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ABSTRACT. A fault-tolerant attitude control is presented to deal with uncertain external
disturbances, small actuator faults and input saturation for cube satellites using 3-axis
magnetorquers as attitude actuators in low earth orbit. The proposed control scheme
achieves reconfigurable control capability by updating controller parameters adaptively
according to the attitude state error. First, an H-infinity robust control with control
hedging is designed for external distance and input saturation. Then, an adaptive dy-
namic neural network (NN) is adopted in the existing control loop to provide adaptive
fault-tolerant control that can eliminate the influence of actuator faults. Due to accurate
approzimation of the dynamic NN and saturation supression of control hedging, control
performance can be improved when actuator faults occur with input saturation. Numeri-
cal simulation for a double cube satellite was performed and the comparison results show
that the proposed control method is effective.

Keywords: Fault-tolerant control, Satellite attitude control, Input saturation, Robust
control, Adaptive dynamic neural network

1. Introduction. Cube satellite (CubeSat) as a kind of small satellite which is generally
in low earth orbit (LEO) and light enough to be feasible to use only 3-axis magnetorquers
as actuators for attitude control gets more and more extensive attention due to its simple
structure and modular design [1]. However, the attitude control for CubeSat investigated
in theory is limited and almost not of enough capability to deal with some practical
problems such as uncertain multiple external disturbances, input saturation, and actuator
faults [2-5]. In fact, the working environment of CubeSat is not usually favourable, and
various negative elements like those above-mentioned influence its normal operation [6]. So
how to handle one of those problems or even all of them is obviously helpful for improving
control performance during the period of satellite actual in-orbit operation. This article
focuses on the practical in-orbit control issues in order to construct a fault tolerant control
(FTC) law to keep the attitude stable whenever the satellite operates under desirable
condition or under complex poor condition that there are external disturbance, or input
saturation, or some actuation faults, or all of them. Note that, the article focuses on
input saturation which gets little attention in current CubeSat study, but it usually exists
at the time of operation beginning or actuator faults occurring. In order to avoid the
negative influence on the attitude stability from input saturation in actual operation, the
control approach for input saturation will be investigated in the article especially.

It is well known that attitude control is important in determining the location of satel-
lites accurately and for reliable operation of satellites. Consequently, a significant amount
of research has investigated attitude control based on several control approaches, such as
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H-infinity robust control, feedback linearization and adaptive control [7-9], to address in-
ternal nonlinearity, uncertainties and external disturbances in a controlled system. How-
ever, most of these approaches cannot maintain satellite stability if actuators become
faulty during attitude manoeuvres. Therefore, FTC capability must be addressed in the
design of attitude control. FTC has been studied extensively [10]. Relative to the appli-
cation of FTC to satellite attitude control, several studies have adopted various control
theories, such as adaptive control, neural networks (NN), sliding mode control and fuzzy
logic [11-13]. In addition, a study of satellite attitude tracking control with weak actuator
faults examined the use of sliding mode control [14]. NNs have also been embedded into
the control loop to achieve effective FTC [15]. A robust adaptive control method has
been presented in [16] for attitude stabilization with external disturbance and actuator
faults. Although most of these FTC methods can be used successfully for reaction wheel
faults, the feasibility of such methods has not been proven for CubeSat attitude control
systems in low earth orbit (LEO) using 3-axis magnetorquers as actuators. Consequently,
designing an FTC scheme for CubeSat actuator faults, such as loss of magnetorquer ef-
fectiveness caused by deterioration of the coils used in 3-axis magnetic bars after a long
working period, remains a challenge.

Another issue with attitude control of CubeSats with 3-axis magnetorquers in LEO
is preventing factors, such as periodic changes in the geomagnetic field, gravitational
torque, solar radiation, aerodynamic torque and internal noise, from negatively affecting
the system [17]. Such factors result in nonlinearities and uncertainties in the system’s
mathematical model. H-infinity robust control has been extensively applied to systems
with uncertain external disturbances because it can successfully maintain system states
within the tolerant range by setting a desired bound norm value and, consequently, can
maintain satisfactory attitude stability [18]. However, traditional H-infinity by itself is not
an effective control for CubeSats; it does not handle nonlinearities from actuator faults
and periodic changes in the geomagnetic field.

In this paper, a dynamic adaptive NN is embedded into the H-infinity robust control
algorithm to provide adaptive FTC that triggers control reconfiguration when actuator
faults occur, at the same time to deal with external disturbances and periodic changes in
the geomagnetic field. The dynamic adaptive NN, which has good approximation accu-
racy, primarily reduces the influence of nonlinearities on system stability, which are caused
by actuator faults and periodic changes in the geomagnetic field, while the H-infinity ro-
bust control suppresses the effects of external disturbances. The proposed adaptive FTC
is an analytical redundancy-based system that can maintain stable CubeSat attitude. The
proposed system can rearrange control effects when actuator faults occur [19].

Input saturation is also a critical problem in the application of FTC for CubeSats. In
practice, magnetorquer output is constrained within a certain range or saturated due to
the magnetorquer’s physical mechanism. Therefore, control performance may deteriorate
and become unstable if the actuator reaches saturation and fails to respond to control
commands. To prevent input saturation from persisting for a long period, solutions for it
in attitude control should be given sufficient consideration. According to various popular
techniques for saturation in current literature [20-22], control hedging is an effective way
and can be used conveniently to modify the existing H-infinity control algorithm to prevent
the controlled system from control input saturation.

Therefore, this paper modifies the propesed adaptive FTC algorithm with control hedg-
ing in an attitude control system for CubeSats in LEO, and employed a double-unit (2U)
CubeSat investigated in the well-known QB50 project [23] of Australian Center for Space
Engineering Research to demonstrate the effectiveness of the presented FTC law. Here,
H-infinity robust control with control hedging and an embedded dynamic adaptive NN in
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the control loop are implemented to construct an adaptive FTC algorithm. The proposed
method is intended to achieve effective control reconfiguration quickly and maintain at-
titude within a desired angle range by eliminating the negative effects of various factors,
such as uncertain external disturbances, periodic changes in the geomagnetic field, control
input saturation and sudden actuator faults.

The remainder of this paper is organized as follows. Section 2 summarizes the problem
formulations. H-infinity robust control with control hedging is described in Section 3. In
Section 4, the design of an adaptive FTC with a dynamic adaptive NN embedded in a
closed-loop control system is described. Simulation results for a 2U CubeSat with the
derived controller are given in Section 5. Finally, conclusions are presented in Section 6.

2. Problem Formulations. Consider a double CubeSat using magnetorquers in LEO.

Nonlinear equations of attitude motion are given by the following kinematics and dynamics
[24].
o -4 —q2 —q3

¢ Ll @ - ¢ e
L i 0 3 2 wy (1)
qQ 2 qs 9 —q1 w,
qs -4 ¢1 qo0
Wy —wy(Liw), + w,(I,w), T, W
Gy | =17 we(lw), —w(Lw)y | +I7'B@) | T, | +I0 | way 2)
w, —wy(Tsw)y + wy (Lsw), T, Wy

Here, qo, q1, 2, g3 are the attitude quaternion variables, w,, w,, w, are the angle rates,
the matrix I, € R**? includes the elements of the moment of inertia, B(¢) is the local
geomagnetic field matrix, T, 7T,, T, are magnetic dipole moments produced by a 3-
axis magnetorquer, i.e., the control input elements, and wg,, wgy, we, are the external
disturbances. (Iiw),, (I,w), and (I,w), in Equation (2) are expressed as follows.

(Isw)x - Imcwx + I:vywy + Ixzwz
(Liw)y = Lyywy + Lyywy, + 1w, (3)
(Isw)z = [z:rw:r + Izywy + Izzwz

Suppose the system’s equilibrium point is [qg a1 Q2 Q3 ] = [ 1 000 ] Thus,

Equation (1) can be linearized around the equilibrium point, and the following equation
is derived by further simplifying Equation (2):

. 0
X1:|:lI :|X2:TX2 (4)
943
%y = f(xo) + I;'B(t)u + I 'wy (5)
where x; = [qg G G2 Q3 ]T, Xy — [wx Wy W, ]T, T = [O %13 ]T, I is a unit
(L), + . (Lw), )
matrix with 3 lines and 3 rows, f(x3) = | w,;(Lyw), —w,(Lw), |,u= [ T, T, T, ] ,

—wy(Tw)y + wy (Lsw),
T
and wy = [ Wiy Way Wz ]

When each of the actuators partially loses its actuation effectiveness, Equations (4) and
(5) can be rewritten as follows:

x(0) = { £y } i { LB, ] n(t) + { At ] " { o ] (6)

= F(x(t),t) + BI;'Bou(t) + BAf(x(t),u(t),t) + D(t)
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where x = [ X; Xy ]T €ER',B= [ 0 Isus ]T € R™3, By € R**? is the mean value of
B(t), Af(x,u,t) = I7'[B(t) — BoJu(t) + A(x,u,t) is an uncertain nonlinear continuous
function caused by actuator faults A(x,u,t) and local geomagnetic variation I;*[B(#) —
BoJu(t) and D(t) = [ 0 I'w, ]T. If the attitude states are given as x4 = [ X}, xJ, ]T,
then the attitude error is defined as

e(t) =x—Xg=[X1—Xs1 Xo—Xp2 ]  =[e1 e ]"

Thus, the dynamic equation of the errors can be written as follows.

é(t) = F(x(t),t) + BI;'Bou(t) + BAf(x(t), u(t),t) + D(t) — %4 (7)
Note that I;'By is invertible; therefore, the control law is given as follows:
u= (Is_lBo)il |:U.d +u, + BT}.(d — f(XQ, t)] (8)

where u; = Ke is the output of robust control and u, is the output of the dynamic
adaptive NN. Equation (8) is substituted into Equation (7) to obtain the following.

é(t) = F(x(t),t) + BAf(x(t),u(t),t) + D(t) — %, + BKe(t)

+ Bu, + BBT%,; — Bf(x,, 1)

[F(x(t),t) — %4 + BBT%; — Bf(x3,t)] + BKe(t) + D(t)
+ Bu, + BAf (x(t), u(t),?)

— f(rfcft) ] - [ f(X(;t) ] - {22 ] + [ ;:d ] + BKe(t) + D(t)

+ Bu, + BAf(x(#), u(t), t)

(9)

= TSCQ ] B [ kéd ] + BKe(t) + D(t) + Bu, + BAf(x(t), u(t), 1)

= - TSZ } + BKe(t) + D(t) + Bu,, + BAf(x(t), u(t),t)

— (A + BK)e(t) + D(t) + Bu, + BAf(x(t), u(t), 1)
0T
0 0
stability by carefully choosing u,, to eliminate the impact of Af(x(¢),u(t),t), and choosing

appropriate K in the H-infinity robust control algorithm to eliminate disturbance element
D(t).

Here, A = [ ] € R™T. Equation (9) shows that the system can achieve closed-loop

3. H-Infinity Robust Control with Control Hedging. Based on Equation (9), the
H-infinity robust control algorithm is first investigated here for a desired error dynam-
ics equation that is free from Af(x(¢),u(t),t). So in this section, we prior assume
Af(x(t),u(t),t) = 0 and u, = 0, and then deduce the H-infinity robust control algo-
rithm with control hedging mainly for disturbance item D(¢) and input saturation in the
following equation:

é(t) = (A + BK)e(t) + D(¢) (10)
The control input saturation function is defined as follows:
u;, |u;| < dos
51‘ = g(uz) = { (50i|u—i|, |Uz| > 50i 5 1= 1,2,3 (11)
Us

where dp; is the maximum value of the ith axis actuator and § = [01, 09, 03] is the input
saturation vector.
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Accordingly, the control hedging is designed as follows.
u, =946 —u, (12)

The robust control law with control hedging is obtained as follows by inserting Equa-
tion (12) into primary robust control uy to prevent the system from being influenced by
actuator saturation.

gy =— Ug — Uy = Ke — uy (13)

The following content discusses stability of the system controlled by H-infinity robust
control with control hedging. The H-infinity performance index is set as follows.

/Ooo e’ (t)Qe(t)dt < e’ (0)Pe(0) + /Ooo D" (t)D(t)dt (14)

Here, v is a given positive value, Q is a given positive definite symmetric constant matrix,
and P is a positive definite symmetric constant matrix to be calculated.
Theorem 3.1. Given v > 0, Q = QT > 0 such that the following Riccati equation has a
solution for the positive definite symmetric matriz P,
1
AP +PA-P <2BBTQ—1BBT — —21> P+Q+I=0 (15)
Y
The closed-loop gain is
K=-B"Q 'BB'P (16)

Then, system (10) is of bounded closed-loop stability with the H-infinity norm bound ~y
and satisfies the performance index (14).

Proof: Consider the following Lyapunov candidate function V(z) = e”'(t)Pe(t). Sup-
pose D(t) = 0. We can then obtain V(z) = e’ (#)[(A + BK)"P + P(A + BK)Je(t). In
view of Equations (15) and (16), the following inequality can be derived.

V(r) =e"(t) [ATP + PA - 2PB"Q'BB"P] e(t) < 0

Thus, the closed-loop system é(t) = (A + BK)e(t) is asymptotically stable.

Note that A; = A + BK. Here, we discuss the robust stability of the closed-loop
system (10). First, we obtain the following expression based on the expansion of the left
equation in Equation (14).

/0 " &7 (1) Qe(t)dt = &7 (0)Pe(0) — € (c0)Pe(o)

+ /0 N {eT(t)Qe(t) + [ (Pe(n)] } dt

As e’ (0o)Pe(00) > 0 and Equations (10), (13) and (16) are substituted into the above
expression, we obtain the following.

/0 N e’ (t)Qe(t)dt
< e’ (0)Pe(0) + /000 {eT(t)Qe(t) + % [e" (t)Pe(t)] } dt
= e”(0)Pe(0) + /0 h {eT(t)Qe(t) +e’(t) [PA;+ AlP] e(t) + €' (t)PD(t)

+D”(t)Pe(t) — v*D" (t)D(t) + *D" (t)D(t) — %eT(t)PPD(t) + %eT(t)PPD(t)
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—u; B Pe(t) — eTPBuh}dt
T

= e’ (0)Pe(0) + /0 N {eT(t)Qe(t) +e'(t) [PA;+ AlP] e(t) — EPe(t) — 7D(t)}

. {%Pe(t) — 7D(t)} +v’DT(t)D(t) + %eT(t)PPe(t) —u; B"Pe(t) — eTPBuh}dt

IN

e’ (0)Pe(0) + /Ooo e’ (t) [Q +PA,+ AP+ %PP] e(t)dt + /Ooo ¥*DT(t)D(t)dt

+2/0 eI IPB| [[un] dt

Here, let M = ATP +PA, + TIQPP + Q. From Equations (15) and (16), the inequality
can be derived as follows.

1 1
M=A;P+PA,;+ PP+Q=A"P+PA-2PBB"Q 'BB'P+ _PP+Q<0
gl gl

The minimum eigenvalue of M is A = Ap,;n(M). Based on Equation (11), it is obvious that
||6]| < 0. Note that the u, is normally designed to be bounded. Therefore, both control
input u,, and saturation input & are bounded. Then, the inequality can be obtained when
le(t)|| > HPB”(”l/l\nH‘F”‘SH)‘

/ o7 (t)Me(#)dt + 2 / le®)]| IPB| [[ualdt < 0
0 0

Thus, the following inequality can be satisfied.
/ &7 (1)Qe(1)dt < e (0)Pe(0) + / DT (H)D(#)}dt
0

0
This also means the performance index (13) is satisfied, which completes the proof.

4. Adaptive FTC by Embedding Dynamic Adaptive NN into Closed-Loop
Control. In this section, we will construct a kind of adaptive FTC by designing u,, em-
bedded into the robust control (13) in order to eliminate the influence of Af(x(t),u(t),t)
that is composed of some actuator faults and local periodic geomagnetic variation. The
whole control system schematic diagram is illustrated in Figure 1.

A type of dynamic adaptive NN is designed to compensate for the influence of the
uncertain nonlinear function Af(x,u,?) in Equation (9). The output of the dynamic
adaptive NN is designed as follows:

u, = Uy, + Uy (17)

where u,, is the output of the NN, and u,; is its compensation for the approximation
error. By modifying the fully tuned adaptive radial basis function NN (RBF NN) [25]
and a dynamic structure NN [26], a type of dynamic adaptive RBF NN with variable
topological structure and on-line updating of network parameters is presented to achieve
u,, with excellent accurate approximation performance. The following equation can be
obtained because the dynamic adaptive RBF NN has the same approximation property
as a fully tuned RBF NN.

Af(x,u,t) = WTG*(X, €%, n*) + e(X) (18)

Here, X = [x”,e”,t]" € R" is the input vector of the dynamic adaptive RBF NN and
X € N,. Note that Ny is a sufficiently large compact set. W*, €* and n* denote the ideal
constant weight, centre and width, respectively, and £(X) is the approximation error that
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Ficure 1. Control system schematic diagram

satisfies 7 = sup ||e(X)||. G* denotes the ideal vector function composed of commonly
X;ENy
used Gaussian functions. The output u,, of the dynamic adaptive RBF NN is defined as

follows.
u,, = -W'G (X 3 n) (19)

where, W, é and 7} are estimations. The Taylor’s series of G* (X, &*,n*) is taken at
¢* = € and n* = . Then, by substituting Equations (17) and (18) into Equation (9),
we obtain the following equation after simplification. Note that according to Theorem
3.1, the external disturbances will not be considered here for the feedback matrix K can
eliminate its negative; thus, D(¢) = 0 is assumed.

&(t) = (A + BK)e(t) + BW G + BW' (Ggé + G;%‘,) +BE - Bu,,  (20)

Here, W=W*—-W,G=G" -G, é€=¢—€& q=n"—n, G’Ig = diag(ge) € RM*KE
G/ = diag (gy) € R, E = WT (Ggé+ C;;ﬁ) +WTO (X £ ﬁ) +e(X), 0 (X £ ﬁ)
is the sum of the high-order arguments in the Taylor’s series expansion. Based on the
property of the RBF NN it is assumed that ||E|| < ¢(t), where ¢(t) is a nonnegative

function.
The compensator of the dynamic adaptive RBF NN is designed as follows.

u,; = —sgn (B Pe) o(t) (21)

where ¢(t) is the estimation of ¢(¢), P is the given symmetrical positive definite matrix
and sgn (BT Pe) is the symbol matrix of BT Pe.

Meanwhile, the dynamic adaptive RBF NN is adopted which can increase its hidden
units on line from an original given number to an appropriate scalar with the approx-
imation error growing until it is within the tolerable range. To avoid influence of the
on-line topologic structure variability of the dynamic adaptive RBF NN on the real-time
property of the system, the threshold logic unit (TLU) is designed to run in parallel with
updating NN parameters, such as the weights, centres and widths. Note that this only
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determines whether to add a new hidden unit rather than engaging in the feedback control
loop directly. The input of the TLU is a sampling value of the current attitude error, and
the sampling frequency is the same as the updating frequency of NN parameters. The
output of the TLU determines whether it is necessary to add a new hidden unit according
to the given growth criterion. Therefore, the TLU is defined as follows with two main
components.

One is the operation rule, i.e., p = aexp (eyq — F1) + (1 — @) exp (€pms — E2), and the
other is the growth criterion of hidden units formed by logical comparison:

p>1, L=L+1
{ p<1, L=1 22)
where L denotes the number of hidden units, e;, = ||e(n)|| denotes the approximation

error at sampling time n and €,.,; = \/Z?:n_(M_l) ||ez~||2/M denotes the accumulative

error covering a time sliding window M. FE; and E, are the given bound values, and
0 < a < 1 is the influence factor. The parameters associated with the new hidden unit
are given initially as £, 11 = x(n) and 911 = Aeyq, where A is a regulatory factor.

Theorem 4.1. For system (9), if there is a symmetrical positive definite matriz P that
satisfies inequality (14), it can achieve closed-loop bounded stability under the control of
the adaptive FTC (8). Assume that the number of hidden units in the dynamic adaptive
RBF NN grows according to Equation (17) and its parameters (e.g., weight, centre and
width) update by the following expressions:

W =o0,Ge PB (23)
A ~T ~ \T
£ =0y (eTPBW Gg) (24)
. N N T
h= oy (eTPBWTG;7> (25)
@; = 0. ||e"PB|| (26)

where o1, 09, 03, 04 are all positive constants as the requlatory factors of the dynamic
adaptive RBF NN.

Proof: Consider the following Lyapunov candidate function:
1 1 S 1 e 1 1
V= —e"Pe + —tr (WTw) +— €T+ — iR+ —@ P
2 207 209 2073 204

where ¢ = ¢ — ¢ is the compensation estimation error of the dynamic adaptive RBF
NN. The above function is differentiated, which gives the following.

o1 1 1 o T=rs 1 e 1 _os
V =-é"Pe+ —e'Pé+ —tr (WTW) + =&+ —i'n+—@
2 2 ozl op) 03 04

According to W = —-W, é = —é, ﬁ = —ﬁ and <,5 = —c,.5, the following function can be
derived by inserting Equations (20) and (23)-(26) as follows.

V= %eT [(A +BK)"P +P(A + BK)] e+ e’ PBE
— e"PBsgn (e"PB) ¢(t) — ¢" ||e"PB]|
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Thus, we obtain the following.

V< %eT [(A+BK)"P +P(A + BK)| e+ ||e"PB|| |E|
— [[e"PB||¢(t) — (¢ — ¢)" ||e"PB]|

< e’ [(A +BK)"P +P(A + BK)] e

1
2

Based on the proof of Theorem 3.1, we derive that V < 0, and the system controlled
by the adaptive FTC (8) can be a closed-loop bounded stable system. This completes the
proof.

5. Simulation and Comparison Results. To verify the effectiveness of the proposed
adptive FTC with control hedging (8), numerical simulation was performed for a certain
2U CubeSat.

5.1. Parameters. The useful parameters of the 2U CubeSat are given in Table 1, mainly
including inertia moments used in Equation (2), and orbit altitude used to confirm mean
value of local geomagnetic field matrix B(¢). The initial attitude orientation is set to
[ 0 ¢ ]=[1 2 1] withinitial angle ratew = [ 0.0001 0.0006 —0.0003 ]rad/s.

TABLE 1. Main satellite parameters

Mass (kg) 1.92

: 2\.
Inertia moments (kgm™): I, =0.0115, I, = 0.0115, I, = 0.00369
Principal moments of inertia Y

Products of inertia Can be neglected
Orbit Altitude (km) 320
Attitude control type Three axis control by three magnetorquers

Here, the external disturbance is considered as only the following gravitational torque.
According to [17], it is defined as

T, =3.999 x 10°° | (I, — I)q2

And also according to [17], we can obtain the following matrix.

0 1.1407 x 107 —5.0828 x 10712
Bo= | —1.1407 x 10°° 0 9.8757 x 1078
5.0828 x 10712 —9.8757 x 1078 0

As discussed in Section 4, the regulatory factors are chosen: v =1, L =3, A =1, a = 0.6,
0'120'220'3:1,0'4:0.8.
In addition, we set Q = diag[ 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ] Thus, the feed-

0 —0.47 0 0 —2.01 0 0

back gain matrix K = | 0 0 —0.47 0 0 —2.01 0 is obtained
0 0 0 —0.47 0 0 —2.01

according to Equations (15) and (16).
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5.2. Demonstration and results. Assume that the magnetorquers in the roll, pitch
and yaw axes each decrease by 30% of their normal values after 30000s.

The goal of this simulation is to verify stable performance of the CubeSat attitude
control system with adaptive FTC with control hedging by comparing results obtained
from adaptive FTC without hedging.

Figures 2 and 3 show the state responses obtained using adaptive FTC without and
with control hedging, respectively. By comparing the simulation results of Figure 2(b)
and Figure 3(b), it is clear that the attitude angle in the roll, pitch and yaw axes of the
satellite in Figure 3(b) tend to stabilize more quickly and smoothly using the adaptive
FTC with control hedging (8), which maintains angles within the desired range with only
negligible error, although there is a tiny vibration at the time of fault occurrence. However,
vibration does significantly influence stable attitude control, and the previous operation
states are resumed. The control inputs can show the adjusting process distinctly. From
Figure 2(d) and Figure 3(d), it is clear that control inputs vibrate at the time of beginning
and faults occurring, but the degree of vibration in Figure 2(d) is more powerful than that
in Figure 3(d); at the same time, the setting time of the former is slower than that of the
latter. That is to say, the adaptive FTC with control hedging can achieve better control
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FIGURE 2. Time responses under adaptive FTC without control hedging
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FiGURE 3. Time responses under adaptive FTC with control hedging

capability than the adaptive FTC without control hedging. In view of these comparison
results, the measure to add control hedging to the FTC can play an important role in
improving dynamic control performance, especially when some faults occur which have
the attitude abrupt varied. Also, Figures 2(a) and 2(c) and Figures 3(a) and 3(c) offer
more complete demonstrations to verify the case that the proposed controller in the article
can facilitate fault tolerant attitude control with high control performance.

6. Conclusions. The paper presents an adaptive attitude FTC with control hedging
for CubeSats in LEO using 3-axis magnetorquers as its attitude control actuators. This
control scheme uses H-infinity robust control with control hedging to deal with uncertain
external disturbances and input saturation, and adopts the dynamic adaptive RBF NN to
eliminate the unknown dynamics caused by actuators faults. It can be a reliable method in
the sense that closed-loop bounded stability for attitude control system was guaranteed.
Numerical simulations are carried out to verify the effectiveness of the presented FTC
scheme by using a 2U CubeSat of QB50 project in ACSER UNSW as the plant. By
comparing the results of the adaptive FTC with control hedging and those without control
hedging, it is shown that the control performance of the former method is better than
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that of the latter, such as convergence rate, overshoot, and settling time. It is necessary
to point out that, in this paper, we just investigate the case of partial loss of actuators
effectiveness rather than any other faults which will be studied as some of our future work.
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