sz(zz) — _5z min) (5)
limzi%+oo Sz(zz) = 51 max-
Note that s;(z;) are strictly increasing functions, and we have
e;(?
zi:s;1<z()>, i=1,2,...,n. (6)
i (t)
Differentiating (6) with respect to time yields

S S P O 1/ (10)
Zi a( )Mi(t) |:f2(ta )+gz(ta ) i di Mi(t) . (7)

e; (t)
wi(t)
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Let g1 .
p, = 9% 1 S0, by = —ig — ei(t) i (t)
3 (20) D bl

wi(t)
Then (7) can be rewritten as

Zi - rz[fz(tax) + gi(ta x)ul + h’l]? i = 1’ 27 sy T (8)

Let 2 = [21,20,..., 23], h = [h1, ha, ..., hy]T, then (8) can be written into the following
form:

Z = diag(r)[f(t,z) + diag(g(t,z))u + h], (9)
where diag(r) = diag(ri,re, -+ , 7).

0i max€®t —=0; pine %

efi4e %

Remark 2.2. In this paper, we choose the function s;(z;) = tanh(z;) =
1/(Xi40i min)+1/(0i max—Ai) o ei(t)

5 >0, \; = PROR
2.2. Fuzzy logic systems. The basic configuration of a fuzzy logic system consists of
a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and a defuzzifier. The
fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping from an input

So, we can calculate that r; =

vector ¥ = [x1, %9, ...,2,]T € R™ to an output a(x) € R. The ith fuzzy rule is written as
Rule i: if z; is F} and - -- and z,, is F}! then a(z) is «;.
where F}, Fy, ... and F} are fuzzy sets and «; is the fuzzy singleton for the output in

the ith rule. By using the singleton fuzzifier, product inference, and the center-average
defuzzifier, the output of the fuzzy system can be expressed as follows:

o) = Xy I 1y ()
S [T sy ()

where fi,,i (2;) is the degree of membership of z; to F?, N is the number of fuzzy rules, § =
7

= 0"y(),

is the adjustable parameter vector, and ¥ (x) = [pi(x),p2(x), ..., pn(2)]7,

pi(z) = NHil i (z;)

Zj:l [T, Hpi (@)
is the fuzzy basis function. It is assumed that fuzzy basis functions are selected so that
there is always at least one active rule.

[ag, ..., an
where

3. Main Results. Due to the fact that the system functions f(¢,z) and diag(g(¢, x)) are
unknown in system (2), we need to use fuzzy logic system to approximate the nonlinear
unknown functions.

By applying the introduced fuzzy systems, approximation of function f;(¢, z) and g;(t, )
can be expressed as follows:

fi(xv gfi) = gjzdjfi(ﬁ)a gz(xv 991‘) = 9£¢gi(x)a 1=1,2,...,n. (10)
Optimal parameters 67 and 67 can be defined such that

07, = argrrbin sup | f;(t, ) — fi(t,2)||, 0, = arg rr;'m [sup |gi(t, z) — g:(t,z)|],  (11)

12

t = 1,2,---,n. Define the parameter estimation errors and the fuzzy approximation
errors as follows:

O, =0 — 92, O, =0, — 9;, (12)
and
er() = filt,x) — fi(2,07), e4(x) = gi(t,z) — gi(x,0;,). (13)
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Let f(xa Hf) - [fl(xa efl)a f2(l', 9f2)7 RS fn(xa an)]Ta g(l', 99) - [gl(xa 991)7 gZ(xa 092)7 R
Gn(x,0,)]", ep = f(t,z)— f(x, 9;2) and e, = g(t,z) — g(x, 9;‘). We assume that || /|| < &,
llef|| < €2, £1 and ey are positive constants.

The controller can be constructed as

U = Uegy + Up, (14)

where
Uequ = —diag(§(x, 0y))[el + diag(§(z,0,))" "' [h + f(2,07) + diag(k)z],  (15)
= _zll=lllldiag(r)[|(e1 + ealluequll + |leleln gﬁif?ﬁ(ﬁ(waeg)ﬂ_l[h + f(,6) + diag(k)z]]|) . (16)
where € is a small positive constant, diag(k) = diag(ky, ko, -+ , kp), k; > 0,0 =1,2,--- ,n

To generate the approximations f(¢,x) and diag(g(¢, z)) online, we choose the following
adaptation laws:

gfi = ’%fidjfiziria ggi = '%gﬂvbgiuequ i%iT4, (17)

where ky,, k4, are positive constants, 1 = 1,2,...,n.
So, we obtain the following theorem.

Theorem 3.1. Consider the system (2). Suppose that Assumptions 2.1 and 2.2 are
satisfied. Then the controller (14) with the adaption law given by (17) can guarantee all
stgnals in the closed-loop system are bounded in probability, and the tracking error remains
in a neighborhood of the origin within the prescribed performance bounds for all t > 0.

Proof: Consider a Lyapunov function as

:— zz—l—z

The time derivative of V' is given by

)2
efz

Z Zj, : (18)

. 0,0 " 0,0,
=Z"di t, ) + diag(g(t h] § D
V =z"diag(r)[f(t, z) + diag(g(t, z))u + h] + 2 Iy + 3

— T diag(r)[f(t, ) + (diag(g(t, 2)) — diog(§(,0,)) s + b

0,07, <~ 0,0,
+dla‘g( (‘/Ll 9 ))uequ+d1ag( (t ZL' U’T‘ —|—Z };i fi —|—Z—g)i gl.
i=1 fi

Notice that
diag(g(z,0,))%[el, + diag(g(z,0,))*]" = I, — elel,, + diag(g(z, 0,))*]""
One can obtain
V = 2T diag(r) [f(x, 05) — f(x,07) + 25 + (ding(g(x, 67)) — diag(§(, 0,))) Uequ

— diag(k)z + €gtequ + e[eln + diag(g(x, 0 ))2] ! [h + f(x, 0¢)

: gflgfz - égiégi
diag(k)z| +d ta))u,| + > e
+1ag()]+1ag((gcu]+z1 )\f1+ N,

i=1
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= =Y W0z — > g 0y rizitiequ i + ||2]]||ding(r)|] (81 + £2|[tiequl|
=1 =1
+[Je [el, + diag(g(z, 0,))2] " [h+ f(x,0;) + diag(k)z] ||)

0.0 0,,0,,
o k Td d t . fz fz 9i gz‘
E 27 + 2" diag(r)diag(g(t, u+§ E SV

i=1 i=1 )\fl i=1 gi
According to Assumption 2.1 and (16), we have 2Tdiag(r)diag(g(t, z))u, < —L]||2]l,

where L = ||diag(r)||[e1 + &2 |[ttequl| + ||e[e], + diag(§(z, 8,))2] ' [h+ f(z, 0;) + diag(k)z]||]-
So, by using adaptation laws (17), we obtain

n
i=1
Therefore, V' is always negative, which implies that z; € L,,. Then, according to
the properties of function s;(z;), we know that —&;min < $;(2;) < dimax- Then, one can
conclude that tracking control of system (2) with prescribed error performance (4) is
achieved. This completes the proof.

Remark 3.1. Compared with the results in [16], the unknown control gains are considered
in the paper. Meanwhile, the system we considered is nonstrict feedback form.

Remark 3.2. In order to improve the effect of the controller (16), we can modify u, as
follows:

_2llzll||diag(r)]|(e1 + ealltequll + llelel + diag(d(x,0,))%] [k + f(x,0;) + diag(k)z]|])

— , (19
STRIP + ¢ (19)

where £ is a design time-varying parameter defined as:
é = _ mollz|ll|diag(r)[|(e1 + e2[tequl| + [le[eln + diag(§(x,64))*] " [h + f(x,6;) + diag(k)=]||) (20)

ollz[|* +¢
where ny 1S a positive constant.

4. Numerical Example. In this section, two examples are presented to demonstrate
the effectiveness and applicability of our main results.

Example 4.1. In this section, the Chen system [19] is used to illustrate the effectiveness
of the proposed control scheme. The initial values of the chaotic system are [x1(0), z2(0),
23(0)]" = [2,—1,2]". We describe the Chen system as follows:

(&, = 3bxy — 352y + 3sin(z1) +g1(t, 2)ui (1),
fl?;fl?)
Ty = =Ty — 2123 + 285 + 4 cos(t) +ga(t, x)ua(t), (21)
f2(z$)
T3 = 1129 — 33 + 38in(2t) +93(t, x)us(t),
L fs?tr@)

where gi(t,x) = 5 — 3cos(t), go(t,z) = 4 — 2cos(t), gs(t,z) = 2 — sin(xy) cos(xs).
The transient and steady state error are prescribed through the performance functions
pi(t) = 3.1e %7 4+0.05, i = 1,2, 3, and the transformation functions are s; = %arctan(zi),
i = 1,2,3. The desired trajectory is xq = [sin(2t),sin(2t),sin(2t)]T. We define seven
Gaussian membership functions uniformly distributed on the interval [—10,10]. We choose
the initial values of parameters of the fuzzy systems as 0y = 0, = 0, 1 = 1,2,3.
dimin = Oimax = 1, and the other parameters Ky, = kg, =3, 1 =1,2, 3.
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Now, by using the present control scheme (14), the simulation results are shown in
Figure 1 and Figure 2. From Figures 1 and 2, we know that the tracking errors keep the

prescribed error bounds and can achieve the good performances of both transient error
and steady-error.

Example 4.2. Now, the modified Genesio’s chaotic system [20] is also used to illustrate
the effectiveness of the proposed control scheme. The modified Genesio’s chaotic system
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s described as follows:

( «T.l =Ty + dl(ta x) +gl(t7 x)ul(t)a
(t,2)
f1 t,x
To = T3 + dg(t, 1‘) +92(t7 x)UQ(t)v
— (22)
f2 t,CE
iy = —6x) — 2.92w9 — 1.223 + 27(3 + sin(0.12)) + ds(t, x) +gs(t, v)us(t),
\ fs?;x)

where dy(t,z) = 3sin(zy) + 2sin(2t), do(t,x) = —3 cos(x2) + bsin(t), d3(t,z) = 0.2z, +
6sin(4t), g1(t,x) = 3 — cos(t), ga(t,x) = 3 — cos(2t), g3(t,x) = 3 — sin(xz).

Firstly, we employ the sliding mode control scheme to control system (20). We assume
that the desired trajectory is zq = [Z14, 24, T3] = [sin(2t),sin(2t),sin(2t)]T. Let e; =
T1 — T14, €2 = T9 — Toq and e3 = x3 — x34. S0, the error dynamic system can rewrite as
follows:
é1 = fl(t, IL’) — i‘ld + gl(t, IL’)’LLl(t),
ég = fg(t, IL’) — i‘Qd + QQ(t, .'I,’)Ug(t), (23)
és = f3(t,m) — @34 + gu(t, 2)us(t).

The sliding surfaces are designed as follows:

s1=e + f(f e (7)dr,
Sy = €9 + f(f eo(7)dr, (24)
S3 = e3 + fot e3(7)dr.
In order to eliminate the influence of ¢(t, z), we still adopt the same method in this paper.
Therefore, the control scheme for error system (23) is designed as:

Ui = Uit + Uiz,

it = =3i(, Big) e + G, 050 2] ™ |e5 = wia + fi(w, Biy) + isign(s1)|
_ (El-l-&‘z‘ﬂil|+€[E+§i(x70ig)2]_1[ei_xid-i-fi(w,aif)-l—kisign(si)])Sign(si) .

Uiz = — 3 sign(s;),
g_fi = Kfi¢fisi7

9!]1‘ = K;giﬁ)giﬂﬂsi, 1= ]_, 2, 3.

(25)

The initial values of the chaotic system are [z,(0), z2(0), z3(0)]" = [2, =2, 1]". The design
parameters are chosen as follows: ky = Ky, = 4,9 =1,2,3., ki = ko = k3 = 2, The initial
conditions for the adaptive parameters are selected as 0y = 6, = 0.01, 2 = 1,2,3. By
using the sliding mode control scheme (23), the simulation results are shown in Figure 3
and Figure 4.

The transient and steady state error are prescribed through the performance functions
pi(t) = 3.1e %7 4+0.05, 7 = 1,2, 3, and the transformation functions are s; = % arctan(z;),
it = 1,2,3. We define three membership functions uniformly distributed on the interval
[—2,2]. 0imin = dimax = 1. Applying the present control scheme in this paper to control
(14), the simulation results are shown by Figure 5 and Figure 6.

From the simulation results in Figures 3-6, we know that the proposed control scheme
can guarantee that all the error states are bounded. Moreover, the tracking error remains
within the prescribed performance bounds for all time. From Figures 3 and 4, we know
that the tracking error e;, es and ez violate the prescribed error bounds and the con-
trol inputs appear chatter phenomenon. Through the comparison, we conclude that the
control scheme (25) cannot achieve the good performances of both transient error and
steady-error as this paper.
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FIGURE 4. Time response uy, us and uz of system (23) by using the control
scheme (25)

5. Conclusions. For a class of uncertain chaotic systems with unknown control gains,
the adaptive fuzzy feedback tracking control problem has been considered. In control
design, the fuzzy logic systems are used to identify the unknown nonlinear functions. By
using the prescribed performance technique, a new robust fuzzy adaptive feedback control
approach has been developed and the stability of the closed-loop system has been proved.
Simulation results have shown the effectiveness of the proposed scheme.



612 W. XTANG, Y. SUN AND H. LIU

4 T T T

S

37_' ._._.e2_

_4 1 1 1
0 5 10 15 20

Time/s
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FIGURE 6. Time response ug, us and ug of system (23) by using the present
control scheme (14)
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