
International Journal of Innovative
Computing, Information and Control ICIC International c©2016 ISSN 1349-4198
Volume 12, Number 2, April 2016 pp. 615–634

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY
PREDICTION OF OPEN SOURCE SOFTWARE

USING OBJECT ORIENTED METRICS

Anuradha Chug1 and Ruchika Malhotra2

1University School of Information and Communication Technology
Guru Gobind Singh Indraprastha University

Sector 16-C, Dwarka, New Delhi 110077, India
anuradha@ipu.ac.in

2Department of Software Engineering
Delhi Technological University

Bawana Road, Delhi 110042, India
ruchikamalhotra2004@yahoo.com

Received October 2015; revised January 2016

Abstract. Software maintainability is measured as the ease with which the existing
software could be modified and often predicted during the development stage on the basis
of some measurable design characteristics. Controlling the software maintainability and
understandability of any open source software (OSS) system is extremely challenging be-
cause it is written and constantly modified by the developers located all over the world.
The current study analyzes the effectiveness of machine learning (ML) techniques for
the maintainability prediction of OSS systems. In this work large-scale empirical com-
parisons of thirteen classifiers over seven open source datasets were conducted followed
by extensive statistical tests and post hoc analysis to establish the confidence on the per-
formance of one ML technique over another. The results show two important findings:
firstly, we observed that overall good prediction accuracy is achieved by almost all ML
techniques; secondly the prediction models using genetically adaptive learning ML tech-
nique and group method of data handling (GMDH) technique perform better than the
other ML techniques in the context of OSS systems. The outcome of this investigation
would be helpful for developers in order to predict maintenance behavior of the software
at the earlier stages of software development lifecycle (SDLC). Accordingly, they can op-
timize their resource allocations, prioritize maintenance tasks and produce high-quality
low maintenance software systems. Additionally, it also has numerous other applications
such as schedule planning, cost estimation, quality assurance testing, software debugging,
budget preparation, and software performance optimization.
Keywords: Empirical validation, Software maintainability prediction, Object-oriented
metrics, Open source software, Friedman test, Post hoc analysis, Feature subselection

1. Introduction. Software maintenance is an important phase in software development
life cycle (SDLC) as it plays a determinant role in finding the total project cost of any
software [1]. Maintainability of the software cannot be measured until the software sys-
tem reaches to the operational phase; however, by then it would be too late to rectify
and optimize the quality. In this regard, it has become increasingly important to develop
maintenance prediction models to assess accurate maintainability during the early phases
of the SDLC. This can be done with the help of some measurable software design charac-
teristics such as cohesion, coupling, abstraction, complexity and inheritance [2,3]. In open
source software (OSS), practitioners across the globe are allowed to change, expand and
redistribute the newly created version without any requirement of the license [4]. Changes

615

616 A. CHUG AND R. MALHOTRA

in OSS are made continuously in order to remove defects, improve functionalities, and
increase usefulness [5]. Estimating the maintainability of OSS becomes more challenging
due to the lack of technical support and the absence of adequate documentation. Al-
though various maintainability prediction models using statistical and machine learning
(ML) techniques have been developed in past [6-25], to the best of authors’ knowledge,
studies on observing the maintainability of OSS systems are very limited except one con-
ducted by Zhou and Xu [16]. Even though Ramil et al. [17] have compiled many empirical
studies on OSS, all the studies focused on intuitively judging the software maintainability
instead of creating a mathematical prediction model. Myrtveit et al. [18] have also raised
an important issue that more reliable research procedures must be developed before be-
lieving on the outcome of any one of the prediction models. In order to address these
issues an effort has been made in this study to find the answer of the following three
research questions:

• RQ1: Does the impact of object-oriented (OO) metrics on maintainability exist in
the context of OSS?

• RQ2: What is the comparative performance of ML techniques for maintainability
prediction using OSS?

• RQ3: Which pairs of ML techniques perform significantly different from each other
in terms of prediction accuracy measures?

We extensively compare the experimental results of thirteen ML classifiers over seven
OSS using statistical test followed by post hoc analysis to scrutinize if there exists a sig-
nificant difference among the performance of any particular ML technique. The thirteen
selected classifiers include Linear Regression (LR), M5Rules, Decision Tree (DT), Sup-
port Vector Machine (SVM), KStar, Bagging, Jordan Elman Recurrent Network (JERN),
Back Propagation Network (BPN), Kohonen Network (KN), Probabilistic Neural Net-
work (PNN), Group Method of Data Handling (GMDH), General Regression Neural Net-
works (GRNN), and GRNN with Genetic Adaptive Learning (GGAL). The source code
of seven OSS Drumkit, OpenCV, Abdera, Ivy, Log4j, JEdit and JUnit is obtained from
http://sourceforge.net and https://apache.org to carry out this widespread investigation.

The rest of the paper is organized as follows. Section 2 summarizes the related work
and Section 3 describes the independent variables, dependent variables and the process of
empirical data collection. Section 4 presents research methodology adopted in the current
study. Section 5 describes the results and analysis. Threats to validity are discussed in
Section 6 and finally Section 7 concludes the paper with future directions.

2. Related Work. Predicting the maintainability during early phases of SDLC helps in
better planning and appropriate allocation of resources for reducing maintenance effort
of the software and therefore remained the prime subject of research. Extensive research
has been carried out in the past to empirically prove that software metrics can be used to
determine maintainability of a software at early stages of the SDLC by various statistical
and ML techniques [6-15]. Various information about the studies is compiled in Table 1,
such as the type of the dataset used, validation method, ML technique, statistical test,
and performance measures.

Li and Henry [8] attempted as early as in the year 1993 to validate linear regression
model using two proprietary datasets, User Interface Management System (UIMS) and
Quality Evaluation System (QUES) for evaluating the relationship between Chidamber
and Kemerer (C&K) [26] metrics suite and maintainability. The results indicated that
a total of 90% and 87% total variance in maintenance effort is accounted by C&K met-
rics for UIMS and QUES systems respectively. Koten and Gray [12] further validated
Bayesian Belief Network using 10-cross validation on the same dataset and found it to

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 617

Table 1. Salient details of prediction models used by researchers in soft-
ware maintainability

Study Dataset Metric suite Prediction Model
Validation
Method

Prediction
Accuracy
Measure

Li and
Henry [8]

UIMS and
QUES dataset

C&K metric suite Multiple linear
regression
(MLR)

Koten
and Gray
[12]

UIMS and
QUES dataset
[8]

DIT, NOC, MPC,
RFC, LCOM, DAC,
WMC, NOM, Size1,
Size2

Linear Rgression,
Bayesian Belief
Network (BBN)

10-cross
Validation

Absolute RES,
MRE, MMRE,
Pred(q)

Elish and
Elish [13]

UIMS and
QUES dataset
[8]

C&K metric suite Tree Nets classi-
fier

Leave-
one-out
cross
Validation

MRE, MMRE,
Pred(q), Over-
estimate, Un-
derestimate

Jin and
Liu [14]

Programs
developed by
the students in
C++

LCOM, NOC, DIT,
WMC, RFC, DAC,
MPC, NOM

Support Vector
Machine (SVM)

none MARE, MRE,
p-value, r

Kaur
et al. [15]

UIMS and
QUES dataset
[8]

LCOM, DIT, WMC,
NOC, RFC, DAC,
MPC, NOM

ANN, Fuzzy In-
ference Systems
(FIS) and Adap-
tive Neuro FIS
(ANFIS)

Hold-out MARE, MRE,
p-value, r

Zhou and
Xu [16]

Open Source
Software

NPAVGC, OSAVG,
CSAO, CSA, SDIT,
SLCOM, SRFC,
SWMC, SNOC,
MHF, POF,
NCLASS, MNETH,
PDIT

Univariate and
Multivariate Re-
gression Analysis

Leave-
one-out
cross
Validation

R2, p-value,
Std. Error

Zhou and
Leung [19]

UIMS and
QUES dataset
[8]

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, Size1,
Size2

MLR, ANN, RT,
SVM, MARS

Leave-
one-out
cross
Validation

RES, ARE,
MRE, MMRE

Malhotra
and Chug
[21]

Proprietary
systems
namely FLM,
and
EASY

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, Size1,
Size2

GRNN,
FF3LBPNN,
and GMDH

Hold-out MRE, MMRE,
Pred(q), Over-
estimate, Un-
derestimate

Malhotra
and Chug
[23]

Proprietary
systems
namely FLM,
EASY, SMS,
IMS and ABP
System

WMC, DIT, NOC,
CBO, RFC, LCOM,
SCCR, NODBC, MI,
Cyclomatic Complex-
ity

GMDH 10 fold
cross
validation

MRE, MMRE,
Pred(q)

Malhotra
and Chug
[24]

UIMS and
QUES dataset
[8]

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, Size1,
Size2

GMDH, GA,
PNN

Hold-out MRE, MMRE,
Pred(q),
R-Square,
p-value

618 A. CHUG AND R. MALHOTRA

be significantly better model in terms of precise prediction accuracy. Elish and Elish [13]
corroborate relatively new Technique, TreeNets for software maintainability Predictions.
They compared their results with other prevalent models and found them to be least cost
effective with more prediction accuracy on UIMS and QUES datasets. The results were
analyzed using various prediction accuracy measures such as Magnitude of Relative Error
(MRE), Mean Magnitude of Relative Error (MMRE) and Prediction accuracy with less
than 25% error (Pred 0.25).

Further, in the year 2010, Kaur et al. [15] conducted the study and analyzed the pre-
diction capability of the Adaptive Neuro Fuzzy Inference System (ANFIS) technique on
UIMS and QUES dataset using Hold-out validation and the outcome showed better per-
formance as compared to previous studies. In another study conducted by Malhotra and
Chug [21], the predicted capability of the Group Method of Data Handling (GMDH) tech-
nique was analyzed using the UIMS and QUES dataset using MRE, MMRE, Pred(0.25)
and Mean Absolute Relative Error (MARE) measures. The results indicated that the
hybrid models such as GMDH has enhanced capabilities to capture the design character-
istics using C&K metrics and hence results were found to be more precise. Dagpinar and
Jhanke [10] suggested that instead of designing level metrics of structure languages, OO
metrics should be used for precise capturing while making any prediction model. Fur-
ther, they also recorded the significant impact of direct coupling metric and size metric
on software maintainability instead of other metrics such as cohesion, inheritance and
indirect coupling. Aggarwal et al. [25] in his study suggested that since maintainability is
very subjective in nature, the use of the fuzzy model for its measurement would be more
appropriate.

Overall, the studies reported on the subject reveal that C&K metric suite [26] is quite
popular and used extensively in most studies [10-13,19,21] because of its research focus
and capability of capturing the OO metrics more accurately. The researchers are always
constrained against non-availability of genuine datasets to conduct their validation studies
and test newer prediction models of determining maintainability. However, the datasets
of two proprietary software systems comprising of UIMS and QUES made public by Li
and Henry [8] opened the doors for additional research studies to validate the maintain-
ability prediction models and therefore majority of researchers used the datasets in their
experiments [10-13,19,21].

We also found that in two research studies [14,20], datasets developed from the students’
software was used to validate their prediction models. In the first study, Jun and Liu [14]
validated their prediction model using the datasets collected from the software systems
developed by graduate students. Their results show that when Support Vector Machine
(SVM) is combined with clustering for the purpose of maintenance effort predictions,
correlation between C&K metric suite and maintainability was found to be as high as
0.769 which is statistically quite significant. In the second study, Misra [20] used the
datasets collected from a pool of 50 C++ programmes and deployed them in LR classifier
as well as intuitive analysis based model using more than twenty design and code measures.

Although many maintainability prediction models have been proposed in the literature,
almost all of them have used either the traditional dataset given by Li and Henry [8] in
the year 1993 or used the students’ programmes to compare the performance of ML
techniques. The only exception reported in literature on OSS was by Zhou and Xu [16]
but they analyze only statistical regression based model for the correct estimation of
maintainability. As the interest for OSS has been rising across the globe, a powerful
customized ML technique based prediction model for OSS was seen as the potential scope
of research. In order to get unbiased, accurate and repeatable maintainability prediction
model for OSS, the current study attempts to create an empirical framework using 13

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 619

ML techniques. Outcome of the current research has been further assessed over various
releases of seven OSS comprising of Drumkit, OpenCV, Abdera, Ivy, Log4j, JEdit and
JUnit available at http://www.github.com and http://www.sourceforge.net repositories.

3. Research Background. This section presents the selection of dependent and inde-
pendent variables and subsequently the process of collecting the empirical data for the
validation of ML techniques. Our goal was to capture the various attributes of OO par-
adigm such as size, coupling, cohesion, abstraction, complexity and inheritance. In the
current study, we have used C&K metric suite which is very common and used by various
researchers [10-13,19,21]. In one of our previous studies [23] we realized few shortcomings
in C&K metric suite such as it does not take into account the structural complexity of
the software and any metric on account of the amount of database handling. In order to
overcome such shortcomings, in addition to C&K metric suite, we have also included the
metric suites proposed by Henderson-Sellers [27] and Bansiya and Davis [28].

The dependent variable is ‘Change’ defined as the number of changes in source code
in terms of addition, deletion or modification in the lines of code. In Subsection 3.1,
independent variables are explained, in Subsection 3.2, we have discussed the dependent
variable and Subsection 3.3 give details of the process of empirical data collection.

3.1. Independent variables. Various OO metrics were carefully selected from the met-
ric suites proposed by researchers [26-28] to capture all the design attributes such as
coupling, cohesion, inheritance, abstraction and complexity of OO paradigm as summa-
rized in Table 2.

3.2. Dependent variables. The dependent variable in the current study is maintenance
effort measured by observing the number of changes made between two consecutive ver-
sions and it is counted in terms of a number of lines of source code added, deleted or
modified in the newer version with respect to the older version for each class. We identify
the common classes between two consecutive versions and compute the exact number of
lines where change is performed. Any addition or deletion of a line in the current version
with respect to an older version is counted as one change whereas any modification of
the line is counted as two changes. The value of each OO metric for each class is calcu-
lated and combined with the respective changes made into that class to generate the data
points. Same approach is adopted by many researchers [6-15,19,21-24].

3.3. Empirical data collection. We explore open source repositories for collecting the
empirical data keeping in mind two important characteristics which include that it should
follow OO paradigm and it should have a high number of downloads in recent times (last
12 months) as it is a clear indication that there are active users contributing constantly.

The details of the selected OSS systems in terms of versions, release date, size, number
of classes, etc. are summarized in Table 3 and their functioning in brief are explained as
below:

• Drumkit is a Java Mobile based game on JAVA-JME platform. (https://github.
com/nokia-developer/drumkit-jme)

• OpenCV stands for Open Source Computer Library designed for providing computa-
tional efficiency with a main focus on real-time applications. (http://sourceforge.net
/projects/opencvlibrary)

• Abdera is an open source Atom parser generator used for client and server to build
high-performance functionality of Internet by producing high quality designed doc-
uments. (https://git.apache.org/abdera)

620 A. CHUG AND R. MALHOTRA

• Ivy is a set of open source libraries and programs that allow applications to broadcast
information through text messages, with a subscription mechanism based on regular
expressions. (https://git.apache.org/ivy)

• Log4j allows the developer to control which log statements are output with arbitrary
granularity. It is fully configurable at runtime using external configuration files.
(https://git.apache.org/Log4j)

• JEdit is a highly customizable text editor written in Java and runs on any op-
erating system. It can be extended with macros written in scripting languages.
(https://jedit.svn.sourceforge.net/svnroot/jedit)

Table 2. Independent variables

Metrics Ref Definition
WMC (Weighted Methods per Class) [26] It counts the sum of McCabe’s Cyclomatic com-

plexities of all local methods in a class.
DIT (Depth of Inheritance Tree) [26] It calculates the depth of the said class in in-

heritance from the root class.
NOC (Number of Children) [26] It counts the number of immediate subclasses’,

i.e., number of children of the said class in the
inheritance hierarchy.

RFC (Response For a Class) [26] It counts the number of local methods and the
number of nonlocal methods which are called
by the local methods.

DAM (Data Access Metric) [28] It is calculated as the ratio of private + pro-
tected attributes of the said class to the total
number of attributes defined in that class.

MOA (Measure Of Aggression) [28] It counts the percentage of user defined data
declared in the said class.

MFA (Method of Functional Abstrac-
tion)

[28] It is counted as the ratio between the inherited
methods and the total number of methods in
the said class.

CAM (Cohesion Among the Methods
of a Class)

[28] Based on the signatures of the methods, this
metric computes the similarity among various
methods of the said class.

AMC (Average Method Complexity) [27] It is computed as the average of McCabe’s Cy-
clomatic Complexity of all method.

CBO (Coupling Between Object) [26] It is computed by counting the number of other
classes to which said the class is coupled.

LCOM (Lack of Cohesion of Methods) [26] It is calculated by counting the number of dis-
joint sets of local methods in a class.

LCOM3 (Lack of Cohesion Among
Methods of a Class)

[27] Proposed by Henderson-sellers to remove some
of the disadvantages of LCOM.

NPM (Number of Public Methods) [28] It is computed by counting the number of public
methods in a given class.

Ca (Afferent Couplings) [27] It is counted as the number of classes calling
the said class.

Ce (Efferent Couplings) [27] It is counted as the number of other classes
called by said class.

IC (Inheritance Coupling) [27] It is counted as the number of parent classes to
which a class is coupled.

LOC (Lines of code) [27] It counts the number of lines of code. Com-
ments lines and blank lines are simply ignored.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 621

Table 3. Characteristics of open source software

Software Version Release Date No. of Classes % change
Drumkit 1-0.5.0 to 1-0.6.0 25 Apr 2014 101 classes 20.34
OpenCV 2.4.10 to 3.0 12 Sept 2014 143 Classes 16.29
Abdera 1.1.2 to 1.1.3 08 Jan 2014 686 Classes 61.88

Ivy 2.2.0 to 2.3.0 21 June 2013 614 Classes 74.76
Log4j 1.2.16 to 1.2.17 31 Mar 2010 351 classes 34.50
JEdit 5.1 to 5.2 28 July 2013 417 classes 24.96
JUnit 4.10 to 4.11 29 Sept 2011 251 classes 14.644

• JUnit is an open source framework for writing and executing unit tests and defining
test suite. They provide compatibility with almost all IDEs and inbuilt test drivers;
hence only tests case needs to be written. (http://sourceforge.net/projects/junit/)

4. Research Methodology. Basically, there are two broad approaches in which the
maintainability of a software can be measured, firstly through the measurement of ex-
ternal quality factors such as understandability, analyzability, modifiability and secondly
through the measurement of internal quality metrics and use them for making software
maintainability prediction model. In the first approach, external factors can only be mea-
sured by collecting the opinion from the developers who participate in writing the source
code of the open source software. Conducting such surveys is not only time-consuming
and involves high cost but also produces different opinions due to the subjective nature of
external quality factors. The second approach of measuring the internal quality attributes
through OO metrics suite has been used in many empirical studies [3,6-16]. Almost all
of the studies showed the existence of the relationship between OO metrics suite and
maintainability. In the current empirical investigation, the second approach is used and
the adopted research methodology is shown in Figure 1.

Figure 1. Proposed research methodology

4.1. Data pre-processing. Git repository mining tool ‘Defect Collection and Report-
ing System’ (DCRS) developed in the Java language at Delhi Technological University
by Malhotra et al. [29] has been used for the purpose of empirical data collection from
two repositories http://www.github.com and http://www.sourceforge.net. It processes
the repositories and reads the change descriptions such as timestamp of committing the

622 A. CHUG AND R. MALHOTRA

incurred change, unique change identifier, type of change (defective, perfective or cor-
rective), change descriptions, list of changes and counting the line of code where changes
took place and generates the reports containing detailed information for each class. It also
calculates a total number of changes, values of the OO metrics for each class and provides
insight such as cloning of Git Repositories and Self Loggings. For example, if Abdera 1.1.2
(older version) and Abdera 1.1.3 (newer version) are being analyzed in DCRS, processing
the change logs generates the number of changes performed from older version to newer
version per class. Similarly, processing the classes in older version generates the class wise
values of each OO metric. Finally, both are combined for each class to generate the data
points. Figure 2 graphically summarizes the changes made into each system selected in
the current study.

Figure 2. Summary of changes made into each dataset

During the preprocessing we extract those classes which are common in current as well
as the previous version for each software system. Classes either added in latest version or
deleted from the older version are simply discarded. Library classes, as well as interface
classes, are also excluded from the list.

4.2. Feature sub-selection. The aim for carrying out the feature sub-selection process
is to remove irrelevant and redundant independent variables from the dataset before it
can be used further by the seventeen classifiers selected in the current study for training
purpose as suggested by Donell [30]. This dimensionality reduction process not only
reduces the unnecessary attributes and irrelevant noisy data, but it also enhances the
execution time, improves the quality of datasets and thereof amplifies the accuracy of the
prediction process. Kohavi and John [31] explained the feature selection algorithms and
categorized them in two types: Wrappers and Filters. While evaluating the most valued
subset from a given set of attributes, filter method does not require the classification
algorithms whereas wrappers method needs them. In this empirical investigation, genetic
algorithms (GA) are used for feature sub-selection process as suggested by Yang and
Honavar [32]. GA is deployed using three operators: selection, crossover and mutation. In
selection operation, every solution is evaluated on the basis of predefined fitness function
and good solutions are picked up to breed new generations. In crossover operations, these
good solutions are combined to generate better off springs. In mutation operation, solution
string is mutated to maintain genetic diversity from one generation to the next. In each
generation, the population is evaluated against the predefined fitness function to test if
the termination criterion is met or not. This genetic cycle of applying all three operators
on the population and re-evaluation continues until a specific termination criterion is
achieved.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 623

Table 4. Description of the machine learning techniques

Name of the ML
Technique

Reference Description

Linear
regression (LR)

Hoffmann
and Shafer
[38]

LR first determines the percent of variance occurring in the dependent
variable due to each independent variable separately and further used
this knowledge to predict the dependent variable.

M5Rules Kohavi and
Sommerfield
[39]

Accurate and compact rule sets are generated using separate-and-
conquer paradigm in this technique. Initially, the rules are induced
and later on revised using complex global optimization procedure to
build a model tree and further used for predictions.

Decision Tree
(DT)

Kohavi and
Sommerfield
[39]

It creates a decision tree based on the concept of entropy and infor-
mation gain. During the construction as per the pre-specified splitting
criterion, the most qualified independent variable is selected at the node.

Support Vector
Machine (SVM)

Cortes and
Vapnik [40]

Although SVM was originally developed for solving the binary classifi-
cation problems, later on it was also extended to solve the regression
problems. Hyperplane is created in this method to separate the data
into the nonlinear region and finally with the help of kernel function
data points are mapped into different dimensional space.

K-Star Lee and
Song [41]

It is an instance-based classifier that uses similarity function from the
training set to classify the test set. This method uses entropy based
distance function and missing values are averaged by column entropy
curves.

Bagging Brieman [42] Developed by Leo Breiman to increase the accuracy of regression mod-
els, it reduces the variance and helps to avoid the problems associated
with over-fitting. The idea is to build various similar training sets and
train a new function for each of them.

Jordan Elman
Recurrent Net-
work (JERN)

Lee and
Song [41]

It is special kind of ANN with the recurrent network in which hidden
layers are fed directly into the input layers. Although slower but the
recurrent network has the ability to learn sequences. It is a very powerful
learning as the hidden layer is fed back into the input layer, so features
detected in all previous patterns are fed into the network with each new
pattern.

Back Propaga-
tion Network
(BPN)

Specht and
Shapiro [43]

It is a supervised learning process in which a new pattern is presented to
the network through a forward activation flow of outputs in each cycle
and the backward error propagation of weight adjustments is performed.

Kohonen
Network (KN)

Kohonen
[44]

It is an unsupervised learning network which neither uses any sort of
activation function nor bias. It does not use any hidden layer. When
a pattern is presented to a Kohonen network, only one of the output
neurons is selected as the winner.

Probabilistic
Network (PNN)

Specht [45] PNN consists of several sub-networks in which the input nodes are the
set of measurements, second layer consists of the Gaussian functions
formed using the given set of data points as centers, the third layer
performs an average operation of the outputs from the second layer for
each class and the fourth layer performs a vote, selecting the largest
value to determine the associated class label.

Group Method
of Data Han-
dling (GMDH)

Ivakhnenko
and Koppa
[46]

It is ideal for complex, unstructured system where the investigator is
only interested in obtaining a high order input-output relationship. It
can build a multinomial of a degree in hundreds whereas standard mul-
tiple regression exhausted in computation.

General Regres-
sion Neural Net-
works (GRNN)

Specht [47] It is a memory-based network with one-pass learning technique with
a highly parallel structure which provides smooth transitions from one
observed value to another even with sparse data in a multidimensional
measurement space.

GRNN Genetic
Adaptive Learn-
ing (GGAL)

Specht [47] By simulating the biological evolution, this genetic inspired neural net-
work method has the ability to search large and complex spaces to
determine near optimal solutions in time and space efficient manner.

624 A. CHUG AND R. MALHOTRA

4.3. Machine learning techniques. This section presents the definition of all thirteen
ML techniques used in the current study as compiled in Table 4 for making prediction
models. All the ML techniques are divided into two sets, and first set contains all those
ML techniques which are basic in nature and non-bioinspired such as LR, M5Rules, DT,
SVM, KStar, and Bagging. Second set consists of classifiers based on the bio-inspired
nonlinear statistical data modeling technique such as ANN. In this set all ML techniques
explored the complex relationships between inputs and outputs to identify the patterns
during the training process and further used the same knowledge for predictions process
such as JERN, BPN, KN, PNN, GMDH, GRNN, and GGAL.

4.4. Ten-fold cross-validation. Ten-fold cross-validation scheme is used to train and
validate the software maintainability prediction model. In this technique, the data is
divided into ten random partitions. Each classifier trains itself from 9 partitions of the
datasets and validates itself on the remaining 10th partition. The process is repeated 10
times and the results of all folds are combined to produce the final result. It ensures that
the training of the model from the dataset remains unbiased and accurate.

4.5. Prediction accuracy measures. Estimating the accuracy of the predicted model
is a very important step in any empirical study. Each time the predicted value of the
dependent variable is generated from the model, which is compared with the respective
actual value to find the errors. Although many types of residual-based measures have
been recommended in literature to evaluate the prediction accuracy of any given model,
however, following three prevalent measures suggested by Kitchenham et al. [33] and
Conte et al. [34] are used to compare the performance of various ML techniques used in
the current study.

4.5.1. Mean absolute error. Mean absolute error (MAE) is a normalized measure to detect
the discrepancy between actual and predicted value of dependent variable (maintenance
effort in this case). In MAE first the difference between the actual and predicted value
is calculated and the result is divided by the actual value. Then, the absolute value for
each data point is summed and is divided by the total number of data points. MAE is
defined as follows:

MAE =
1

N

N
∑

i=1

|Actual Value − Predicted Value|

(Actual Value)
(1)

where N is the number of classes.

4.5.2. Root mean squared error. Another measure used to compare the ML techniques is
the root mean squared error (RMSE) defined as the square root of the variance of the
residual value. In RMSE, the difference between the predicted values with actual values
for each class is squared then averaged and finally the square root of this average value is
taken. The RMSE measure is defined as:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Actual Value − Predicted Value)2 (2)

This method gives comparatively high weightage to large errors as the
differences are squared before they are averaged. It is chosen when large errors are

most undesirable. Lower values of RMSE indicate better fitness of the model used for
predictions.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 625

4.5.3. Pred(q). Another prediction accuracy measure, selected to compare the perfor-
mance of ML technique is Pred(0.25), i.e., at 25%. It calculates the proportions of the
result that has MAE less than 0.25 to the total number of observations made. It is given
as:

Pred(q) =
K

N
(3)

where q is the specified value, K is a number of observations whose MAE is less than or
equal to q and N is the total number of classes.

4.6. Friedman test to rank the performance. The Friedman’s test [35] is a kind of
non-parametric statistical test, which is used to find if there exists significant difference
among the performance of ML techniques and rank them accordingly. The following
hypothesis is formed before conducting the Friedman test on results.

Null Hypothesis (H0): There is no significant difference among the performance of
participant ML techniques.

Alternate Hypothesis (H1): There exists significant difference among the performance
of participant ML Techniques.

As suggested by Demsar [36], when performances of multiple classifiers needed to be
compared on multiple datasets, it is one of the best techniques. The Friedman measure
is defined as follows:

χ2

r
=

(

12

Nk(k + 1)

k
∑

i=1

R2

)

− 3N(k + 1) (4)

where R is the average rank of the individual method, N is the number of datasets; k

is number of ML techniques considered for ranking. The value of χcalculated is calculated
from the given Equation (4) and compared with χtabulated using chi-square distribution
table. If the value of Friedman Measure, i.e., χcalculated lies in the critical region, Null
hypothesis is rejected, alternate hypothesis is accepted and it is concluded that there exists
significant difference among the performance of participant ML techniques. Otherwise
Null hypothesis is accepted, alternate hypothesis is rejected and concluded that there does
not exist significant difference between the performance of participant ML techniques.

Further, individually every technique is also ranked using Friedman’s Individual Rank
(FIR) based on undermentioned Equation (5).

Friedman’s Individual Rank (FIR) =
C

N
(5)

where C is the cumulative rank and N is number of datasets. FIR for each technique is
calculated and the technique which scores lowest value of FIR is considered as the best
performer and the technique achieving the highest rank is termed as worst performer. If
the results based on the mean rank achieved using FIR for both the performance measure
MAE or RMSE is found to be significant, it is advisable to check whether the difference in
mean rank is statistically significant or not by means of post hoc analysis using Nemenyi
test.

4.7. Post hoc analysis using Nemenyi test. When the sample size is equal and the
data is not normalized, Nemenyi test is a very powerful test for post hoc analysis [37]. It
is used to compare the performance of ML models for finding the existence of statistically
significant difference among themselves. First of all critical difference (CD) is calculated
using Equation (6) which depends upon the number of techniques, number of datasets

626 A. CHUG AND R. MALHOTRA

and the level of significance.

CD = qα

√

k(k + 1)

6N
(6)

where k means the number of techniques, N is the number of the data sample. The value
of qα is based on Studentized range statistics for a given level of significance as defined
by Demsar [36]. While comparing the performance of two ML techniques during post hoc
analysis, the difference between their respective FIR values is calculated. If this difference
is greater than or equal to the value of CD, it is concluded that the performance of two ML
techniques is statistically significant at the selected significance level α. If the difference is
less than the value of CD, it is concluded that the difference between their performances
is not statistically significant.

5. Result Analysis. This section presents the prediction results of various classifiers
based on ML techniques for maintainability prediction using OO metrics.

5.1. Feature sub selection (FSS). The first step in the empirical study was FSS; in
which irrelevant and unimportant features were removed using GA. Table 5 summarizes
the relevant metrics found after applying FSS using GA over all the releases of seven
datasets selected in the current study. In total 17%, 17%, 41%, 35%, 23%, 41% and 35%
reductions were observed for Drumkit, OpenCV, Abdera, Ivy, Log4j, JEdit and JUnit
datasets respectively. On an average 24% saving is observed for all datasets.

Out of the seventeen independent variables, we found that LCOM3, LOC and DIT are
the most commonly selected OO metrics in the current study. Efferent coupling Ce is
also found to be significant in Abdera and Log4j Systems. We also found that the results
obtained using reduced set of independent variables after applying FSS were slightly
better as compared to the results obtained using all independent variables in prediction
models. Similar observations were made by Kohavi and John [31] as well as Yang and
Honavar [32] that not only the impact of FSS on the accuracy is minimal but they are also
capable of capturing all the characteristics irrespective of the size of the extracted subset.
Moreover, the time consumed by prediction model on newly reduced dataset using FSS
is comparatively lesser than the time consumed on actual dataset.

Table 5. Metrics obtained using feature sub-selection using GA algorithm

Software Name Selected Relevant OO Attributes
Drumkit WMC, RFC, DIT, LCOM3
OpenCV CBO, DIT, LCOM3, LOC
Abdera Ce, NPM, LOC, LCOM3, DAM, CAM

Ivy LCOM3, LOC, DAM, MOA, CAM, AMC
Log4j NPM, Ce, LOC, LCOM3, DIT, MOA, CAM
JEdit WMC, LOC, DIT, DAM, CAM, AMC
JUnit RFC, CBO, LCOM, LCOM3, NPM, IC

RQ1: Does the impact of OO metrics on maintainability exist in the context
of OSS?

To assess the outcome of ML techniques based prediction models, their prediction accu-
racy was measured through MAE, RMSE, Pred(0.25) and Pred(0.75). Their values were
evaluated as per criterion set by previous researchers [33,34] that any prediction model
is considered accurate if its MAE values are less than 0.40 also the value of Pred(0.25)
should always be greater than Pred(0.75).

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 627

Table 6. MAE values over seven datasets

Dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
LR 0.57 0.48 0.41 0.29 0.36 0.38 0.54

M5Rule 0.49 0.52 0.43 0.37 0.38 0.41 0.52
DT 0.58 0.57 0.44 0.39 0.42 0.45 0.49

SVM 0.43 0.64 0.46 0.49 0.46 0.61 0.52
KStar 0.45 0.62 0.51 0.33 0.48 0.42 0.43

Bagging 0.51 0.45 0.43 0.41 0.47 0.52 0.44
JERN 0.53 0.54 0.41 0.59 0.51 0.52 0.44
BPN 0.42 0.58 0.61 0.37 0.35 0.42 0.47
KN 0.56 0.49 0.37 0.41 0.43 0.52 0.50
PNN 0.38 0.42 0.38 0.53 0.37 0.41 0.47

GMDH 0.49 0.37 0.32 0.34 0.32 0.30 0.35
GRNN 0.38 0.42 0.45 0.41 0.32 0.49 0.48
GGAL 0.33 0.31 0.29 0.36 0.28 0.34 0.36

Firstly, we present the results of all 13 ML techniques for maintainability prediction
models validated using 10-fold cross validation on seven OSS. Difference between the
predicted value and actual value is compared and analyzed using various accuracy mea-
sures such as MAE, RMSE, Pred(25%) and Pred(75%) using Equations (1), (2) and (3)
respectively.

The MAE values of each ML technique for all seven datasets used in the study are
summarized in Table 6. For example, it is observed that when LR technique was applied
on JEdit datasets, it gave an accuracy of 62% (since the error is 0.38, accuracy is 100-38).
Similarly, we found 67% accuracy when GGAL technique applied on Drumkit datasets
respectively. The accuracy of all the ML techniques w.r.t. MAE on all seven selected
datasets lies between the ranges of 39-77% which is quite encouraging. Thus, it highlights
the capability of ML technique for effective maintainability predictions of OSS.

The value of RMSE is obtained using Equation (2) after performing ten runs of ten-fold
cross-validation for each ML technique on each dataset tabulated in Table 7. Each row
represents the RMSE value of a particular technique on specific datasets. For example,
first row compiles the value of RMSE when LR technique is used with all seven datasets
and generates values as 0.66, 0.56, 0.61, 0.58, 0.49, 0.42 and 0.47 respectively.

Prediction accuracy of each classifier on each dataset is calculated at 25% as well as at
75% and the results are compiled in Table 8. While compiling the results for each ML
technique, each dataset is divided in two sub-columns; first column contains the values of
Pred(0.25), i.e., 25% and second column contains the values of Pred(0.75), i.e., 75%. It
also helps in determining whether the results are as per the criterion set by [33,34] that
any prediction model is considered accurate if the value of (0.25) is less than Pred(0.75).
As per the results presented in Tables 6, 7, and 8 for the respective values of MAE, RMSE,
Pred(25%) and Pred(75%), we found that even though the prediction models for software
maintainability usually attain less accuracy [10-13,19,21], in the current study we found
their reasonable values.

When we analyzed the values of pred(0.25) and pred(0.75) from Table 8, it is recorded
in the range of 72-78% for Pred(25%) and 66-89% for Pred(75%) which is quite reassuring
that ML techniques are very effective. With respect to Pred(0.25), GMDH is found to
be most accurate with Log4j dataset and JUnit dataset, i.e., 79% accuracy (entries are
highlighted in Table 8). We also observe that GMDH method achieved more than 70%
accuracy with four out of seven datasets. Similarly, if Pred(0.75) is taken as accuracy

628 A. CHUG AND R. MALHOTRA

Table 7. RMSE values over seven datasets

Dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
LR 0.66 0.56 0.61 0.58 0.49 0.42 0.47

M5Rule 0.72 0.38 0.30 0.37 0.41 0.56 0.63
DT 0.86 0.74 0.41 0.34 0.43 0.47 0.58

SVM 0.64 0.67 0.47 0.42 0.39 0.48 0.54
KStar 0.67 0.77 0.55 0.38 0.39 0.56 0.61

Bagging 1.23 1.52 0.59 0.39 0.47 0.59 0.43
JERN 0.53 0.54 0.41 0.59 0.47 0.39 0.48
BPN 0.42 0.58 0.61 0.33 0.41 0.42 0.51
KN 0.56 0.48 0.37 0.40 0.35 0.43 0.52
PNN 0.38 0.42 0.33 0.53 0.43 0.53 0.41

GMDH 0.23 0.37 0.32 0.34 0.37 0.38 0.42
GRNN 0.38 0.42 0.45 0.41 0.32 0.49 0.47
GGAL 0.33 0.41 0.49 0.36 0.28 0.37 0.32

Table 8. Results of Pred(25%) and Pred(75%) over seven datasets

Dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
25% 75% 25% 75% 25% 75% 25% 75% 25% 75% 25% 75% 25% 75%

LR 62 67 58 71 56 66 61 71 63 73 59 70 54 64
M5Rule 63 69 49 69 57 76 59 74 65 75 51 73 57 55

DT 70 78 53 72 49 63 57 87 68 78 61 71 63 69
SVM 65 76 47 67 51 72 52 82 73 81 42 64 49 66
KStar 68 88 55 75 52 69 58 78 72 88 57 72 61 69

Bagging 75 79 51 69 59 72 65 77 69 89 43 61 38 52
JERN 68 88 69 73 72 74 62 71 74 81 61 69 52 64
BPN 62 86 57 77 62 81 73 79 77 87 49 57 60 77
KN 67 87 63 79 53 83 48 69 73 81 58 65 52 72
PNN 51 83 61 73 59 79 64 71 73 85 59 66 61 75

GMDH 69 77 73 78 65 74 78 88 79 86 73 84 68 79

GRNN 65 81 59 83 65 75 68 73 71 84 75 80 62 73
GGAL 72 85 67 82 73 72 75 69 69 88 70 83 74 81

measure, Bagging is found to be most accurate with Log4j dataset, i.e., 89% accuracy.
GGAL is also found to be the best ML technique because more than 80% accuracy is
achieved with five out of seven datasets at Pred(0.75). When we closely observe the range
of accuracies, GGAL has performed outstandingly. Results are in the range of 67-75%
across all datasets which are quite close to the criterion set by Kitchenham et al. [33] and
Conte et al. [34].

Further, Figures 3(a) and 3(b) depict the MAE and RMSE values obtained by each
ML technique on all the seven datasets correspondingly. Figure 3(a) clearly shows that
GMDH and GGAL ML techniques have performed highest over all seven datasets. It
is also evident from Figure 3(a) that minimum values recorded for MAE on all seven
datasets were within the range of 0.28-0.36.

Additionally, with respect to RMSE as depicted in Figure 3(b), we found that mean
values of RMSE range from 0.23-0.63. It is also observed that four ML techniques PNN,
GMDH, GRNN and GGAL have achieved less than 30% error which is considered to be
excellent.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 629

(a)

(b)

Figure 3. (a) MAE values of each ML technique on corresponding datasets
using 10-fold cross validation, (b) RMSE values of each ML technique on
corresponding datasets using 10-fold cross validation

On judging the overall performance of all ML techniques using four measures in the
current study, it clearly satisfies the criteria laid down by [33,34], and hence we conclude
that the impact of OO metrics on maintainability indeed exists in the perspective of OSS;
thus ML techniques can be successfully applied for their maintainability prediction using
OO metrics suite.

630 A. CHUG AND R. MALHOTRA

RQ2: What is the comparative performance of ML techniques for maintain-
ability prediction of OSS?

We applied extensive statistical tests in order to check whether the performances of
proposed ML techniques are significantly different or not. As per Demsar [36], non-
parametric tests are safer as they do not assume normal distribution or homogeneity of
variance in the data. In the current investigation, Friedman test was used to compare
the performance of thirteen ML techniques on seven datasets. We calculate the value of
critical region at 5% significance level and degree of freedom 12 (i.e., for 13 ML techniques-
1). The value of χtabulated is obtained from Chi-square table where the degree of freedom
is twelve (for thirteen ML techniques) and level of significance was 95%.

The null hypothesis of the Friedman test states that there is no significant difference
between the performance of ML techniques. We found that at significant level 0.05 calcu-
lated value of Friedman measure, i.e., χcalculated lies in the critical range for MAE as well
as RMSE; hence, the Null hypothesis is rejected and alternative hypothesis is accepted and
it is concluded that significant difference exists among the performance of participant ML
techniques.

Further, in order to rank the performance of each of the ML technique, their FIR is
calculated using Equation (5) and compiled in Table 9 and Table 10 for MAE and RMSE
respectively. As discussed earlier, lower the mean rank means better the performance.
The outcome of the Friedman test using FIR for ranking as compiled in Table 9 with
respect to MAE measure indicates that the performance of GGAL technique is the best
and GMDH is the second best technique.

Table 9. Mean ranking of ML techniques by applying Friedman test on MAE

ML Tech GGAL GMDH PNN GRNN LR BPN M5Rule KStar Bagging KN DT JERN SVM
Mean Rank 1.79 2.71 3.57 4.36 5.36 6.64 7.14 8.57 9.1 9.43 10.6 11.28 11.57

Table 10. Mean ranking of ML techniques by applying Friedman test on RMSE

ML Tech GMDH GGAL GRNN KN PNN BPN M5Rule JERN DT SVM LR KStar Bagging
Mean Rank 1.21 2.08 3.79 4.14 5.79 7.28 7.87 8.32 8.5 9.21 9.57 10.36 11.58

With respect to RMSE from Table 10, we observe that GMDH technique is the second
best and GGAL as the best technique for the maintainability prediction of OSS on the
basis of their mean rank.

In order to ascertain whether the performance differences which exist between FIR val-
ues of various ML techniques are statistically significant or not, we proceed towards post
hoc analysis in RQ3.

RQ3: In terms of performance, which ML technique is significantly better
than the other techniques?

In RQ2, with the help of Friedman test, we concluded that there exists a significant
difference among the performance of ML technique; hence we proceed towards post hoc
analysis using Nemenyi test to determine whether the difference is actually statistically
significant between the performances of ML techniques or not.

The value of CD is calculated as 6.8 after putting the values of n as 13 (number of ML
techniques) and value of k as 7 (number of datasets) into Equation (6). Next, we make a
pair for each ML technique with every other to calculate their rank differences (FIR) and
compiled in Tables 11 and 12 for MAE and RMSE, respectively. In total, 78 such pairs
were formed as we have used 13 ML techniques in our study.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 631

In Table 11, we have highlighted those entries which have values greater than CD.
It is quite evident that out of 78 pairs of ML techniques, 13 pairs (bold entries) were
found to have significant differences among their performances. One pair between GGAL
and KStar has attained the difference (6.78) almost touching the critical difference (6.8).
Hence, 14 pairs out of 78 means, the performance of 17.9% of pairs was found to be
significantly different using statistical test and not coincidental.

Results shown in Table 11 also depict that GGAL performed better than KStar, Bag-
ging, KN, DT, JERN and SVM whereas GMDH performed better than DT, JERN and
SVM. Hence, on the basis of post hoc analysis of MAE, we conclude that GMDH and
GGAL outperformed other ML techniques. The difference between the performance of all
other ML techniques was not found to be significant.

We performed the same procedure for RMSE and the rank difference of each pair was
calculated and compiled in Table 12. Highlighted entries in Table 12 indicate that the
difference of FIR between that pair of ML technique is greater than CD.

It is observed that out of 78 pairs of ML techniques, 12 pairs (bold entries) were found
to have significant differences among their performances. So, with the help of Nemenyi

Table 11. Computation of pairwise rank difference amongst all ML tech-
niques in terms of MAE

ML Tech GGAL GMDH PNN GRNN LR BPN M5Rule KStar Bagging KN DT JERN SVM
GGAL – 0.92 1.78 2.57 3.57 4.85 5.35 6.78 7.31 7.64 8.81 9.49 9.78

GMDH – 0.86 1.65 2.65 3.93 4.43 5.86 6.39 6.72 7.89 8.57 8.86

PNN – 0.79 1.79 3.07 3.57 5.00 5.53 5.86 7.03 7.71 8.00

GRNN – 1.00 2.28 2.78 4.21 4.74 5.07 6.24 6.92 7.21

LR – 1.28 1.78 3.21 3.74 4.07 5.24 5.92 6.21
BPN – 0.5 1.93 2.46 2.79 3.96 4.64 4.93

M5Rule – 1.43 1.96 2.29 3.46 4.14 4.43
KStar – 0.53 0.86 2.03 2.71 3.00

Bagging – 0.33 1.5 2.18 2.47
KN – 1.17 1.85 2.14
DT – 0.68 0.97

JERN – 0.29
SVM –

Table 12. Computation of pairwise rank difference amongst all ML tech-
niques in terms of RMSE

ML Tech GMDH GGAL GRNN KN PNN BPN M5Rule JERN DT SVM LR KStar Bagging
GMDH – 0.87 2.58 2.93 4.58 6.07 6.66 7.11 7.29 8.00 8.36 9.15 10.37

GGAL – 1.71 2.06 3.71 5.2 5.79 6.24 6.42 7.13 7.49 8.28 9.5

GRNN – 0.35 2 3.49 4.08 4.53 4.71 5.42 5.78 6.57 7.79

KN – 1.65 3.14 3.73 4.18 4.36 5.07 5.43 6.22 7.44

PNN – 1.49 2.08 2.53 2.71 3.42 3.78 4.57 5.79
BPN – 0.59 1.04 1.22 1.93 2.29 3.08 4.3

M5Rule – 0.45 0.63 1.34 1.7 2.49 3.71
JERN – 0.18 0.89 1.25 2.04 3.26
DT – 0.71 1.07 1.86 3.08

SVM – 0.36 1.15 2.37
LR – 0.79 2.01

KStar – 1.22
Bagging –

632 A. CHUG AND R. MALHOTRA

test conducted on RMSE measure, 12 pairs were found to be significantly different out of
78 pairs which is almost 15.3% of the total pairs.

It is also quite apparent that GMDH-JERN, GMDH-DT, GMDH-SVM, GMDH-LR,
GMDH-KStar and the GMDH-Bagging pair were found to be significant as they have a
value greater than CD. GGAL was found to be performing significantly superior to SVM,
LR, KStar and Bagging. GRNN and KNN also performed better than Bagging technique.

Hence, we conclude that the difference in the performances of GGAL and GMDH were
statistically different significantly as well as better than other ML techniques and the dif-
ference among the performance of all other ML techniques is not found to be significant.

6. Threats to Validity. This empirical investigation is carried out on OSS which may
not be the true representative of all those softwares used in industry but with the help
of ten-fold cross-validation and repetition of same ML technique for training over seven
datasets with different individuality, we have tried our best to obtain as much unbiased and
generalized results as possible. The results of this study would be incomplete without the
discussion of all three types of threats to validity present in every empirical investigation:
External, Internal and Construct Validity.

External validity means the degree with which the results of this empirical study
can be generalized. By taking seven OSS with different sizes, different characteristics,
different maintenance requirements, we have reduced this threat to its minimum.

Internal validity is defined as the degree with which conclusions can be drawn about
the consequence of independent variables on dependent variables. We have minimized
this threat by successfully applying FSS using GA and further exploring the cumulative
effects of all the selected independent variables on maintainability.

Construct validity represents the extent to which the OO characteristics are accu-
rately captured through the independent and dependent variables used in any study. We
have not stuck to only one metric suite in our study, instead seventeen different metrics
were selected to capture the OO characteristics proposed by well-tested metrics suite from
Chidamber and Kemerer [26], Bansiya and Davis [27], and Henderson-Sellers [28]; hence,
it is reasonable to claim that this threat is also minimized.

7. Conclusion and Future Direction. The objective of the study was to analyze the
effectiveness of ML techniques for predicting software maintainability and the results
are validated using dataset collected from open source software. An extensive empiri-
cal comparison of thirteen ML techniques on seven datasets obtained from open source
code repositories is conducted. Prediction models were developed using seventeen most
commonly used OO metrics. We further compared the performance of ML techniques
using four prediction accuracy measures MAE, RMSE, Pred(0.25) and Pred(0.75). The
variations amongst the performance of various ML techniques were further evaluated for
significance using Friedman test. Post hoc analysis using Nemenyi test was also conducted
to identify whether there exists the statistical difference of performance between the pair
of different ML techniques. The main findings of the work are summarized below.

• Feature subselection using GA was used and it could successfully reduce the dimen-
sions by almost 26.6%.

• To measure the residual error, MAE and RMSE prediction accuracy was used and we
found that GGAL and GMDH techniques perform better than other ML techniques.

• The work also confirms that ML techniques have overall fare predictive ability as
Pred(0.25) values are more than 60% in all cases; hence, they can be used for making
the prediction model for software maintainability of OSS.

BENCHMARKING FRAMEWORK FOR MAINTAINABILITY PREDICTION 633

• The superiority of GGAL and GMDH techniques over other ML techniques in the
context of maintainability prediction of OSS was further confirmed by the results of
Friedman test and post hoc analysis.

Hence, ML techniques based prediction models can be used to decide the ideal time
for throwing away the old system and replace it by the whole new system. The results of
this study are exploratory and indicative. Moreover, there might be a number of other
factors that may possibly affect the results and limit their generalization. We plan more
studies in future work validated on industrial software systems.

REFERENCES

[1] IEEE Std 828-1998, IEEE Standard for Software Configuration Management Plans, Standard, 1998.
[2] M. Jorgensen, Experience with the accuracy of software maintenance task effort prediction models,

IEEE Trans. Software Engineering, vol.21, no.8, pp.674-681, 1995.
[3] A. D. Lucia, E. Pompella and S. Stefanucci, Assessing effort estimation models for corrective main-

tenance through empirical studies, Journal of Information and Software Technology, vol.47, no.1,
pp.3-15, 2005.

[4] W. Scacchi, Understanding the requirements for developing open source software systems, IEE Pro-
ceedings Software, vol.149, no.1, pp.24-39, 2002.

[5] I. Samoladas, I. Stamelos, L. Angelis and A. Oikonomou, Open source software development should
strive for even greater code maintainability, Communications of the ACM, vol.47, no.10, pp.83-87,
2004.

[6] R. K. Bandi and V. K. Vaishnavi, Turk DE: Predicting maintenance performance using object-
oriented design complexity metrics, IEEE Trans. Software Engineering, vol.29, no.1, pp.77-87, 2003.

[7] V. R. Basili, L. C. Briand and W. L. Melo, A validation of object-oriented design metrics as quality
indicators, IEEE Trans. Software Engineering, vol.22, no.10, pp.751-761, 1996.

[8] W. Li and S. Henry, Object-oriented metrics which predict maintainability, Journal of Systems and
Software, vol.23, no.2, pp.111-122, 1993.

[9] F. Fioravanti and P. Nesi, Estimation and prediction metrics for adaptive maintenance effort of an
object-oriented system, IEEE Trans. Software Engineering, vol.27, no.12, pp.1062-1084, 2001.

[10] M. Dagpinar and J. H. Jhanke, Predicting maintainability with object-oriented metric – An empirical
comparison, Proc. of the 10th Working Conference on Reverse Engineering, pp.155-164, 2003.

[11] M. M. T. Thwin and T. S. Quah, Application of neural networks for software quality prediction
using object-oriented metrics, Journal of Systems and Software, vol.76, no.2, pp.147-156, 2005.

[12] C. V. Koten and A. R. Gray, An application of Bayesian network for predicting object-oriented
software maintainability, Information and Software Technology, vol.48, no.1, pp.59-67, 2006.

[13] M. O. Elish and K. O. Elish, Application of tree net in predicting object-oriented software maintain-
ability: A comparative study, Proc. of European Conference on Software Maintenance and Reengi-
neering, Kaiserslautern, Germany, pp.69-78, 2009.

[14] C. Jin and J. A. Liu, Applications of support vector machine and unsupervised learning for predicting
maintainability using object-oriented metrics, Proc. of the 2nd International Conference on Multi-
Media and Information Technology, pp.24-27, 2010.

[15] A. Kaur, K. Kaur and R. Malhotra, Soft computing approaches for prediction of software mainte-
nance effort, International Journal of Computer Applications, vol.1, no.16, pp.339-515, 2010.

[16] Y. Zhou and B. Xu, Predicting the maintainability of open source using design metrics, Wuhan
University Journal of Natural Sciences, vol.13, no.1, pp.14-20, 2008.

[17] F. J. Ramil, A. Lozano, M. Wermelinger and A. Capiluppi, Empirical studies of open source evolu-
tion, Software Evolution, pp.263-288, 2008.

[18] I. Myrtveit, E. Stensrud and M. Shepperd, Reliability and validity in comparative studies of software
prediction models, IEEE Trans. Software Engineering, vol.31, no.5, pp.380-391, 2005.

[19] Y. Zhou and H. Leung, Predicting object-oriented software maintainability using multivariate adap-
tive regression splines, Journal of Systems and Software, vol.80, no.8, pp.1349-1361, 2007.

[20] S. C. Misra, Modeling design/coding factors that drive maintainability of software systems, Software
Quality Journal, vol.13, pp.297-320, 2005.

[21] R. Malhotra and A. Chug, Application of group method of data handling model for software main-
tainability prediction using object oriented systems, International Journal of System Assurance
Engineering and Management, vol.5, no.2, pp.165-173, 2014.

634 A. CHUG AND R. MALHOTRA

[22] K. K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra, Application of artificial neural network for
predicting maintainability using an object-oriented metric, Trans. Engineering, Computing and Tech-
nology, vol.15, pp.285-289, 2008.

[23] R. Malhotra and A. Chug, An empirical study to redefine the relationship between software design
metrics and maintainability in high data intensive applications, Lecture Notes in Engineering and
Computer Science: Proc. of the World Congress on Engineering and Computer Science (WCECS),
San Francisco, USA, pp.61-66, 2013.

[24] R. Malhotra and A. Chug, Software maintainability prediction using machine learning algorithm,
Software Engineering: An International Journal, vol.2, no.2, pp.9-36, 2012.

[25] K. K. Aggarwal, Y. Singh, P. Chandra and M. Puri, Measurement of software maintainability using
a fuzzy model, Journal of Computer Sciences, vol.1, no.4, pp.538-542, 2005.

[26] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite for object oriented design, Proc. of
the 6th ACM Conference on Object-Oriented Programming, Systems Languages, and Applications,
Phoenix, AZ, 1991.

[27] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity, Englewood Cliff, Upper
Saddle River, NJ, USA, Prentice-Hall Inc., 1996.

[28] J. Bansiya and C. G. Davis, A hierarchical model for object-oriented design quality assessment,
IEEE Trans. Software Engineering, vol.28, no.1, pp.4-17, 2002.

[29] R. Malhotra, N. Pritam, K. Nagpal and P. Upmanyu, Defect collection and reporting system for
GIT based open source software, Proc. of International Conference on Data Mining and Intelligence
Computing, New Delhi, India, pp.1-7, 2014.

[30] G. M. Donell, Establishing relationships between specification size and software process effort in case
environment, Information and Software Technology, vol.39, no.1, pp.35-45, 1997.

[31] R. Kohavi and G. H. John, Wrappers for feature subset selection, Journal of Artificial Intelligence,
vol.97, no.2, pp.273-324, 1997.

[32] J. Yang and V. Honavar, Feature subset selection using genetic algorithm, IEEE Intelligent System
and Their Applications, vol.13, no.2, pp.44-49, 1998.

[33] B. Kitchenham, L. M. Pickard, S. G. MacDonell and M. L. Shepperd, What accuracy statistics really
measure, IEE Proceedings Software, vol.148, no.3, pp.81-85, 2001.

[34] S. Conte, H. Dunsmore and V. Shen, Software Engineering Metrics and Models Book, Benjamin-
Cummings Publishing Co., Menlo Park, CA, 1986.

[35] M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, The
Annals of Mathematical Statistics, vol.11, no.1, pp.86-92, 1940.

[36] J. Demsar, Statistical comparison on classifier over multiple datasets, Journal Machine of Learning
Research, vol.7, pp.1-30, 2006.

[37] S. Lessmann, B. Baesens, C. Mues and S. Pietsch, Benchmarking classification models for software
defect prediction: A proposed framework and novel findings, IEEE Trans. Software Engineering,
vol.34, no.4, pp.485-496, 2008.

[38] J. P. Hoffmann and K. Shafer, Linear Regression Analysis, Assumptions, and Applications, NASW
Press, 2015.

[39] R. Kohavi and D. Sommerfield, Targeting business users with decision table classifiers, Proc. of IEEE
Symposium on Information Visualization, pp.102-105, 1998.

[40] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.20, no.3, pp.273-297,
1995.

[41] S. W. Lee and H. H. Song, A new recurrent neural network architecture for visual pattern recognition,
IEEE Trans. Neural Networks, vol.8, no.2, pp.331-340, 1997.

[42] L. Brieman, Bagging predictors, Machine Learning, vol.24, no.2, pp.123-140, 1996.
[43] D. Specht and P. Shapiro, Generalization accuracy of probabilistic neural networks compared with

back-propagation networks, Proc. of the International Joint Conference on Neural Networks, pp.887-
892, 1991.

[44] T. Kohonen, The self-organizing map, Proc. of the IEEE, vol.78, no.9, pp.1464-1480, 1990.
[45] D. F. Specht, Probabilistic neural networks, Journal of Neural Networks, vol.3, no.1, pp.109-118,

1990.
[46] A. G. Ivakhnenko and Y. U. Koppa, Regularization of decision functions in the group method of

data handling, Soviet Automatic Control, vol.15, no.2, pp.28-37, 1970.
[47] D. F. Specht, General regression neural networks, IEEE Trans. Neural Networks, vol.2, no.6, pp.568-

576, 1991.

