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ABSTRACT. Ridge estimator widely applied in chemometrics has been proposed to im-
prove the least squares estimator variance by trading bias for variance. Our contribution
is a comparative analysis on the relationships between ridge estimator and the other typi-
cal biased estimators regarding the effect of bias on the decrease in variance and the extent
of its effect. We show that, although the biasing parameters take on various expressions,
when the variances of the different biased estimators applied to enhance LS precision are
the same then the biases must also be the same. For any two alternatives, the change
rates of the variances with respect to the biases always take on identical regulation as
long as the values of the variances or the biases are the same. This conclusion implies
that the curve of the changing rate of the variance with respect to the bias for any given
estimator always has the same shape. It has nothing to do with the estimator selected in
the analytical chemistry field.

Keywords: Chemometrics, Biased estimator, Ridge estimator, Consistency analysis,
Relationship between variance and bias

1. Introduction.

1.1. Literature review. Parameter estimation based on the linear model y = Hx + w
is commonly used in academic research and engineering communities in process control,
chemometrics, system identification and so on [1,2]. The classic least squares estimator
(LS) was proposed by Gauss and Legendre in the 1800s [3]. In the 1900s, Gauss-Markov
theorem [4] and Fisher information matrix [5] confirmed that LS is the optimal estimator
in the linear unbiased estimation class. However, we note that the Gauss-Markov theorem
and the Fisher information matrix merely guarantee that the LS possesses the optimiza-
tion property only in the linear unbiased framework and not for the entire estimation
process [6]. Actually, if the variance of LS is larger or beyond the acceptable maximum,
then LS would not work.

Statisticians proposed numerous novel estimators to improve its variance [7]. Among
these alternatives, the linear biased estimation class, proposed in the 1950s by Stein, is
the most effective and practicable. The essence of the linear biased estimator is that it
introduces relatively small bias to pursue biased alternatives superior to the LS in terms
of the mean squared error (MSE) criterion. The reason for adopting the MSE criterion is
that the MSE is always equivalent to variance plus the squared bias given any estimation
method. Because the bias of the LS is zero, its MSE is the same as the variance. This
phenomenon also confirms that the variance applied to evaluate the validity of an unbiased
estimation class is reasonable. Under the condition of the MSE criterion, if we obtain one
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biased estimator superior to the LS, then the biased estimator’s variance must be less
than that of the LS.

For more than half a century, great progress has been achieved in terms of linear biased
estimation theory. In 1956, Stein proposed an admissible estimator shortened for a spher-
ically symmetrical one [8]. The essence of this alternative is a biased estimator heralding
the beginning of the biased estimation theory. Soon after, in 1961, the James-Stein esti-
mator was developed by James and Stein [9]. Sclove further developed the James-Stein
estimator, extensively researching the shrunken LS estimator [10]. Horel and Kennard
discussed the ridge analysis and its application in the regression field [11] and obtained a
biased estimation method named the ridge estimator [12]. At present, the ridge estimator
is accepted as an approach for overcoming the LS drawback and is commonly applied in
process measurement [13], chemometrics [14] and economics modelling [15]. Based on the
ridge estimator, a large number of improved estimated methods have been successively
proposed. In 1976, Swindel proposed the modified ridge estimator by synthesizing priori
information of the unknown parameter into the ridge estimator [16]. Liu, resorting to
the merits of the Stein shrunken estimator and the ridge estimator, proposed the Liu
estimator and the Liu-type estimator [17,18], respectively. Among the above alternatives,
the ridge estimator and the Liu estimator are used most widely. While the illustrated es-
timation methods are mainly suitable for specific estimation problems, statisticians have
worked to develop hybrid estimators having the merits of the proposed estimators.

Skallioglu and Kaciranlar proposed the k-d estimator [19], substituting the ridge estima-
tor for the priori information of the Liu estimator. Duran and Akdeniz in 2012 proposed a
modifed jackknifng Liu-type estimator [20], which is a combinational estimator consisting
of a general Liu estimator and a modified-general Liu estimator [21]. Li and Yang pointed
out that the modified ridge estimator is a convex combination of a priori information and
the LS, and they proposed the modified Liu estimator [22] in 2012. Ozkale and Kaciranlar
in 2007 researched the two-parameter estimator [23], which is a combinational estimator
based on the ridge and Liu ones. In 2008, Batah et al. proposed a general jackknifing
ridge estimator and a modified jackknifing general ridge estimator [24]. At present, novel
methods and theories for linear biased estimation are reported continuously by research
institutes year after year [25,26]. Nevertheless, compared with the LS, the theoretical
basis for the biased estimation has not yet been refined. Researchers must continue their
efforts to make progress in linear biased estimation in terms of application and theory.

1.2. Our contributions. The above biased alternatives are all superior to the LS with
respect to the MSE by the introduction of different biasing parameters. However, whether
or not all the above improved estimation methods have the same regulation is a question
worthy of consideration. Also it is worth noting that almost all the published superior
biased estimators focus on the MSE condition under which the improved biased estima-
tors are superior to the LS. Now since the MSE is equivalent to the variance plus the
squared bias, it cannot reveal the influence arising from the change process of the bias
on the degree of improvement in the variance. Since the purpose of introducing the bias
into the estimation process is to decrease the variance, what we more concern about is
the variance change rate with respect to the bias. With regard to the above problems,
this paper carries out a comparative analysis on the relationships between ridge estimator
and the other typical biased estimators regarding the effect of bias on the decrease in
variance and the extent of its effect. The idea of this paper is stimulated by the process
of searching a better biased estimator than ridge estimator. The article is mainly limited
to several classical improved biased estimators, i.e., the ridge estimator, Liu estimator,
combinational estimators with the priori information and jackknifing estimators. The
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most significant contribution of this manuscript is the exploration of the common regu-
lation among these outstanding biased alternatives. Specifically, for any existing biased
estimators dominating the LS, the value scopes of the variances, biases, and the estimated
unknown parameters are always the same and are independent of the selected estimating
methods as long as the values of the model parameters are the same.

The paper is organized as follows. In Section 2, we provide an overview of our problem.
The proof that the variance change rate of the general ridge estimator is a lower convex
function with respect to its bias is presented in Section 3. Sections 4 to 7 analyze the
relationships between general ridge estimator and the other typical biased estimators,
and conclude that the homologous characteristic is the common law restricting all the
proposed biased estimators. We demonstrate through an example, in Section 8, that the
change rate of variance with respect to the bias is always the same for every proposed
alternative and has no relation to the estimator selected. The paper is concluded in
Section 9.

2. Preliminary. Assuming that the relationship between the estimated parameter vec-
tor and the data is described by the following linear model

y=Hzr+w (1)

where y € R"™ is the observed data, z € R™ is the unknown parameter vector, and H is an
n X m matrix of observation on the regression of rank m, we always assume that n > m,
w is an n X 1 vector of independent and identically distributed random errors with mean
zero and variance matrix Var(w) = 0°I,, and I, is an identity matrix of order n x n.
According to the Gauss-Markov theorem, the least squares estimator of = generated from
model (1) is shown as the following:

-1
Brg = (HTH) H'y 2)
The variance matrix of Z1g is given as
-1
Var(irg) = o2 (HTH> (3)

Let Q = H H, so Q is a symmetric matrix having an eigenvalue-eigenvector decompo-
sition in the form Q@ = GAG', where G is an orthogonal matrix and A is a diagonal
matrix. In this article, we assume that Z7 = HG, a = GT.TI, M > > >0, >0
are the ordered eigenvalues of @, G = (p1,p2, -+, pn) is the eigenvector matrix of @
whose columns constitute the eigenvectors corresponding to the eigenvalues, so we get the
following representation

7Z'7Z=G H HG =G GAG G = diag(A, Aa, -, An) (4)
For the sake of convenience, we rewrite model (1) in canonical form:
y=Za+w (5)

The least squares estimator of a and its variance matrix are given by the following,
respectively:

-1
as=(2"2) Z2'y=a"2"y (6)

Var(drs) = o?A™" (7)

In the following sections, a detailed comparison of biased estimators is made, based on
the canonical model. Because statisticians not only encounter the problem of choosing

between LS and a biased estimator, but must also choose between two biased estimators.
We now make a bold assumption, if the proposed linear biased estimators are characterized
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by mutual transformation, then we can immediately conclude that these alternatives to
LS are homologous, and thus only one biased estimator is required, among those proposed,
to completely describe the superiority of all the above improved estimation methods.

3. General Ridge Estimator. Referring to ridge analysis and its application to regres-
sion problems in chemical processes, Hoerl and Kennard in 1970 proposed a general ridge
estimator (GRE) written as

R T T -1 T
LGRE = <H H+ G KGREG> H vy (8)
where Kgrr = diag(kbgp), @ = 1,2,--+,n, kigg > 0 is a biasing parameter matrix.
Corresponding to arg, this GRE can be rewritten in canonical form
dare = (A + Kare) ' Z y = (A + Kare) ' Adns 9)

The bias vector and the variance matrix of the GRE are computed as follows, respectively
Bias(éyGRE) = E(OAZGRE) — O = (A + KGRE)_IAQ — = —(A + KGRE)_IKGREQ (10)

Var(dGRE) = [(A—FKGRE)ilA]vaI'(CAYLs)[(A—l—KGRE)ilA]T = 0'2(A—|—KGRE)71A(A—|—KGRE)_T
(11)

where E(Gggrg) is the expectation of dgrp. Let az, i = 1,2,--+ ,n, be the ith element of
vector . According to Equation (11), the general ridge estimator of «; is given by

i
AGrE = GiREdis (12)
Combining Equations (10) and (11), we can easily compute the MSE that measures the
squared bias and variance of the biased estimator &gy simultaneously.

i K 2
_ Y Var(d _fere ) (13
Ai + ké}RE ar(aLS) " <)‘i + k%}REa ) ( )

If o,y is superior to af, then the following inequality must be established

N 2 . ki 2 .
(7) Var (@ZLSH(&Q.) < Var (ay) (14)

MSE () = Var(dgg) + Bias(dgge)?

Ai + kére Ai + kipe
Considering Equation (7), the solution of Equation (14) is given by

Theorem 3.1. Let a; # 0, 1 = 1,2,--- ,n. When kizg — 0%, the change rate of the
variance of alyp with respect to its bias approaches —oo; 0 < kipp < ,\,20?57{20—2’ and the
variance of abgpy 18 a lower conver function with respect to its bias.

Proof: Combining the variance and the squared bias, formulate a parameter equation
with regard to kipp

)\i
F1 = —.0'2
kGre
Fy, = —Q;
’ (Az‘ + kGre )
The F) first-order derivative of the F, is given by
dF 2
L= (17)

AF,  kigga?
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For kigp > 0 and a; # 0, we know that @ is always negative. In particular, when
kipp — 0T, g? approaches —oo, i.e., the Change rate of the variance to the squared bias

is at maximum. The F| second- order derivative of Fj is given by

PR PRy~ FIFY _ (ot K)o
dF22 B (Fz,)?’ N QAZ(kERE)?’O‘i

(18)
for kipp > 0 and a; # 0, so C(lufg
convex function, the proof of Theorem 3.1 is completed.
This theorem is derived simply; however, it further illustrates that the values of variance
and the change rate of the variance to the squared bias decreases within the scope of 0 <
are < T The assumption a; # 0 in Theorem 3.1 is explained as follows: because

is always positive. According to the properties of the

an unknown parameter always exists in the estimation process, the assumption a; # 0 is
always satisfied. A particularly noteworthy phenomenon is that Bias(alzp) is almost zero
given kirp — 0. The comprehensive consideration of this phenomenon and Equation
(16) means that both the bias and its change rate referring to k4 gy approaches 0, and there
is the maximum change rate of afyy variance. This conclusion indicates that a biased
estimator remains unbiased when kfpy — 0T, but the variance is markedly decreased.
Meanwhile, Theorem 3.1 illustrates that the improving effect of bias on variance weakens
gradually.

Based on Theorem 3.1, we can obtain accurate information about the change rate of
variance to bias relationship. For any two different biased estimators superior to LS, if we
assume that the variances have the same values and it must also be true that the biases
have the same values, then Theorem 3.1 always exists independent of the biased estimator
chosen.

Now we can calculate any point within the scope of 0 < kipp <

kGRE(w)

> denoted by

2)\2'0'2
\ia? — 02w

éRE(w) = (19)

where w € [1400) is a tuning parameter. The variance and the bias of Qg corresponding
to kirp(w), respectively, are given by
A ? N2 — w17 o2
A% — | Vi — (20
A0 (Goe) =) = [A + Kl (W )} ar(ds) = [()\ = otwta0z| % 20

o kGre (W) 20"
Bias(0tme) e =kione) = "X 3 Kep () ™ = (o = %) 1 207

Since kigpp(w) is any point within 0 < kipp < %, Equations (20) and (21) also
comply with the conclusion made in Theorem 3.1. With respect to the other biased
estimators in Section 1.1, if we can invariably find the variance or the bias whose value is
equivalent to their counterparts in Equations (20) or (21), then it is reasonable to conclude

that these conventional alternatives to LS are also fit for the conclusion in Theorem 3.1.

4. General Liu Estimator. Combining the Stein estimator with LS, Liu in 1993 pro-
posed the general Liu estimator (GLE) defined by

-1
r (HTH + I) (HTy + D:@LS) (22)
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where Dgrp = diag(dyg), @ = 1,2,---,n, 0 < diyp < 1 is a GLE biasing parameter
matrix. Referring to Equation (9), we get the following representation
dae = (A+1)7" (A + D)drs (23)
For the oy, i = 1,2,-+- ,n, the variance and the bias of 4%, are computed respectively
as follows:
~q )\ + d ~1
Var (G ) = <TG1LE> Var (&) g) (24)
Ai + d g — 1
Bias(dd ) = TGILE% —q; = %ai (25)

Similar to the GRE, that & is superior to diq in the sense of MSE implies that the
following inequality must be true:

; 2
<7)\ ):erlLE> Var (a1 g) + (7613}\];2_1 lai> < Var(ajg) (26)
Considering Equation (7), we can get the scope of diyp by solving the inequality (26)
NiaZ — (2); + 1)0?
\ia? + o2

ELE <1 (27)

In the following, we show that the value range of the biasing parameter diy i can be
determined by kgpp, @ = 1,2,--+,n. According to Equation (23), the GLE of «; is
written as

i A\ +d i
QgL — f(;lLEaLs (28)

Based on Equations (12) and (28), we assume that
A tdas A

— 29
A+ A+ ke (%)

Rewriting Equation (29), then di; can be expressed as the function of kigp

)
- A(A+1) _ = A (1 — kGre) (30)
A + ke A + kbre
Analyzing Equation (30), we know that the values of the function of di;  with respect to
Lrp are monotonically decreasing. According to Equation (15), the value scope of diy
is obtained as
)\ia? — (2)\1 + 1)0’2
\ia? + o2
Comparing Equation (31) with Equation (27), it is obvious that the biasing parameter
t..r can be calculated by solving Equation (29). Indeed, this conversion is inevitable.
The reason for the phenomenon is that 4%, and digp have the same value scopes con-

strained by Equations (15) and (27), respectively. Substituting the left end point of
/\1‘04127(2/\1‘4»1)0'2
Aiai+o?

. arp <1 (31)

a?—o? ;

< diyp < 1 into Equation (28), we obtain dlyp = iTMaLS Similarly,

the dlgp determined by the right end point of 0 < klgp < ﬁ iS Aipp = mats.

Substituting dg, = 1 and kipp = 0 into Equations (12) and (28), respectively, then
Gl p and déhpp are equivalent to &l .

Let us further calculate the variance and the bias of di;p under the condition of the
biasing parameter d%; determined by Equation (30). Because the above analysis points
out that the relationship between di; and k&g is one of mutual transformations, we can
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jal—(2X;+1)0?

calculate any point value of d, , denoted by diy ,(w) within 2 e < digp < 1

by substituting the parameter kigrp(w) into Equation (30), i.e.,

N[ = kbpp(w)]  (Na? — 0B w — 2)0?

61e() = N (@) (Ma? = o?)w ¥ 2202 )

Up to now, the variance and the bias corresponding to di; ;(w) are respectively computed
as

y N+ di ()] (et — o 1% 0?
Var(@un)la, . (= [—————fﬂﬁi———] Var(dig) = (33)

i +1 (Nia? — o2)w +20%] N
(A 1 — dgyp(w) 20°
Bias(enn) o e=dinew) = ~ Nl T T (el — o?)w + 202 (34)
? [t}

The comparison of Equations (33) and (34) with Equations (20) and (21), correspondingly,
illustrates that the variance and the biases of GLE and GRE are the same, given Equation
(29). This conclusion ensures that the relationship of the variance and the bias of GLE also
satisfy Theorem 3.1. Although GRE and GLE are two very different biased estimators,
the change rate of the variance of GLE with respect to its bias is completely consistent
with that of GRE.

5. Priori Information Estimators. In the following discussion, several typical priori
information estimators are described and compared with GRE in terms of their scope of
variance, bias and estimated values.

5.1. Modified ridge estimator. Swindel in 1976 proposed the modified ridge estimator

-1 -1
(MRE). Let T} = (HTH + kl) H'H=1—k (H*TH + kI) , then MRE is obtained
as

-1
e (HTH + kI) (HTy + kbo> (35)

In canonical form, the MRE is rewritten as
Garre = (A + k) ! (ZTy + kb) (36)

where by and b are the priori information about the unknown estimated parameter, and
b = Gby. We substitute Kygre = diag(kigrp)s ¢ = 1,2,---,n for kI in Equations
(35) and (36). Taking b = Tdyrg as the priori information for the MGRE, where T' =
diag(t;), 0 < t; <1,i=1,2,---  nis a diagonal shrunken matrix, then Equation (36) is
transformed as

dnicre = (A 4+ Kuare) (A + Kvere)dus (37)

The variance and the bias of the MGRE for «;, i = 1,2, ,n are respectively obtained
as

: X+ Foppti | )

V(@ ane) = (S50 ) Var(a) )
Ai + Fyiare
, ki are(ti — 1)
B' ~l — MGRE .Z ; 39
ias(dygre) N+ K - Q (39)
Similar to the solving process of kizp, We can get the scope of ki qgrp as the following
2)\1'0'2

0 < kyaps < (40)

(1 — Ifz))\ZOél2 — (1 + ti)O'Z
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The scope of &4 qrp determined by ki;qrp is

)\iOé? — O'2 N ~i ~i
Yol 5 o20s < Ghigre < O1g (41)

According to Equation (37), the MGRE of «; is written as
Al = VERE A 42
MGRE = Y\ OIS (42)

Referring to Equations (29) and (42), k;qrp can be expressed as the function of klgp

)\ikéRE

kiicre = : 43
MGRE )\i - ti()\i + k%}RE) ( )
and kl;qrp(w) can be obtained as
, 202
Lt = : 44
MGRE(w) ()\10412 — 0'2)’112 — tz[()\ZOélQ — 0'2)112 + 20'2] ( )
So the variance and the bias corresponding to ki;orp(w) are respectively given by
. i + Kuars ()]
Var(aMGRE)|k;'\,[GRE:kfv[GRE(w) = [ Y+ lgGRE (w) ] Var(d] g)
? MGRE ) (45)
B (Na? — oH)w o2
N ()\lCYlQ — 0'2)’[1) + 202 )\z
g kX (w)(t; — 1) 202
BlaS(aMGRE)|k§AGRE:k§AGRE(w) — _MOGRE i == a;  (46)

Comparing Equations (45) and (46) with Equations (20) and (21), correspondingly, il-
lustrates that the relationship of the variance and the bias of the MGRE also satisfy
Theorem 3.1. Tt is interesting that 7" has no effect on the variance, the bias and the scope

A
of &iare-

5.2. Modified Liu estimator. Liand Yang introduced a new estimator named the mod-
1

1 —
ified Liu estimator (MLE). Let Fy— (HTH + I) (HTH + dI) —1—(1—d) (HTH + 1) ,
so the MLE is obtained simply by the convex combination of Z1g and the priori informa-
tion denoted by by:

ivip = (H H+1)  [(H H+dl)| dws + (I—dl)b (47)
(1) )]

Similar to the MGRE, the modified general Liu estimator (MGLE) will be used for analysis
in this manuscript. Let Dyqrg = diag(diiarg), i = 1,2, -+ ,n, 0 < digorp < 1, the MGLE
in canonical form, to be

ameLe = (A + 1)71[(/\ + Dycre)ins + (I — Dyere)0] (48)

where b = Gby is the priori information. Let b = Tars, T = diag(t;); 0 < t; < 1,
i =1,2,--- ,n be the shrunken matrix. According to Equation (48), the MGLE of «;,
1=1,2,---,nis given by

N N+t + (1 —t;)d} N
ONMGLE = N1 MGLE@LS (49)

The comparison of Equations (49) and (28) implies that the structure of the MGLE is
similar to that of the GLE, so the procedure for comparing the MGLE and GRE is omitted
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for the sake of convenience. di;o;p can be expressed as a function with respect to kpp
and ¢;. .
i _ A=) — kgrp (X £ 6)
e e

5.3. Two-parameter estimator. Ozkale and Kaciranlar in 2007 proposed the two-
parameter estimator denoted by (g

(50)

-1
tea) = (H'H +kgal)  (H'H + kgadpal) s (51)

In canonical form, the MRE is rewritten as
OAz(k’d) = (A + k(k,d)l)_l (A + k(k,d)d(k,d)l) QLS (52)

where k4 > 0 and 0 < dq) < 1. If we substitute K4 = diag (kfk’d)> and D, ) =
diag (dék’d)>, i=1,2,--,n, for kgq and dgq, where ki, > 0 and 0 < di, , <1, then
Equation (52) is rewritten as

R -1 .

Ard) = (A + Kg) (A + Kgoa)Diray) s (53)

Comparing Equation (53) with Equation (44), we know that G4 is a special case of
anmare, Where the former simply takes Dy 4)ars as the priori information instead of T'ays,
50 k{4 can be expressed as a function of kg, directly.

)‘iké}‘RE

kik d) — i i (54)
DN = diy o i + k)

6. Jackknifing Estimators. Jackknifing estimators are all the non-liner transformation

on the LS, and the base distinctions among these alternatives are the various matrices.

6.1. Jackknifing general Liu estimation. Nyquist and Batah proposed the jackknifing
general Liu estimator (JGLE) denoted by djgre in canonical form. Let Fp = diag(f;) =
(A+0)"Y(A+D),i=1,2,--+,n, so GygLr is given by

dyare = (I — Fip) Fpus (55)
where D is a positive definite diagonal matrix with nonzero elements d;, 0 < d; < 1,
i=1,2,---,n. Componentwise estimators in Equation (55) are in the following form:
At f A
QJGLE = rlin‘Ls (56)

The variance and the bias of & are, respectivel
JGLE ;

2
Var(@ous) = (5217 ) Var(aty) 7
Bias(digr) = 22%}2@ (58)

Similar to the solving process of kigp, we can get the scope of f; as the following
% < fi<1 (59)

Referring to Eqgsuation (12) and (59), f; can be expressed as the function of kiyp
fi= (60)

T2\ + klpg
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and f;(w) can be obtained as

. 2)\Z . ()\Za? — 0'2)’112
C 2N+ khpp(w)  (Niof — 0P w + 07

fi(w) (61)

The variance and the bias with respect to f;(w) are respectively calculated as

fi 2 ~7 )\i 12_ 2 ? o2
fi=fi(w) = [2_(7;:)()11))] Var(ayg) = [(Azéf f 02)(; l_w202 i_z_ (62)

var(OA‘gGLE)

. N 2fl(w) —2 20°
Bias(djarp)|i=fiw) = 2 — fi(w) &= (NiaZ — 02)w + 202

The JGLE variance in Equation (62) and the bias in Equation (63) are the same as that
in Equations (20) and (21), respectively. This result guarantees that the change rate of
the variance with respect to the bias of the JGLE also satisfies Theorem 3.1.

6.2. Modified jackknifing general Liu estimator. Esra proposed the modified jack-
knifing general Liu estimator (MJL) denoted by dnyr..

daigL = (21 — Fp)Fpars (64)

Comparing anpgr, with djqrg, it is obvious that the MJL is similar to the JGLE, but by
inserting the GLE instead of the LS, fy;5;, can be also expressed as a function of k¢pp.

o —Xi + /902 + 8\ikhpg
ML 2(Xi + kge)

(65)

6.3. Jackknifing general ridge estimator and its modification form. Khurana
introduced the jackknifing generalized ridge estimator (JGRE) and the modified JGRE
(MJR) Let AMJR : A + KMJR and KJGRE = diag(kﬁGRE), KMJR = diag(kme), 1 =
1,2,--+,n, where Kjqgp and ki are all nonnegative, then the JGRE and the MJR are
respectively written as

dyere = [ — (AjreKicrr)?] dus (66)

dngr = [I — (Ayir Kwur) ][I — Avir Kvr)ars (67)

The componentwise estimators in Equations (66) and (67) have the following forms:

2k3GRE + )\l Al

== 68
QIGRE K nn + M QGRE (68)
Q =—@&

MJR Kim + N JGRE

~ i ~ i . . ~ i ~ i . .
¥jgrp and gy can be seen as the nonlinear transformations of dgry and @jgrp. Similar
to the MJL, K} can be expressed as a function of kg pyp.

Kiasn = ks + \/Kime (b + A0) (70)
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7. Consistent Analysis of the Construction Features of Biased Estimators. In
the preceding sections, we compared eight types of biasing estimators. The comparative
results consistently illustrate that if the variances of these improved estimators are the
same, then the biases are the same as well. This conclusion implies that the rates of
the variance’s change with respect to the bias are all the same, although they present
in various forms. Meanwhile, the value ranges of these alternatives are also equal. So
the homologous characteristic of the biasing estimator class is a common law restricting
all the proposed alternatives to the LS. This consistent character is due to the fact that
these dominant methods originate from the shrunken transformation to the LS, and the
shrunken operators are non-negative and less than 1 as shown in Table 1.

TABLE 1. The value scope of the shrunken coefficient

Biased Estimators Biasing Parameter Shrunken Coefficient
. , N
AGRE are > 0 0 < 5p— <1
' ' it
o 0<t;i<l 0<Kk <1 |0 < 2truceeti o q
MGRE i  GRE o
' ' Xt +(1—t;)dd
a%\/IGLE 0< d%\/[GLE <land0< tl <1l|0< Sy MGLE |
' ' Xkl g di
Z (k,d) " (k,d)
azk,d) k%k,d) >0and 0 < d(k,d) <1 0< W <1
dfarm 0< fi<1 0< Zf"f_ <1
i 12
AL 0<fi<l 0< <1
Al J (2k% i)
jGRE kjcre > 0 0< % <1

The common characteristic constraining the value scope of the shrunken coefficient is
that the shrunken coefficient essentially shrinks the components of the LS towards zero,
but does not change the sign convention. Further summarizing Sections 3 to 7, as long
as we know one kind of biased estimator, the value scopes of the biasing parameter,
shrunken matrix, and estimator value for any other biased estimator can be determined.
In other words, it is only necessary to research the GRE properties in terms of variance,
bias, biasing parameter and its superiority to the LS, because the others can be easily
obtained.

8. Numerical Analysis. Following our completion of the comparative analysis by com-
ponentwise estimators, for the sake of convenience and to illustrate the core question, we
take single unknown parameter estimation as an example, focusing on the biasing param-
eters’ effect on the variance, bias and MSE of the different estimators researched in this
paper.

Figure 1 and Figure 2 illustrate that the variance and the bias are monotonically de-
creasing and monotonically increasing functions with respect to the biasing parameters,
respectively. However, the change rate of the variance or bias curve to the biasing param-
eter for distinctive alternatives to LS displays diverse features, even when the variance or
bias of the different estimators is equal. Comparing the variance of any biased estimator
to that of LS, the former is always superior to the latter, but sacrifices its unbiasedness.
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FIGURE 1. The curve of variance to biasing parameter

Figure 3 shows the curves of the MSE to the biasing parameter and confirms that any
biased estimator is superior to the LS in the sense of MSE. When the maximum of the
bias is acceptable, Figure 1 and Figure 3 imply that the biased estimator is always sat-
isfactory. However, we must pay more attention to the change rate of the variance with
respect to the bias as depicted in Figure 4. Analyzing Figure 4 for every dominant esti-
mator, we immediately obtain that the curves of the variances’ change rate with respect
to the biases are always the same and have no relation to the estimator selected. This
conclusion is coincident with Theorem 3.1. The reason for the consistency regulation is
caused by the mutual conversation of the shrunken matrix acting on the LS among these
biased estimators. Furthermore, the minimum MSEs with respect to different biased es-
timators are always the same, because the variance and the bias occur in pairs in any
alternative methods. However, the point of the biasing parameter with respect to the
optimal MSE is not to correspond to the extreme point of either variance or bias, i.e.,
the biasing parameter value with respect to the MSE is inconsistent with that of variance
and bias. The cause of their being non-simultaneous is that the bias’s influence on the
degree of improvement in variance as shown by Figure 4 is degraded with the change in
the scope of the biasing parameter. So the significant role of Figure 4 reflects the common
law in which the biased estimators abide. The consistency regulation refined from Figure
4 guarantees that there is no doubt regarding the superiority of all the biased estimators
being equivalent to each other; any one of them can be used to enhance precision directly.

The following numerical analysis concentrates on the mutual transformation of the
biasing parameters between two different estimators under the same variance or bias
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FIGURE 2. The curve of bias to biasing parameter

condition. We take ten numerical points within the scope of the GRE’s biasing parameter
at the same step and their corresponding variances and biases with regard to these samples
can be easily calculated. Based on the conversation functions of the biasing parameters,
we can consistently obtain ten points of the other estimators’ biasing parameters and
their corresponding variances and biases. Figures 5 to 7 are the curves of the same values
of variance, bias and MSE with respect to the biasing parameters of different biased
estimators. Analyzing the abscissas in any of the figures in Figures 5 to 7, we know that
the change styles are distinguishable, i.e., either linear or nonlinear. The reason for this
distinction is that different superior estimators have different shrunken transformation
matrices. The far left abscissa in Figure 5 corresponds to the LS variance; however,
the values of these end points are not always different. The distinctive form of shrunken
matrices is the direct reason for this difference. The bias values generated from the biasing
parameter samples, which correspond to the variance samples, are shown in Figure 6. It
is obvious that the biasing parameter samples determined by the biases are identical to
those determined by the variances. So we can choose either the variance or bias indexes
to discuss the properties of biased estimators. Similarly, a comparison of the value of
the biasing parameter samples in terms of MSE and of variance or bias can be obtained
directly. Figure 8 illustrates the biasing parameters’ relationships between the GRE and
the other biased estimators. We can determine the values of the other estimators’ biasing
parameters by referring to that of the GRE. The GRE biasing parameter is regarded as the
bridge applied for the biasing parameters conversation between any two other estimators.
At the same time, it leads to the consistency regulation.
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FIGURE 3. The curve of MSE to biasing parameter
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9. Conclusions. The paper investigates the consistency regulation to which the existing
biased estimators abide. The variance change rate with respect to bias is taken as a
criterion for evaluating the bias function regarding the improvement on the variance. From
our thorough analysis, we conclude that for the proposed biased estimators superior to
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the LS, the value scope of all the dominant estimators are coincident with each other. The
biases are the same as long as the variances are the same. These two merit properties
confirm that research on the characteristics of only one biased estimator is required,
then those of the other biased estimators can be obtained without a complex solution
procedure.
existing biased estimators that dominate the LS, the value scopes of the variances, biases,
and the estimated unknown parameters are always the same and are independent of the
selected estimating methods as long as the values of model parameters are the same.
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So researchers may employ any of the biased estimators to enhance the precision of the
estimation process. Today, the biased estimator theory is relatively mature, but if we do
not balance biased estimator methods and application both in research and academia, we
run the risk of ending up with an uninteresting appendix of statistics. In future work,
we are determined to further popularize the engineering application of biased estimators
in the communities of process control, chemometrics, system identification and so on,
and especially in the chemometrics field where there are always correlative data in ill-
conditioned situations underlying the spectroscopic process.
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