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ABSTRACT. Roadway surveillance is popular with the use of normal camera for at least
two decades. Recently, thermal vision provides an alternative of machine vision for
the roadway surveillance system since it demonstrates good vehicle detection accuracy,
especially under night condition. Conventional lane detection method generally requires
the presence of lane markings on the road. This also poses a challenge for thermal vision,
in which the markings may be vague or even absent from the recorded video frames. In
this paper, a Gaussian-shaped road model is proposed for lane detection in the absence
of lane markings. The lane is detected based on least square method. Thus, the detected
lane is considered to be the best-fit lane on the image plane. The proposed model is able
to detect the center of the lane and also the width of the lane. In addition, the model
also allows the determination of the shape of the lane, of whether the lane is linear or a
polynomial of a certain degree.
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1. Introduction. Roadway surveillance has been actively researched since the last two
decades by using normal camera. Many existing work is related to the accuracy improve-
ment of vehicle detection under different lighting conditions. During the day, vehicle cast
shadow was generally reported as the cause for inaccurate detection [1-3], which can be
solved with shadow removal technique [4]. In the nighttime, low illumination and vehicle
headlights were, however, reported for causing inaccurate detection [5-7]. Since head-
lights are parts of a vehicle, they were treated as the cues for vehicle detection [8], and
the headlights grouping technique was later developed to improve the detection process
[9].

Many vision-based vehicle detection systems require the setup of Region of Interest
(ROI) to achieve a robust detection process [10,11]. Lane detection is a process to locate
the lane in a traffic scene. The detected lane can be considered as the ROI that provides
better localization to the detected vehicles, because all of the detected objects outside
the lane can be considered as noise and therefore excluded. Lane detection is normally
executed in 2 stages: lane marking detection and lane model fitting. Lane marking
detection is a process of recognizing the presence of lane markings in the scene. Among
the popular features for marking recognition are the marking’s: color (i.e., the markings
are normally brighter than the color of the road surface) [12-14], edges (i.e., sharp edges
detected at the boundary of the markings) [14-16], and width (i.e., the width for every
piece of detected lane markings is nearly constant) [14]. The marking detection is generally
noisy and piecemeal, in which the process returns a set of coordinates that the markings
are laid on. Lane model fitting is thus required to compile the collected information (in
the form of coordinates) with a predefined lane model. Depending on the road geometry,
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there are few choices of commonly used road models: linear model (implemented with 1st-
order polynomial) [17-19], parabolic model (implemented with 2nd-order polynomial) [20],
cubic model (implemented with 3rd-order polynomial) [21], splint model (implemented
with piecewise polynomial) [22], and linear-parabolic model (implemented by separating
the scene into far field and near field regions) [23].

Thermal vision is another choice of machine vision suitable for roadway surveillance
system. Some existing work has demonstrated good vehicle detection accuracy under
different lighting and weather conditions [24-29]. This is because thermal vision allows
the vehicles to be apparently differentiated from the background scene. However, the
quality of the lane markings under machine vision (including normal and thermal visions)
varies according to the environment. The lane markings may be vague in the night time
and even incomplete for an under maintained road [30]. Moreover, the common objects
in the traffic scene such as trees, vehicles, shadows and street writings may also lead to
the unfavorable conditions for the lane markings detection [31,32].

In this paper, a lane detection method based on road vehicle mobility is proposed
to overcome the limitation. The proposed method does not require the presence of the
lane markings for the lane detection. The rest of the paper is organized as follows.
Section 2 and Section 3 describes the proposed road model and the lane detection method
respectively. Section 4 presents the experimental results and discussions. The conclusions
are drawn in Section 5.

2. Road Modeling. In a traffic video recorded by a camera, every moving vehicle can
be considered as moving object that presents in the scene for certain duration. These
moving vehicles can be detected by the background subtraction method. The process
generally requires a background model to extract the background image from the traffic
video [33-37]. By comparing the background image to any frame of the traffic video, a
set, of coordinates will be returned to indicate the effective body region of each detected
vehicle, occupying the frame. A lane on the roadway can be perceived as the path,
where the vehicles normally move. For a substantial length of video processing, the
coordinates collected from the background subtraction process can be assumed to be
normally distributed along the center of the lane.

However, the traffic camera usually provides the images of the scene at certain perspec-
tive view. This is mainly due to the constraints of the site installation for the camera,
in which the installation usually opts for large capturing area as shown in Figure 1. The
lane on the xy-plane is projected onto the uv-plane that is also known as the image plane.
The nearer the lanes is towards the camera, the larger the lane appears on the image
plane. When the two parallel boundary lines are very far away from the camera and the
distance approaches infinity, the lines converge to a vanishing point on the image plane.

Every point on the zy-plane can be mapped to a point on the image plane according
to the principle of perspective projection [13,38]. To elaborate, the points p(z,y), ¢(z,y),
r(z,y) and s(z,y) are respectively mapped to the points p'(u,v), ¢'(u,v), r’(u,v) and
s'(u,v). Equation (1) shows the equation for the perspective mapping of the points. On
the zy-plane, the width of the lane is constant at any value of z such that |sp| = || =
Ay. However, the lane on the image plane does not have a constant width such that
7| #
width Awu on the image plane is linearly dependent to v. The linear relation is shown in
Equation (2).
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Au = Ay — %v (2)

With this, a Gaussian-shaped road model is proposed as shown in Equation (3). For any
value of v such that v =V, the model L(u, V') presents a Gaussian curve. If the Gaussian
curve is normalized to a Gaussian distribution function, the probability of detecting a
vehicle at any point on the lane can be known. The center of the lane will have the
highest probability, in which a vehicle is detected.
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FIiGURE 1. Relation between image coordinate system and the world co-
ordinate system. The lane is laid on the zy-plane, which is projected onto
the uv-plane (also known as image plane). The image region is bounded
due to the limitation of the scope of camera.

The amplitude A(v) is assumed to vary due to imperfect vehicle detection process in
practice. Normally, the detection process is only able to detect partial body of the vehicles.
The mean p,, = f(v) is the function of a line indicating the center of the lane. Depending
on the geometry of the road, the function f(v) can be any polynomial function of different
orders. The standard deviation o, can be related to the lane width. By assuming 95%
of the detected points from vehicle detection process to be located within the lane, the
standard deviation o, can be made equal to the quarter of the lane width. 5% tolerance is
allocated for any incident that requires a driver to drive way from the lane. Since the lane
width on the image plane is linear dependent to v, the standard deviation o, is therefore
modeled as a linear equation, in which k; and k, are constants.

_ (u—py)?

L(u,v) = A(v)-e 2 (3)

where .
o= f0) =3 a;-v (4)

i=0
oy = klv + kg (5)

3. Lane Detection. Using the developed road model in Section 2, a lane in the traffic
scene can be detected in three stages: (i) vehicle detection and 2D-histogram generation,
(ii) histogram fitting and normalization with Gaussian function, and (iii) lane fitting with
different orders of polynomials.

In this paper, Extended Fuzzy Running Average (EFRA) background model is used
for vehicle detection, since the model provides good selectivity performance for roadway
surveillance under thermal vision [39,40]. EFRA has the capability of extracting the
background images from a video and it is also able to extract the foreground image for



680 B. C. YEO, W. S. LIM AND H. S. LIM

every video frame. Every detected vehicle in the scene is shown as a group of white pixels
in the foreground image. Since the vehicles are normally moving on the lane, the white
pixels also indicate the region of the lane. Here, we consider every white pixel on the
foreground image as a coordinate on the uwv-plane. And, the coordinates collected from
the vehicle detection process throughout the entire recorded video are assumed to be a
set of raw data. And, the raw data can be graphically represented with a 2D-histogram,
showing the frequency of detected vehicles with respect to the coordinate (u,v).

Since the detected coordinates are corresponding to the vehicles on the lane, the 2D-
histogram will be a surface curve, having a shape similar to the model in Equation (3).
Thus, fitting the 2D-histogram to the model will result in the parameters that locate the
lane in the video. For every value of v such that v = V| the histogram fitting process leads
to a Gaussian curve L(u, V') with amplitude A(V'), mean p, (V) and standard deviation
0.(V). Here, the traditional least square method is used in the fitting process.

The mean pu, and the standard deviation o, vary according to v, as shown in Equa-
tion (4) and Equation (5) respectively. Thus, the Gaussian parameters collected from
the earlier fitting process can be further fitted onto the mentioned two equations. Fit-
ting 0,(V) to Equation (5) can be a simple process as the linear equation has only two
parameters k; and kg to be determined. From Equation (4), the center of a lane is indi-
cated by the mean p,, which can be a polynomial of any degree. The converged results
provided by least square method greatly rely on the initial condition, especially for high
order polynomial [41]. However, a random initial condition does not affect the converged
results of a degree-1 polynomial, for instance, a random initial condition results the same
coefficients ay and a; for degree-1 polynomial. This is because least square estimation
for a degree-1 polynomial is actually a simple linear regression [42]. However, a random
initial condition may produce different coefficients for high degree polynomial, giving an
irrelevant fitted curved for the center of the lane. In this case, multiple regression can
be applied in the fitting process for high degree polynomial [43]. In this method, the ini-
tial condition of the coefficients (ag, aq,...,a, 1), except the coefficient a,, for a degree-n
polynomial, are made to be equal to the coefficients of a previously fitted degree-(n — 1)
polynomial. Meanwhile, the coefficient a,, is initialized to zero. The fitting process will
determine the value of a,, by compromising (ag, a1, ...,a,_1). Thus, the fitted degree-n
polynomial can be perceived as a curve that is fitted better (with lesser error) than the
fitted degree-(n — 1) polynomial.

4. Experimental Results. The three stages of the lane detection process are individu-
ally tested and discussed in the following subsections respectively.

4.1. Vehicle detection. The traffic video in this study was recorded using a thermal
camera on a sunny morning. A video length of 1 minute with frame rate of 30 frames
per second was recorded. In the chronological order, the left column of Figure 2 presents
some of the video frames from the video. Only one of the two lanes is used at the time,
when the video was recorded. The targeted road is specifically selected due to the absence
of lane markings in separating the two lanes of the road.

The middle and the right columns of Figure 2 present the background and the fore-
ground images respectively, which were extracted with EFRA for different video frames.
Generally, there are 4 vehicles approaching the camera from far. Due to the perspective
view of the camera, the vehicles in the video frames look smaller at the back, but gradual
increase in size as they move forward. Every white pixel in the foreground images indicate
the body regions of the vehicles. Since the vehicles are normally moving on the lane, the
white pixels also indicate the region of the lane. Here, we consider every white pixel on



LANE DETECTION IN THE ABSENCE OF LANE MARKINGS 681

Video Frame Background Foreground

FIGURE 2. Vehicle detection with EFRA. The left column presents some
example video frames. The middle column presents the background im-
age extracted by EFRA. The right column presents the foreground image
locating the vehicles in the video frames.

the foreground image as a coordinate on the uv-plane. And, the coordinates collected
from the vehicle detection process throughout the entire recorded video are assumed to
be a set of raw data.
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A histogram can be used to graphically represent the distribution of the raw data as
shown in Figure 3(a). It is observed that the highest peak for every v value is located
within the road region on the image plane. Figure 3(b) presents the histograms for 3
different v values: 0, 100, and 200. These 3 histograms are Gaussian-like or bell-shaped
curves with gradual decrease of the bell’s width as the v value increases. Each side of the
bell’s width extends with a spiky horizontal lines, indicating the presence of small noise
in the vehicle detection process. The height of the bell-shaped curves varies according to
different v values due to the mentioned imperfect vehicle detection process. As the vehicles
move closer towards the camera, more details of the vehicles can be seen. However, these
details also hinder parts of the body region from being detected. Thus, the peak of the
Gaussian-like curve is generally lower as v value is getting smaller.
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FIGUurRE 3. Histogram of coordinates from vehicle detection process. (a)
Generally, the coordinates within the road region have higher values, with
the peaks at the center of the lane. (b) The opening of the bell-shaped
curve becomes narrower and narrower as the v value increases.

4.2. Histogram fitting. The Gaussian-like histogram can be fitted onto the proposed
Gaussian-shaped road model using least square method and the result is shown in Figure
4(a). The fitted model presents a smooth surface with the removal of all spiky noise.
Figure 4(b) shows the fitted histograms for 3 different v values: 0, 100, and 200. The
corresponding parameters of the fitted curves are shown in Table 1. Only the mean i, (v)
(indicating the center of the lane) and the standard deviation o,(v) (indicating quarter of
the lane width) are essential to locate the lane on the image plane. The amplitude A(v)
can be excluded from lane detection. Thus, the amplitude of the model is normalized to
1 to provide better visualization of the lane. Figures 4(c) and 4(d) respectively present
the normalized surface curve and the Gaussian curves for three layer cuts through the
surface. The mean p,(v) and the standard deviation o, (v) are still preserved after the
normalization process.

TABLE 1. Parameters for the fitted model

v | Amplitude, A(v) | Mean, u,(v) | Standard Deviation, o, (v)
0 386.79 148.80 23.98

100 500.26 209.93 17.02
200 666.57 282.24 9.46




LANE DETECTION IN THE ABSENCE OF LANE MARKINGS 683

700 .
—v=0 "

600/ ~=-='v =100 i
|| ==="v=200 :
500 -~ 4
] i H
400} —
=
300}

0 50 100 150 200 250 300 350

FIGURE 4. Surface curves obtained from histogram fitting process: (a) fit-
ted histogram with smooth surface; (b) fitted Gaussian curves with gradual
decrease of standard deviation with respect to the increase of v value; (c)
normalized fitted curve provides better visualization of the lane; (d) nor-
malization process preserves the mean and standard deviation of the curves

4.3. Lane fitting. From the Gaussian parameters (mean and standard deviation) ob-
tained for every v value, the model fitting process moves on to the subsequent stage: i.e.,
lane width fitting and center line fitting. In Section 2, the lane width is assumed to be
quarter of the standard deviation o,(v), which is also linearly dependent on the variable
v as shown in Equation (5). With a simple least square method, the linear line can be
determined with the result constants k; = —0.0738 and ks = 24.5193. Figure 5 presents a
noisy line and the corresponding best-fit line. The noisy line is plotted with the standard
deviation o, (v) obtained from the histogram fitting process. By comparing the two lines,
larger error is expected for greater v value due to a larger non-road region being included
in the image plane at the v value. Every pixels from the non-road region can be considered
as a noise source in the recorded video.

Most of the existing research work considers a lane to be either linear, parabola or
cubic. In this paper, the investigation is extended to degree-8 polynomial. Table 2 shows
the coefficients of the fitted polynomials from degree-1 to degree-8 for the center of the
lane. The Mean Squre Error (MSE) between the mean g, (v) collected from histogram
fitting process and the fitted polynomials are also shown in Table 2. It is observed that
the MSE reduces as the degree number increases. Practically, it can be assumed that the
MSE reduces in an exponential trend manner, in which the exponential function saturates
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FIGURE 5. Best-fit line for a noisy standard deviation. The noisy line is
plotted with the standard deviations obtained from the histogram fitting
process.

TABLE 2. Fitted polynomials of different orders for the center of the lane

Order 1 2 3 4 5 6 7 8
MSE | 7.7793 6.1186 5.6242 2.2266 2.2255 2.2252 2.2237 2.2194
ao | 302.28 305.20 303.29 297.59 297.59 297.59 297.59 297.59
a1 | —0.66520 | —0.73755 | —0.64355 | —0.17905 | —0.17888 | —0.17888 | —0.17888 | —0.17888
2 [ a2 3.00E4 | —6.735-4 | —9.30E3 | —9.31E3 | —9.31E 3 | —9.31E3 | —9.31E3
£ [as 2.60606 | 58365 | 5.84E5 | 58405 5.841-5 5.841-5
£ | az “TBE-7 | —1.16B-7 | —1.16E-7 | —1.16B-7 | —1.16E-7
$as 1.50E-13 | 4.03E-13 | 4.03B-13 | 4.03E-13
O ae 2.16E-16 | —6.39E-16 | —6.39E-16
ar 3.845-18 | —5.27E-18
as 1.06E-20
9. S— - o
| —fitted curve |
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FIGURE 6. Fitness of polynomials for the center of lane. (a) Mean Square
Error (MSE) reduces as the degree of the polynomial increases. The smooth
exponential decay function indicates the expected MSE. (b) Fitness score
is for different polynomial degrees.

to the MSE of the highest degree polynomial in the study. Figure 6(a) presents the MSE
for different polynomial degrees, along with the fitted exponential decay function.

Let e(n) and £(n) denote the exponential decay function and MSE of the fitted poly-
nomial respectively. The difference e(n) — £(n) can be used as a parameter to measure
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Lane Detection Lane Detection
Video Frame with Degree-1 with Degree-4
Polynomial Polynomial

FIGURE 7. Lane detection at the absence of lane markings. The left col-
umn presents some example video frames. The middle column presents the
detected lane on the frames with degree-1 polynomial. The right column
presents the detected lane on the frames with degree-4 polynomial.
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the suitability of representing the center line of the lane with the degree-n polynomial. A
positive value means that the polynomial represents the center line more accurately than
expected. Thus, the positive value indicates that the particular polynomial is suitable
and a negative value means the contrary. However, the MSE is generally reduced by
increasing the degree (or complexity) of the polynomial. The normalized difference as
shown in Equation (6) can be used as a better parameter to measure the fitness. s(n)
denotes the fitness score for degree-n polynomial.

s(n) = e(n) —e(n) (6)

n

The fitness score for different polynomial degrees are presented in Figure 6(b). It
follows that degree-1 polynomial has the highest score s(n) = 0.3844. Thus, the lane can
be considered to be linear. Meanwhile, degree-4 polynomial has the second highest score
s(n) = 0.2907 due to the normal driver behavior to cope with the road condition. There
is no lane marking to clearly indicate that there are actually two lanes presence on the
road, with one of the lanes being closed. Figure 7 presents the detected lane on the video
frames with degree-1 polynomial and degree-4 polynomial. In each frame, the center line
indicates the center of the lane and the other two lines indicate the boundary of the lane.
The distance between the two boundaries is 4 X 0, (v). The shaded area is the lane region.
It can be clearly seen that only one side of the road is detected and considered as the lane
without any lane markings on the road.

5. Conclusions. Thermal vision provides an alternative for roadway surveillance with
good accuracy under various luminance conditions, especially at nighttime. However,
the efficiency of most existing marking-based lane detection system deteriorates in poor
luminance when lane markings are vague or disappear from the video screen. In this
paper, a Gaussian-based road model is proposed as an alternative technique, where the
lane is detected based on least square method. The detected lane is considered to be
the best-fit lane on the image plane. A video is recorded using a thermal camera at the
traffic scene and the road with the absence of lane markings has been chosen. In this
investigation, the proposed method is able to detect the lane and also the width of the
lane without any lane marking. In addition, the method is also capable of determining
whether the lane is linear or polynomial to certain degree.
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