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ABSTRACT. The stochastic Newton recursive algorithm is studied and utilized for iden-
tifying the dual-rate model which is derived through the polynomial transformation tech-
nique. The main advantage of the algorithm is that it has the extensive form and may
earn more possible convergence properties with flexible parameters. The primary prob-
lem is that the sample covariance matriz may be singular when encountering numbers
of model parameters and (or) no general input signal, which hinders the identification
process. Thus, the main contribution is adding one symmetric positive definite matriz
to the recursion of the sample covariance matriz. This simple approach solves the prob-
lem effectively. Two improved stochastic Newton recursive algorithms are then proposed
for time-invariant and time-varying systems. The consistent and bounded convergence
conclusions of the corresponding algorithms are drawn respectively. The final illustrative
examples demonstrate the effectiveness and the convergence properties of the recursive
algorithms.

Keywords: Dual-rate system, System identification, Recursive algorithm, Consistent
convergence, Bounded convergence

1. Introduction. A system with two sampling frequencies is called dual-rate system,
in which the ones with slow-sampled outputs and fast-sampled inputs widely exist in
chemical processes [1-3]. In this study, the single input and single output (SISO) dual-
rate system is investigated.

Studies on dual-rate systems have been undertaken actively in terms of both theory
and applications, e.g., system modelling and identification [3,4], predictive control [5],
and fault detection [6]. Modelling and identification are the primary tasks for dual-rate
systems [7,8]. However, scarce measurements of outputs bring in difficulties for model
identification. Accurate model cannot be obtained just using conventional approaches. A
number of main methods have been developed to obtain smooth intersample predictions
and then an appropriate single-rate model [9,10]. The polynomial transformation tech-
nique is one of the main and well-developed methods. The dual-rate model is derived
through this technique and could reveal just the relation between input and output at
sampling time. Unmeasurable outputs would not appear in the model. After identifying
the dual-rate model, the single-rate one could be calculated following the inverse process
with the technique. Therefore, we choose this technique to obtain a dual-rate model first
and identify it with our algorithm [3,11-14].
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The stochastic Newton recursive (SNR) algorithm is adopted, and the improvement
research on it is mainly studied for dual-rate model identification. The SNR algorithm
is based on the concept of gradient descent and employs a sample covariance matrix to
control update direction [15,16]. With extensive form and flexible parameters, the SNR
algorithm may be performed to adapt to different changes in production requirements and
working conditions. Its description involves two update relations: for updating the weight
estimate and the sample covariance matrix. However, when too many model parameters
are encountered or the input signal is not sufficiently general, the covariance matrix may
be nearly singular and the “ill-posed” problem of performing covariance matrix inversion
occurs [17,18], which hinder the identification process. This problem may also appear in
many other algorithms. The discussed reasons above are easy to meet. For example, the
numbers of the parameters of the derived dual-rate model are multiplied compared with
the single-one, especially with multiple variables in the system; actual process is stable
in general, and it is hard to obtain persistently exciting input signal. In numbers of sim-
ulation experiments of our last researches [19-21], the ill-posed problem arises repeatedly
and the parameter estimations are divergent. Ljung and Soderstron suggested adding one
diagonal positive definite matrix to the covariance matrix [19]. It indeed worked in our
tests. Actually, more matrixes could be considered to guarantee the covariance matrix
positive definite. However, there is lack of research on the convergence analysis of the
improved algorithm and the conditions the added matrix should satisfy. Therefore, in
this work, we mainly try to add one specific symmetric positive definite matrix to the
covariance matrix, and study the convergence of the improved SNR algorithm and give
the conditions the added matrix should meet. Two improved SNR algorithms are pro-
posed for time-invariant and time-varying systems. Then, the convergence conclusions
are drawn, respectively. For dual-rate time-invariant systems, the parameter estimations
would be consistently convergent to the true values based on the corresponding algorithm.
When the system is time-varying and the change rules for the parameters are unknown,
the consistent convergence of the model parameters does not exist [22]. However, the
parameter estimation errors will be mean square bounded based on the corresponding
algorithm. The bounded convergence conclusion indicates good tracking performance of
the algorithm.

The rest of the paper is organized as follows. In Section 2, the dual-rate model and the
improved SNR algorithms are proposed. In Section 3, the consistent and bounded con-
vergences are demonstrated respectively for these two algorithms. Section 4 provides two
examples to illustrate the effectiveness of the algorithms and the convergence conclusions.
The final remarks are given in Section 5.

2. Dual-Rate Model and the Improved SNR Algorithms. In this section, the
dual-rate model is firstly introduced. Then, two improved SNR algorithms are proposed
for dual-rate time-invariant and time-varying systems.

2.1. Dual-rate model. The following single-rate model below can be utilized to repre-
sent a dual-rate system [11]:

A)=14az "+ +az™ = H (1—zz7™"), B(2) =bg+biz7" 4+ +bz"
i=1
where {a;} and {b;} are the model parameters. The roots of A(z) are assumed as {z;}.
We define z as the forward shift operator, and z7'z(k) = z(k — 1). For this dual-rate
system, the sampling period of the output y is assumed as ¢ times that of the input u (¢
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is a positive integer). Given that the intersample data {y(kq+1i), i = 1,2,...,(¢ — 1)}
cannot be sampled, this single-rate model would not be identified directly.

Therefore, the polynomial transformation technique is used to obtain the dual-rate
model with noise term v(kq) as follows [3,11]:

a(2)y(kq) = B(2)u(kq) + v(kq)
a(2) =v(2)AGE) =1+mz T+ apz X4 4 apz ™
B(Z) = 7(Z)B(Z) = ﬁlzfl 4.4 anfnq

n
v(z) = H (L ziz b+ 222 2+ 20 17t
i=1
where {o;} and {f;} are the dual-rate model parameters. We obtain the following regres-
sion form:

y(kq) = ¢" (kq)0(kq) + v(kq) (1)
o(kq) = [~y(kq —q), —y(kq —2q), ..., —y(kq — nq),u(kq —1),...,u(kq — ng)]"

g(kq) = [Oél, Qo, ..., 0y, 51, 52, ey Bnq]T

After deriving the dual-rate model, i.e., Equation (1), the relation between input and out-
put at fixed relative time positions is determined. This derived dual-rate model can be
identified only using available data, which exhibits the main advantage of the polynomial
transformation technique. In addition, the linear periodically time-varying characteristic
would never appear [7,23]. For time-invariant single-rate systems, dual-rate model param-
eters are also time-invariant. Actually, this regression structure in Equation (1) could also
be used for representing certain nonlinear systems. Therefore, the following algorithms
could also be utilized for nonlinear system identification.

2.2. Improved SNR algorithms. The SNR algorithm is shown as follows [15,16]:

{ 0(kq) = 0(kq — q) + p(ka) R~ (kq) o ka) |y(ka) — " (ka)d(ka)
R(kq) = R(kq — q) + p(kq) [o(kq)¢" (kq) — R(kq — q)]

where R(kq) represents the sample covariance matrix and p(kq) represents the forgetting
factor. Actually, the first equation of the algorithm is the main part and R(kq) could be
substituted with some other constant matrixes. In addition, no fixed rules are arranged
for {p(kq)}, and the forgetting factor would make adjustments in real-time with working
condition changing. This algorithm could be converted into many other ones with certain
values for R(kq) and {p(kq)}. Therefore, the SNR algorithm has extensive form and
embraces more possible performance. However, R(kq) may be singular when too many
parameters occur and (or) the input signal is not general. The “ill-posed” problem may
appear when performing the inversion of nearly singular R(kq), and this hinders the
identification for f(kq) [18]. This situation may also appear for many other recursive
algorithms. To address this problem, we add a symmetric positive definite matrix to
the covariance matrix to ensure that it will remain positive definite. The improved SNR
algorithm for dual-rate time-invariant model is presented as follows:

{ 0(kg) = O(kq — q) + p(ka) R~ (k) (ka) [y (ka) — & (ka)B(ka)
R(kq) = R(kq — q) + p(kq) [o(kq)¢™ (kq) + A(kq) — R(kq — q)]

where A(kq) is the symmetric positive definite matrix. It has been proved that R(kq)
would always keep positive definite (in Section 3).

(2)
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For dual-rate time-invariant systems, the determination of A(kq) should follow Equation
(A.6) at least to ensure the convergency of the parameter estimations. However, for time-
varying systems, we do not exactly know how the parameters change. It is unable to
find one algorithm to eliminate the estimation errors thoroughly. So, we have proposed
the algorithm (Equation (3)) to track the parameter changes as much as possible and
guarantee the bounded convergence of the algorithm. Considering the convenience for
applications at the same time, it is enough to set one constant matrix for A(kq) (following
A5 in Section 3.2). And the corresponding recursive algorithm for time-varying system is
shown as:

{ O(kq) = O(kq — @) + AR~ (k) (kq) [y(ka) — o7 (k)O(ko)) )
R(kq) = R(kq — q) + Mp(kq)¢"(kq) + A = R(kq — q)]

where constant A (0 < A < 1) has been chosen as forgetting factor. The reason for such
arrangement lies in that p(kq) R~'(kq)o(kq) approaches to zero as k increases according to
Equation (2) and Theorem 3.1. However, the constant forgetting factor could guarantee

the tracking performance of the algorithm. Determinations for A(kq), A, {p(kq)} and A
will be discussed in Section 3.

3. Convergence Analysis of the Improved SNR Algorithms. In this section, two
convergence conclusions are drawn for the improved algorithms respectively.

3.1. Consistent convergence of the algorithm. We define the true dual-rate model
parameter vector as f for time-invariant systems. Hence, we have the consistent conver-
gence (shown in Theorem 3.1) for §(kq) based on the Martingale Convergence Theorem.

Lemma 3.1. (Martingale Convergence Theorem [24,25]). Assume that {W(t)}, {f(t)}
and {g(t)}, which are the non-negative random variable sequences and adapted to the
o-algebra sequence {F;}, satisfy the following relation:

EW (@) F] <W(t—1) = f(t) +9(t)

If > g(t) < o0, a.s., then W(t) a.s. converges to a finite random variable Wy, i.e.,
=1

W(t) — Wy, a.s. and >, f(t) < o0, a.s.
=1

Theorem 3.1. Assume that conditions A1-A8 hold.
Al {Fyq—q} is the o-algebra sequence [11,26], and the noise sequence {v(kq)} satisfies

E[v(kq)|Figo) =0, E [v*(kq)|Fryq] = oi(kq) < oy < o0

A2 The generalized persistent excitation condition holds, and information vector o(kq)
satisfies

N
1 o .
al < N;q)(kq—zq)cp (kq—iq) <y, N>0,0<a<vy<o0
0 < |lp(kg)[|* < M < o0
A3 The forgetting factor {p(kq)} satisfies [18,24]

0<plkq) <1, > plkq) =00, »_ p’(kq) < oo
k=1 k=1

Then, é(kq) will be consistently convergent to 0 in final, that is klim é(kq) = 0. The proof
—00
for Theorem 3.1 refers to Appendix A.
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Remark 3.1. The recursive algorithm exhibits the property of fast convergence and a
strong capability to resist noise. However, when the system is time-varying, the algorithm
18 1napplicable and the parameter changes cannot be tracked.

Remark 3.2. During the proof of Theorem 3.1, we only discuss the existence of A(kq)
which is difficult to determine. The diagonal matriz A (kq)I (I is unit diagonal matriz)
is usually substituted for A(kq) in applications. According to Equation (A.6), A\ (kq) can
be determined based on the following equation:

A (K
Amin(R(kq — q))
3.2. Bounded convergence of the algorithm. For dual-rate time-varying systems,
the consistent convergence for the parameter estimations does not exist [22]. In this

" 2
study, we prove that Hﬁ(kq) — 0(kq) H will be mean square bounded (Theorem 3.2) based
on Martingale Hyperconvergence Theorem.

Lemma 3.2. (Martingale Hyperconvergence Theorem [27,28]). Assume the following
non-negative definite function

T(t) =T [z(t)] = [l=(¢)]
and collection set
Ry =[z(t) : g[z(t)] < m < 00, a.s.]
where g(x) = (a®x)? denotes the terms for the convergence variable, and a is a non-
zero time-variant or time-invariant vector. 1, (n; > 0) is a non-reduced and bounded

stochastic variable. b(t) is a stochastic variable and (x(t), F;) is an adaptive sequence. If
the following equation below holds when z(t) € Rf:

E[T(t+1)|F]—T() <—=bt+1). a.s.
where R{ is the complementary set of Ry, then tlim z(t) € Ry if b(t) > %, b> 0.
—00

Theorem 3.2. Assume the conditions A1, A2, A/ and A5 hold.

Al and A2 are the same as the ones in Theorem 3.1.

A4 The parameter change w(kq) = 0(kq) — 0(kq — q) is uncorrelated and mean square
bounded, namely,

Elw(tq)w(sq)] =0, t #s, E [[w(kq)|]’] = o3 (kq) < 0 < o0

E[v(tq)w(sq)] =0
The change period is h-times (h is some positive integer and satisfies h > 1) the sampling
period of y(kq); hence, w(kq) satisfies

| w(kq) k=nhg
w(kq) = { 0, other

A5 A is a symmelric positive definite matriz. Ry is the initial value of R(kq). A and

Ry satisfy
Ro=P '"AP, Ry>A, Ana(A) = Anin(4) < A

where P is the eigenvector matriz of A and A is the diagonal matrixz that consists of the
eigenvalues of Ry..

Then, 0(kq) = 0(kq) — 0(kq) will be mean square bounded, that is,
2 < NoZM + ay + Amax(A))o?,

— ol o= (Amax(A4) = Amin(4))]
The proof for Theorem 3.2 refers to Appendiz B.

lim E Hé(kq)
k—o0
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Remark 3.3. The bounded convergence indicates that the algorithm of Equation (3) ex-
hibits good tracking performance for dual-rate time-varying systems. However, AR™'(kq)

~

o(kq) [y(kq) — ¢"(kq)0(kq — q)] will never converge to zero due to the existence of noise,
and this algorithm may become invalid for time-invariant systems.

Remark 3.4. In general, A is difficult to determine. Therefore, we substitute diagonal
matriz A\ I for A in applications. A\ is easy to determine according to A5. The estimation
error bound of the dual-rate model parameters can be described as follows:

2 _ Na2M +a(y+ M) o
- )

Remark 3.5. The given parameter change rule is the typical one that frequently agrees
with actual industrial processes. The bounded convergence conclusion of the recursive
algorithm is correct in this case. If the parameters change in another way, the parameter
estimation error will increase or the estimations will diverge. In our further study, we
will improve the recursive algorithm to ensure the bounded convergence for the parameter
estimations with more changing rules.

lim E H@N(kq)

k— 00

4. Case Study.

4.1. Example 1. Consider a single-rate time-invariant system with
AZ)=1—a1z7 " +ay27>=1—-1.62""+0.8z72

B(z) = b1z ' +byz ? = 0412271 +0.3092 2

The simulation experiment is conducted for 100s. Take the sampling period of input as
T =1sand ¢ =2. Let v(z) =1+ 1.627" +0.8272. We derive the dual-rate model with a
noise term as follows:

y(kq) = ¢" (kq)8(kq) + v(kq)
o(kq) = [y(kq — 2),y(kq — 4),u(kq — 1), u(kq — 2),u(kq — 3),u(kq — 4)]
0 = [~0.96, —0.64,0.412,0.9682, 0.824, 0.2472]

We define the parameters of the dual-rate model 6 = [, o, 81, B2, 3, B4]”, which will be
identified with the improved SNR algorithm in Equation (2).

The initial values are set as: é(()) = Ogx1, and R(0) = n*Isys, where 1 is some large
constant. The forgetting factor p(kq) = 1 and A;(kq) is determined following Equa-
tion (4). As one effective and widely used method, the stochastic gradient (SG) algo-
rithm is also adopted for the model identification [11,13,14]. The parameter estimations
{é(kq), Okq+i)|0(kq+i) = 0(kq),i =1,2,....q — 1,k =1,2, .. } from these two algo-
rithms are shown in Figure 1.

As shown in Figure 1, the parameter estimations are consistently convergent to the true
values finally based on the improved SNR algorithm. On the contrary, the estimations
from the SG algorithm show slow convergence speed. It has been illustrated that based on
SG algorithm the parameter estimations would converge to the true values in final, and it
will take quite a long time [11,13]. The improved SNR algorithm shows faster convergence.
We have also tried the SNR algorithm without the added matrix. The result is that the
sample covariance matrix is indeed singular and the parameter estimations diverge, which
confirm the necessity of the improvement in this paper.
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FIGURE 1. Raw values (solid line) and estimations of the dual-rate model
parameters. ——— from the proposed algorithm; - -- from SG algorithm

4.2. Example 2. The dual-rate model in Example 1 with time-varying parameters is
identified based on the algorithm of Equation (3).

The experiment is conducted for 300s, and T and ¢ are set as the same values in
Example 1. We set the parameter change period as 50 times that of the sampling period
of the output. The initial values are set as: é(O) = Ogx1, and R(0) = n*Isxs, where
n is a large constant. We also set A = 0.5 and A\; = 0.05. The SG algorithm with
forgetting factor is also adopted for model identification. The parameter estimations
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FIGURE 2. Raw values (solid line) and estimations of the dual-rate model
parameters. ———from the proposed algorithm; - - - from SG algorithm

{é(kq), O(kq+0)|0(kq+i) =0(kq),i=1,2,....,q—1,k=1,2,.. } are shown in Figure

2.

As evident from Figure 2, when the model parameters change, the estimations would
be adjusted rapidly to track the changes using the improved algorithm. And between ev-
ery two changing moments, the parameter estimation errors are controlled within smaller



THE IMPROVED STOCHASTIC NEWTON ALGORITHM 755

range. Therefore, the parameter estimations always remain boundedly convergent. How-
ever, the estimation errors from the SG algorithm may be relatively large. The effective-
ness of the algorithm has been illustrated.

5. Conclusions. In this study, the SNR algorithm is studied to identify the dual-rate
model. This algorithm has extensive form and could be converted into many other al-
gorithms. In addition, the SNR algorithm may have lots of convergence properties with
flexible parameters. Thus, the algorithm shows more research value. To avoid the singular
sample covariance matrix, a symmetric positive definite matrix is added to the recursion of
the covariance matrix, and the recursion identification can proceed. We have just provided
a simple approach to solve the problem. However, there is less research on the algorithm
convergence with the added matrix, as well as for many other algorithms. We have also
proposed two improved SNR algorithms for dual-rate time-invariant and time-varying
systems, and illustrated the corresponding convergence conclusions in detail.

We have made preliminary research on the recursive algorithm, but many issues are
worth studying in the further work. For example, from Theorems 3.1 and 3.2 we know that
the forgetting factor has a great deal with the convergence speed and estimation error,
and there must be the optimal choices for {p(kq)} and A. Therefore, some ways should
be found to determine the forgetting factor in real-time to adapt to working condition
change.

Acknowledgment. This work was supported by the National Basic Research Program
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+ p?(kq) " (kq) R~ (kq)p(kq)v*(kq)
+ [2p(kq) — p* (k)¢ (kq) R™" (kq)p(kq)] §(kq)v(kq) (A.2)

Given that §(kq), 0(kq), ¢(kq) and R(kq) are uncorrelated to v(kq), we take the con-
ditional mathematical expectation for both sides of Equation (A.2) that corresponds to

Fyq—q as follows:
BT Py < (1= plia) + 4ol B00 ) 75

— E [(p(kq) — p*(kq)¢" (kq)R ' (kq)(kq)) 5 (k)| Frg—q)
+ E [p*(kq)¢" (kq)R™" (kq)p(kq)| Frq—q) o (A.3)

I
S

where 7(kq) = @7 (k
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According to Equation (2), we have

¢ (kq) R~ (kq)R(kq)o(kq) = (1 — p(kq))¢” (kq) R~ (kq)R(kq — q)¢(kq)
+ p(kq)¢" (kq)R™" (kq) A(kq) o (kq)
(

+ p(kq)¢” (kq) R~ (kq)p(kq)¢" (kq)p(kq)
Then,
o (kq)o(kq) > p(kq)e” (kq)R™" (kq)p(kq)¢" (kq)e(kq)
Hence,
p(kq) ™ (kq) R~ (kq)p(kq) < 1
Thus,

E [(p(kq) — p*(kq)¢" (kq) R~ (kq)p(kq)) 7% (kq)| Frq—q] > 0 (A.4)

As clearly shown in Equation (2), when £ is sufficiently large, R(kq)— Ry, where Ry is
a symmetric positive definite matrix. According to A2 and A3, the last term of Equation
(A.3) satisfies

> E [ (k)¢ (ka) R (kq)¢(kq)| Frgo] 0% < o0 (A.5)

A(kq) should be determined satisfying the following equation at least:

Amax(A(kq)  _
)‘min(R(kq - q))

when k > k; (k; is a positive integer). Therefore, the following equation below holds:

2|tk + pA(Zq)(Ag(k;A_U;%;) <o (A7)

Then, according to Lemma 3.1 and Equations (A.4)-(A.7), T'(kq) a.s. converges to a
finite random variable Tj, such that

(A.6)

klg(r)loT(kq) Ty (A.8a)
> E[(p(kq) — p*(kq)e™ (kq) R (kq)¢(kq)) 5% (kq)|Frg—q) < o0 (A.8b)

k=1

N 2
Given that R(kq)— Ro, klim Hﬁ(kq) H = ¢ < oo and 7?(kq) < oo according to Equation
—00

(A.8), where ¢ is a positive constant. Based on A3, we know that the following equation
below holds:

Z E| o7 (kq)R™" (ka)p(kq)) §° (k)| Frg—q] < o0

o0

S Ep(kq)y?(kq)|Frg—q) < co. For that Y p(kq) = oo, when k is sufficiently large there
k=1 k=1

. 2 .

‘G(kq)‘ = ¢ =0, such that klim O(kq) =6.
—00

The proof of Theorem 3.1 is completed.

must be 3?(kq) = 0. Correspondingly,
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Appendix B. Proof for Theorem 3.2. We can get from Equation (3)
0(kq) =0(kq) — 0(kq)
0(kq) — [0(kq — q) + w(kq)]
O(kq — q) + AR (kq)p(kq) [=7(kq) + v(kq)] — w(kq)
where §(kq) = o7 (kq)0(kq — q). Let T(kq) = 07 (kq)R(kq)0(kq). Then, we can derive
T(kq) = (L= NT(kq—q) + >\9T(kq —q)Af (kq )

— (A= X% (kq)R™" (kq)p(kq)] 7 (K

+ X% (k)R (k) (kq)UZ(kq) +w (kq)R(kq)w(kq)

— [2X = 2097 (kq) R~ (kq)(kq)] §(kq)v(kq)

+ [0 (ka)i(ka) - 07 (kq — q)R(kq) — \¢" (kq)v(kq)| w(kq)

w (kq) |~ No(ka)i(ka) — R(kq)0(kg - q) = Ap(kq)u(ka)|  (B.1)

Given that §(kq), 0(kq), ¢(kq) and R(kq) are uncorrelated to v(kq) and w(kq), we
take the conditional mathematical expectation that corresponds to Fj,_, for both sides
of Equation (B.1) as follows:

E(T(kg) Frg o) < (1= NT(kq — ) + B |7 (kq — 0)A0(kq — 0)| Fi
— E[(A = ¢ (kq) R~ (k)¢ (kq)) 77 (k)| Frg—q]
+ N E [¢7(kq) R (kq) (k)| Frg—o] 07
+ Efw(kq)R(kq)w(kq)| Fiq-g] (B.2)
Given that R(kq) > Ap(kq)¢™(kq) as indicated in Equation (3), we have
E [T(kQ)|qu—q]
<(@=NT(k¢g—q)+E [AéT(kq — q)Af(kq — q)Iqufq]
+ N B [¢" (kq)R™ (kq)o(kq)|Frg—q] oy + E [w” (kq) R(kq)w (kq)|Fig—g) ~ (B.3)
Let 8 =1— A, and [ satisfies 0 < § < 1. Simultaneously, we derive

k—1
R(kq) = B* Ry + N> Flo(kq — jq)¢ (kg — jq) + (1 — BH)A

From Equation (3) and A2, we can obtain

1 pN—1
N R(kq+iq) < (1 — )T + B¥(Ry — A) + A (B.4a)

i=0

pN—1
Z R(kq +iq) > (1 — g¥Yal + gFPN(Ry — A) + A (B.4b)
Based on A5, we know that Ry > A. Hence, when k > k;, the following equations hold:
(1 —p")al + A < ER(kq) <~yI+ ¥ (Ry— A)+ A (B.5a)
1

ER Ykq) < ————1I B.5b
R () < (7 (B.5b)
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al + A< klim E (R(kq)) <~yI+ A (B.5c)
—00
On the other hand, we have

07 (kq — q)R(kq — q)0(kq — q)

A7 (kg — q)AB(kq — q) < Mimax(A) Amin(R(kq — q))

According to A5 and Equation (B.5), we have

NT n )\)\maX(A)
E |\ (kq — q)A0(kq — Q)|qufq] S A= Fma+t Amm(A)T(kq —q) (B.6)
and
_)\ + )\)\max(A) - _)\)\min(A) - )\(1 — Bkl)Oé + )\)\max(A)
(1 — )+ Amin(A) (1 = pF)a + Apin(A)

_)\ [(1 — Bkl)a - ()\max(A) - )‘mln(A))]

=)o+ () <0 (B7)

According to A4 and Equations (B.5)-(B.7), Equation (B.3) satisfies

E[T(kq)|Frg—q) — T(kq — q)

A (1= B¥)a — (Amax(4) — Amin(A4))] oM
= (1 — BF)a + Amin(A) Tlhg = a) + 1- B)a

+ [ + B Amax(Ro — A) + Amax(A)] 02, = —b(kq) (B.8)

Let
NoiM

€= G tmye [ (B = A) + A (4)] 0

Notice that £ is non-reduced. We consider the following collections:

1| AL=85)0= (ma (4) ~Amin
= {g(kq)‘ [ =)o Amin (A) iy - g < g}

(kg ‘A[a—ﬂkl)a—(Amax(A)—Amin(A))]

(1-B*1)a+Amin(A) T(kq - q) <E&+e > 0}

Evidently, R, C N.(Ry). If 0(kq) € N¢(Ry), where N¢(Ry,) represents the complementary
set of N.(Ry), then E[T(kq)|Fks—q] — T(kq — q) < 0 from Equation (B.8) holds and
b(kq) > ¢ > 0. As clearly shown in Lemma 3.2, f(kq) € N.(R;) when k is sufficiently
large. Given that ¢ is an arbitrary value, the conclusion that é(kq) € Ry always holds. In
addition, when k; is sufficiently large, we can obtain

lim Q(kq) € Ry

1—)00
)\ )\max(A)*)\min(A))]
< MM [(MA2 = 2)) 7+ Amax(A)] 02

w

Thus, the following equation holds:

— T(ha)  _ No2M+a(y+ hnalA) 02
Jim 0k < fim Nm(B(ED)) ~ ah o — Ovmae(A) — A ()]

The proof of Theorem 3.2 is completed.

(B.9)




