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Abstract. This paper proposes adaptive quantization based on fuzzy classified priority
mapping in order to achieve higher encoding efficiency. The priority map serves as a
quantization mask, which is adaptively adjusted according to the statistical characteristics
in terms of histograms based on the results of Fuzzy C-mean clustering. With its soft
clustering property, the results illustrate robustness to ambiguity of the data and thus
retain much more information than hard clustering. The priority map represents lev-
els of significance as the Most Significant Group (MSG), the Normal Significant Group
(NSG), and the Lowest Significant Group (LSG). The significant candidates of irregular
liver tissues requiring special doctor attention will be assigned with higher priority than
those from the regular ones. The higher the priority, the greater the number of bits as-
signed for encoding. An analysis of suitable quantization step size has been conducted.
With the selection of appropriate quantization parameters for each priority level, the
blocking artifacts can be greatly reduced. This helps to reduce the encoding bit rate and
enhance the compression efficiency for the transmission and storage while maintaining
an acceptable diagnostic image quality.
Keywords: Ultrasound image compression, Fuzzy C-mean clustering, Adaptive quan-
tization, Priority mapping

1. Introduction. With the advance in medical imaging, visual representation of human
interior has become massively produced in digital format since the hospitals are moving
towards filmless [1] and computer-aid diagnostic processing. The medical information is
exchanged from one site to another via electronic communication based on implementa-
tion of teleradiology and digital Picture Archiving and Communications Systems (PACS)
in order to provide health services with high quality and thus improve patients’ health
status [2]. The Digital Imaging and Communications in Medicine (DICOM) Standard
specifies a non-proprietary data interchange protocol, digital image format, and file struc-
ture of biomedical images and image-related information [3]. Liver cancer was reported
as the most significant disease causing premature death by the World Health Organiza-
tion (WHO), especially for the HepatoCellular Carcinoma (HCC). It was also reported
as the number one disease found in males and the fifth rank in females by the Ministry
of Public Health of Thailand in 2008 [2]. The blood and Alfa-fetoprotein (AFP) tests
are recommended as general acceptance test taking for patient diagnosing together with
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Ultrasonography (US) in every six months. This introduces a requirement for the massive
amount of ultrasound liver images needed to be stored in each hospital’s database. In
order to handle such massive information, there have been significant considerations in
memory requirement and bandwidth limitation for effective DICOM storage and commu-
nication. An efficient image compression technique is required to reduce the transmission
time and storage cost while preserving the quality of the image. One definition of optimal
medical image compression is a degree of compression that decreases file size substantially
while producing a degree of image distortion that is not clinically significant [4].

Image compression provides a way to efficiently encode images based on redundancy re-
duction in order to preserve the actual information resided in the image itself. Transform
coding has been popular and widely adopted to transform pixel-wise image representation
into a new representation such that the transformed results are independently quantized
[5]. Block-based DCT transform is a part of the JPEG standard format. The DCT has
been known for near-optimum especially with natural image compression [6]. Each block
of subimage is transformed into DC (Direct Current) and AC (Alternating Current) co-
efficients. DC coefficient expresses the mean value of the subblock while AC coefficients
represent zero means with amplitude changes in different frequencies. Most of the en-
ergy is compacted in the DC coefficient while details are carried in the AC coefficients.
These DCT coefficients are encoded in the form of either lossless or lossy compression
techniques. Even though lossless compression allows perfect reconstruction of the origi-
nal image, it can support Compression Ratio (CR) only up to 4:1 (max) [7]. To achieve
higher compression ratio, lossy compression algorithm becomes an alternative selection.
The significant constraints for lossy compression are high compression ratio with clinical
quality. Context based modeling has been proposed to encode medical image information
according to predetermined characteristics [7,9]. ROI based compression is an example
of context based compression, where each region is compressed independently with its
appropriate compression ratio. The desired compression ratio of each region depends on
its significance. The most significant regions are compressed with low compression ratios
while the least significant regions are encoded with higher ratios.

The main contribution of this paper is to present adaptive quantization based on Fuzzy
C-mean (FCM) clustering for ultrasound liver compression, where the ROIs are classified
into three levels of significance: the Most Significant Group (MSG), the Normal Signifi-
cant Group (NSG), and the Lowest Significant Group (LSG). It serves as a quantization
mask, which is adaptively adjusted according to the statistical characteristics in terms of
histograms based on the results of FCM. However, the relation between priority level and
the suitable quantization scale has not been clearly evaluated. Therefore, another contri-
bution is to provide an analysis of suitable quantization step size related to each priority
level. With the appropriate selection of the quantization parameters, the blocking arti-
facts can be greatly reduced. This helps to reduce the encoding bit rate and enhance the
compression efficiency for the transmission and storage while maintaining an acceptable
diagnostic image quality.

2. A Review of Related Works. Selecting ROI is a challenging task since it affects
the overall compression performance for both quality and quantity. Simple maxshift and
general scaling were chosen to create ROI based on wavelet based coding in EBCOT of
JPEG2000 [8]. The wavelet coefficients of the ROI bit-planes were scaled up so that they
were placed in the higher bit-planes in order to give them higher significance [9]. Even
though maxshifting allows compression to arbitrarily define ROI shape without ROI mask,
the results are not guaranteed lossless compression with a specified bitrate. ROI image
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coding using Shape-adaptive DCT was introduced in [9], as a low complexity Shape Adap-
tive DCT (SA DCT) algorithm suitable for coding arbitrarily shaped image segments. The
algorithm encoded the foreground and background of 8×8 DCT blocks separately [10-12].
The SA-DCT has been developed in the framework of the ongoing MPEG-4 standardiza-
tion phase of ISO/IEC and included in the video verification model of MPEG-4. With
high computational overhead, an improved version of the SA-DCT called ∆DC-SA-DCT
was proposed for intraframe coding. It was proven to require smaller computational over-
head, thus attractive for hardware implementations [13]. The ∆DC-SA-DCT was also
adopted as ROI based image coding in [14]. The compression results were compared to
the algorithm based on DCT-JPEG. The SA-DCT based coding showed improved com-
pression performance in terms of PSNR and visual quality. However, the limitation of the
SA-DCT based coding is that the spatial correlation may be lost due to flushing samples
in arbitrarily shaped block to a certain edge of a rectangular bounding block before DCT
transformation of row or column, where the coefficients are from different frequency bands
[15].

An alternative ROI identification is performed based on segmentation and classification
techniques using Vector Quantization (VQ) [16-19], K-mean clustering [20-22], Fractal seg-
mentation [25-27], Support Vector Machine (SVM) [29,30] and Fuzzy C-mean clustering
[31,32]. With its lowest quantization distortion at a given bit rate, VQ has been widely
adopted for lossy image compression [9,16-19]. Contextual Vector Quantization (CVQ)
was proposed to encode an image with different quality between the Contextual Region
of Interest (CROI) portion and the Background (BG) for ultrasound images [9]. Region
growing was adopted as a segmentation method to define the CROIs. The CROIs were
encoded with a low CVQ compression ratio while the BG was encoded with the high
CVQ compression ratio. However, in high bit-rate compression, VQ codebooks are rel-
atively large and require extensive computational complexity and memory requirements.
K-mean clustering is a clustering technique used to partition data samples into K clusters,
where each cluster is indicated by its own center [2,20-22]. In [20], K-mean clustering was
adopted for nuclear medical image compression. Clustering without analyzing compres-
sion, distortion may result in significant loss of data. Therefore, the segmented image was
compared to the original one in all iterations in order to determine the termination crite-
ria. The iteration will be ended when the loss of data is minimized (the value of correlation
co-efficient function should be maximum). Statistical calculation and K-mean clustering
of motion B-Mode liver ultrasound image were proposed to define approximation of liver
position in [23] while differentiating normal regions of the cirrhotic liver was proposed
using Law’s mask analysis of spatial gray-level dependence matrices, Fourier power spec-
trum, and gray-level difference [24]. Although implementation of the K-means algorithm
is quite simple, the convergence depends on the choice of the initial cluster vector. Fractal
based segmentation performs region partitioning using Fractal Dimension (FD) analysis.
The FD is a statistical quantity identifying the detail in a pattern, which changes with
the scale. Quad-tree partitioning of fractal features was adopted for x-ray images [25]. In
[26,27], the ROIs of the mammograms were extracted using fractal based segmentation
and then encoded with maxshift ROI coding technique while multiresolution analysis of
fractal feature vector for ultrasound liver segmentation was described in [28]. However,
the fractal based image coding requires tremendous time for encoding; thus providing
poor retrieved image quality when compression is applied on noisy or corrupted images.
Another segmentation approach was based on curvelet transform and Support Vector Ma-
chine (SVM) regression [29]. The curvelet coefficients were quantized and approximated
by SVM with the predefined error. The model parameters of SVM were then encoded
with adaptive arithmetic coding. Extensive memory requirement and high computational
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complexity are the main drawbacks of SVM for practical implementation [30]. The FCM
clustering provides a soft (fuzzy) assignment of patterns (memberships) to clusters [31].
Since each data element can belong to one or more clusters, the levels of memberships can
be used to determine the degrees of relationship between data elements and their related
clusters. In [32], FCM was introduced as the ROI texture partitioning, where different
compression ratios were then assigned the ROIs according to their textural significance.
The absolute values of wavelet coefficients for each DWT subband were chosen as texture
descriptors.

The ROI classification of liver ultrasound is quite difficult due to the image itself con-
taining other organs, in which their characteristics are closely related to the liver. The
hard decision based clustering is not an appropriate choice to cope with this uncertainty.
FCM based clustering is suggested in this paper due to its soft decision property. It tries
to iteratively optimize the membership function in order to minimize the objective func-
tion based on the similarity between the sample data and the cluster center. Each data
sample can belong to more than one cluster according to the certain degree of membership
[33]. The statistics of different types of liver tissues are illustrated. It can be seen that the
texture characteristics of the normal and abnormal tissues are closely related especially in
the case of early stage of the decease. With the proposed FCM-based priority clustering,
it demonstrates an improvement of the classification for ROIs with ambiguous character-
istics of different organs that reside in the image and unstable texture description of liver
tissue due to intensity variation of the input image.

3. Methodology. JPEG is well known image compression standard based on Discrete
Cosine Transform (DCT) [34,35]. There was a study on performance of image compres-
sion based on DCT and wavelet for CT scan image [36]. It was concluded that, for
a lower compression ratio, DCT based image compression yielded higher quality image
than Wavelet. However, the image quality is decreased at higher compression ratios due
to the artifacts resulting from the block-based DCT scheme. Figure 1 shows the JPEG
encoding process with the proposed adaptive quantization step size.

In JPEG encoding process, an input image is partitioned into consecutive 8×8 blocks
and each block is transformed using forward DCT algorithm to obtain a set of 64 values of
one DC plus 63 AC DCT coefficients. To reduce amount of information, human perception

Figure 1. The proposed adaptive quantization for JPEG encoding
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is taken into consideration. The human visual perception is a complex coordination among
the eye, optical nerve, visual cortex and other parts of the brain [37]. The human eye
does not perceive directly translation of the retina stimuli, but it involves complicated
psychological inference [38]. The psychovisual redundancy is the image information that is
ignored by the human visual system or relatively less important to human eye. In another
word, the human eye is not equally sensitive to all visual image information [39]. The
human visual perception cannot differentiate the difference in brightness over a relatively
large area and also in a high frequency of brightness variation. Removing the psychovisual
redundancy would be beneficial for image compression. The redundancy elimination is
performed through the quantization process via the quantization tables [39]. In JPEG,
quantization table is not fixed; however, a standard quantization table Q(u, v)Classic is
recommended as illustrated in Figure 2. This suggested JPEG quantization table is
derived based on psychovisual threshold experiments and represents quality of 50%.

Figure 2. The quantization table of standard JPEG

JPEG quantization tables aim to discard the information not visually significant espe-
cially at the higher frequencies. A standard quantization equation is presented in (1),

Fq(u, v) = Round

(

F (u, v)

Q(u, v)Classic/QS(u, v)

)

(1)

where F (u, v) is the DCT coefficient at (u, v) spatial frequency in horizontal and vertical
directions, respectively, Q(u, v)Classic is the standard JPEG quantization table (Figure 2)
while QS(u, v) is the quantization step size.

JPEG quantization largely determines the rate distortion in a JPEG image compression
[40]. Increasing in the quantization leads to increasing the degree of compression; however,
the quality of the image would be decreased. The question is the optimization between
quality and quantity in terms of compression ratio. Several quantization matrices have
been introduced such as for images of human face recognition [41], iris in the human
eye [42], and x-ray [43]. However, researchers are still active for alternative optimal
quantization.

3.1. Adaptive quantization. There was a study of the impact of quantization matrix
on the performance of JPEG [44]. From the results, it can be concluded that compression
ratio changes when the quantization matrix changes. However, the quality of compression
varies from image to image even though the quantization matrix as well as the compression
ratio remains the same. This means that each type of images requires a particular quan-
tization, which can be adjusted according to its own characteristic for better compression
performance.
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In this research, an analysis of adaptive quantization parameters based on FCM clas-
sified priority map is presented. Each ultrasound liver image is partitioned into 32×32
subimages. The statistical characteristics in terms of histograms are then calculated for
each subimage and sent as input training vectors to FCM clustering. A priority map
generation is performed according to the clustering results. It identifies the level of im-
portance for each image area and serves as an adaptive quantization mask. The more
importance of the image area, the higher value of quantization level.

(a) (b)

Figure 3. (a) Original image (928×608 pixels), (b) subimages with the
size of 32×32 pixels

3.1.1. Statistical characteristics of liver tissues. Histograms are adopted as texture char-
acteristics, which represent the spatial distribution of gray levels and contribute to the
perception of texture [45]. Figure 4 illustrates the histograms obtained from various re-
gions in an ultrasound image. Sample regions are abdominal wall in (a), the border of
the abnormal liver tissue in (b), the interior of the abnormal liver tissue in (c), Hepatic
artery in (d). The gray-level intensity of abdominal wall distributes in a wider range of
intensity while the distribution of Hepatic artery is narrower. The abnormal liver tissues
both in (b) and (c) illustrate the dominant distribution in a more compact range.

Even though the intensity distribution of abnormal liver tissue demonstrates distinct
characteristic, some parts of normal tissues may have the distributions close to the ab-
normal one especially in the early stage of the decease.

3.1.2. FCM clustering. FCM is a soft clustering algorithm, where sub-images can belong
to more than one cluster and associated them with a set of membership levels. The Fuzzy
C-means (FCM) clustering algorithm was first introduced by Dunn [46] and later extended
by Bezdek [47]. The algorithm is an iterative clustering, which creates an optimal partition
of c clusters. Equation (2) is used to minimize the weights within group sum of squared
error objective function.

J =

c
∑

i=1

n
∑

j=1

(µij)
md2(Xj , Zi) (2)

where J is the objective function of FCM algorithm. Let x = {x1, x2, . . . , xn} with
xn ∈ ℜd being a data set, which consists of N dimensional samples, and n represents the
number of data items. c is the number of clusters. m is a weighting exponent on each
fuzzy membership. µij is the membership of the jth data in the ith cluster, and Zi is the
fuzzy cluster centroid of the ith cluster [48].
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(a)

(b)

(c)

(d)

Figure 4. Histograms of sample regions in ultrasound liver image, (a)
abdominal wall, (b) the border of the abnormal liver tissue, (c) the interior
of the abnormal liver tissue, (d) Hepatic artery

Using the Euclidean norm, Equation (3) is the distance metric d that measures the
similarity between a feature vector Xj and a cluster centroid Zi in the feature space.

d2(Xj, Zi) = ‖Xj − Zi‖
2 (3)

The objective function is minimized when data points are close to the centroid of their
clusters, which will be assigned with high membership values. On the other hand, low
membership values are assigned to data points far from the centroid. Equation (4) is
membership function. Equation (5) is updated cluster centroids.

uij =

(

c
∑

k=1

(

d(xj, vi)

d(xj , vk)

)2/(m−1)
)

−1

(4)
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Zi =

n
∑

j=1

(µij)
mXj

n
∑

j=1

(µij)m

(5)

The FCM algorithm proceeds by iterating the two necessary conditions until a solution
is reached [49]. Each data point will be associated with a membership value for each class
after FCM clustering. The data point will be assigned the class label according to the
highest membership value. The important parameters of FCM are the number of clusters
(c), the weighting exponent (m), and termination criteria [50]. When clustering real data
without any a priori information about the structures in the data, one usually has to
make assumptions about the number of underlying clusters. The fuzziness parameter in
terms of the weighting exponent m significantly influences the fuzziness of the resulting
partition. Usually, m = 2 is initially chosen. The FCM algorithm terminates when
the norm of the difference between U in two successive iterations is smaller than the
termination parameter ε = 10−6.

3.1.3. Quantization based on a priority map. To accommodate the variation in image
statistics, the quantization step size is needed to be adaptively adjusted in order to achieve
higher encoding efficiency. In this research, the quantization step size is modified according
to a priority map created from the clustering results. The priority map generation is a
process to create an adaptive quantization mask. It specifies the levels of significance as
the Most Significant Group (MSG), the Normal Significant Group (NSG), and the Lowest
Significant Group (LSG) according to the results of FCM. The significant sub-images
from the candidates of irregular liver tissues, which need special doctor’s attention, will
be assigned with higher priority than those from the regular ones. The higher the priority,
the greater number of bits assigned for encoding. A standard quantization equation is
presented in (6).

Fq(u, v) = Round

(

F (u, v)

Q(u, v)Classic/QS(u, v)

)

(6)

where Q(u, v)Classic is the standard JPEG quantization table (Figure 2) while QS(u, v) is
the proposed quantization step size in (7).

QS(u, v) =







QL LSG

QN NSG

QM MSG
(7)

The quantization step of QM is assigned to the Most Significant Group (MSG), which
represents the candidate of irregular liver tissues. The normal tissues, the border of the
probe, and the scale/color bars are grouped into the Normal Significant Group (NSG),
which will be assigned the quantization step of QN . The Lowest Significant Group (LSG)
is considered as the lowest priority in the priority map, where sub-images of this class are
quantized to the minimum number of encoding bits. Figure 5 presents (a) the ground truth
image with the irregular tissue located within the red circle area and (b) the classification
results from Fuzzy C-mean clustering. Analysis of optimal quantization step for each
priority level should be performed in order to achieve the greatest performance.

4. Results and Discussions. In this research, a set of 17 abnormal and 7 normal liver
ultrasound images is used for analysis. An ultrasound image is partitioned into sub-images
of size 32×32 pixels. A 256-bin histogram of each sub-image is then calculated. Since the
gray-level distributions of normal and abnormal tissues are overlapped, especially in the
case of early stage, it would be difficult to efficiently cluster using hard clustering such
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(a) (b)

Figure 5. (a) The ground truth image with the irregular tissue located
within the circle area at the middle and (b) the classified sub-images, where
the white sub-images are for the MSG, the light gray sub-images are for the
LSG, and the rest sub-images are for the NSG

Figure 6. A comparison of time complexity of K-mean and FCM cluster-
ing (logarithmic scale)

as K-mean. This results in expanding time to achieve clustering results. To overcome
this difficulty, Fuzzy C-mean soft clustering is implemented. The cluster centers and
membership values are iteratively updated. Using fuzzy membership allows FCM to be
robust to noise and outliers and gives superior clustering performance. A comparison of
time complexity of K-mean and FCM clustering is conducted as illustrated in Figure 6.
The clustering parameters for K = 6, 8, 10, and 12 are evaluated using Matlab functions
of K-mean and FCM. The sample results of K-mean and FCM clustering are shown in
Figures 7 and 8. From the results, it can be seen that FCM soft clustering produces
better clustering results with remarkably faster convergence than the K-mean hard clus-
tering. From experiments, the number of clusters (K = 10) can achieve better clustering
performance with reasonable time complexity.

The results obtained from FCM clustering are then used to construct a priority map,
which specifies the level of importance of the liver tissue regions. The highest priority map
designated as the MSG is compressed with higher compression ratio than the lower priority
map denoted as the NSG. An analysis of appropriate quantization step sizes (3 <= QS <=
12) for MSG with QN = 2 and QL = 0 for NSG and LSG respectively is conducted. Figure
9 presents the sample results of reconstructed images using the standard quantization table
(c) and using quantization step sizes of 3 (d) and 6 (e) respectively. In order to reduce
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Figure 7. The sample results of K-mean clustering for K = 8, 10, 12

Figure 8. The sample results of FCM clustering for K = 8, 10, 12

the blocking artifacts, the quantization step size needs to be increased. The greater value
of the quantization step size, the higher quality of the reconstructed image.

The objective measurement in terms of Peak Signal to Noise Ratio (PSNR) [51],
Weighted Signal to Noise Ratio (WPSNR) [52], and Structural Similarity (SSIM) [53]
are adopted, which can be calculated as presented in (8) and (10) respectively.

WPSNR = 10 log10

MAX2
I

MSE × NV F 2
(8)



ADAPTIVE QUANTIZATION VIA FUZZY CLASSIFIED PRIORITY MAPPING 645

Figure 9. The sample results of reconstructed images: (a) the origi-
nal image containing the abnormal tissue in white region, (b) the re-
gion of interest (ROI), (c)-(e) the compressed images with the stan-
dard quantization Q(u, v)Classic, the proposed adaptive quantization with
QS(u, v)FCM(K=10) = 3 and QS(u, v)FCM(K=10) = 6, respectively

NV F (i, j) =
1

1 + Q2
x(i, j)

(9)

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

where MAXI is maximum intensity in the image. MSE is mean square error. NV F (i, j)
is Noise Visibility Function. µx and µy are the average of pixel x and y. Q2

x(i, j) is Local
variance. σ2

x and σ2
y are the variance of pixel x and y. C is constant.

One of the well-known parameters used to measure image quality is PSNR, which mea-
sures the level of similarity between reconstructed image and the original one. WPSNR
has been proposed as an alternative image quality measurement to PSNR with additional
NVF texture masking function. The Gaussian model is adopted in the NVF to estimate
amount of texture in an image. SSIM is another image quality measurement, which cal-
culates luminance, contrast, and structure comparison in terms of the mean and variance
of a pixel with its neighbors. Table 1 illustrates objective measurement comparison in
terms of PSNR, WPSNR, and SSIM. Large objective measurement leads to better image
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Table 1. Average objective measurement of liver ultrasound image compression

QS PSNR WPSNR SSIM QS PSNR WPSNR SSIM

3 37.37118 13.86961 0.34495 22 37.48740 13.86981 0.34496
4 37.41576 13.86932 0.34495 23 37.48753 13.86983 0.34496
5 37.42482 13.86982 0.34496 24 37.48955 13.86965 0.34496
6 37.43506 13.86957 0.34495 25 37.48704 13.86984 0.34496
7 37.43681 13.86970 0.34495 26 37.48804 13.86980 0.34496
8 37.45731 13.86922 0.34496 27 37.48917 13.86983 0.34496
9 37.45744 13.86975 0.34496 28 37.49022 13.86979 0.34496
10 37.46826 13.86969 0.34496 29 37.49046 13.86987 0.34496
11 37.47625 13.86976 0.34496 30 37.49003 13.86980 0.34496
12 37.48228 13.86967 0.34496 31 37.49001 13.86980 0.34496
13 37.48639 13.86983 0.34496 32 37.49026 13.86986 0.34496
14 37.49045 13.86976 0.34496 33 37.49209 13.86988 0.34496
15 37.49151 13.86985 0.34496 34 37.49214 13.86985 0.34496
16 37.49264 13.86987 0.34496 35 37.49065 13.86983 0.34496
17 37.49127 13.86984 0.34496 36 37.49145 13.86983 0.34496
18 37.48790 13.86976 0.34496 37 37.49121 13.86981 0.34496
19 37.48763 13.86985 0.34496 38 37.49161 13.86988 0.34496
20 37.48765 13.86977 0.34496 39 37.49141 13.86984 0.34496
21 37.48595 13.86982 0.34496 40 37.49197 13.86984 0.34496

Figure 10. An analysis of the appropriate value of QS is conducted in
terms of PSNR versus compression ratio.

quality. Even though both WPSNR and SSIM try to model human visual perception,
their values cannot be clearly distinguished two images with different qualities compared
to the traditional PSNR especially for the images with high texture characteristics such
as the ultrasound images.

Compression ratio is another parameter used to measure the ability to reduce the size
of the compressed image from the size of the original image. PSNR indicates the loss of
information in the image while the compression ratio specifies the degree of compression.
Nevertheless, compromising between quality and compression ratio is a critical issue.
Although increasing MSG quantization step size (QS) will enhance quality in terms of
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PSNR, the compression ratio will be reduced obviously. An analysis of the appropriate
value of QS versus compression ratio is conducted and illustrated in Figure 10.

As a result, the intersection point between PSNR and compression ratio is suggested to
be a target point, which lies at QS = 7. However, at QS = 6, the value of the compression
ratio is quite larger than at QS = 7 while the value of PSNR is not much different.
Therefore, QS = 6 would be a better choice. With QS = 6, the quality in terms of PSNR
is improved by 3.86 dB while the storage saving is reduced by 4.53% compared to the
standard quantization. The results show great improvement of the reconstructed images
while maintaining acceptable compression ratio.

5. Conclusions. This research proposes adaptive quantization for liver ultrasound image
compression. The quantization step size is adaptively adjusted according to the fuzzy
classified priority map. An ultrasound image is partitioned into sub-images and their
statistical characteristics in terms of histograms are extracted as key features for Fuzzy
C-mean soft clustering. The clustering results are used to construct the priority mapping,
which specified the levels of importance for each image area. The higher the priority, the
greater the number of bits assigned for encoding. An analysis of suitable quantization step
size has been conducted. With the selection of appropriate quantization parameters, the
blocking artifacts can be greatly reduced. Several subjective measurements are evaluated
to demonstrate the performance of the proposed algorithm compared to the standard
JPEG. The results indicate quality improvement of the reconstructed images while the
compression ratio remains reasonably high.
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