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ABSTRACT. In networked control systems, there are two issues due to communication
rate constraints. One is the quantization errors, and the other is the signal saturation.
In order to tackle these issues, this paper focuses on the quantizer design problem which
finds a dynamic quantizer that minimizes the performance degradation caused by the
quantization errors and satisfies the signal saturation constraint. For the problem, this
paper proposes an easy-to-use quantizer design method based on covariance matriz adap-
tation evolution strateqy (CMA-ES), which is a state-of-the-art metaheuristic algorithm.
Then, the effectiveness of the proposed method is verified by numerical experiments.
Keywords: Networked control system, Dynamic quantization, Covariance matrix adap-
tation evolution strategy, Differential evolution, Particle swarm optimization

1. Introduction. Networked control systems are dynamical systems where plants, con-
trollers, sensors, and actuators are connected to each other via communication channels.
Examples of networked control systems are found in industrial automation systems, large
distributed systems such as smart grids, and so on [1, 2, 3]. In recent years, the networked
control systems have received the attention of researchers and manufacturers because of
their many advantages such as the increase of the flexibility and the scalability of the
systems, and the reduction of the costs for installation and maintenance.

In the networked control systems, since control /sensor signals are transmitted over com-
munication channels, continuous-valued signals are quantized into discrete-valued ones.
The quantization error, which is the difference between the continuous-valued signal and
its quantized version, leads to the performance degradation of the control systems. Thus,
several studies have been carried out in order to minimize the performance degradation
due to the quantization, and they have shown that an effective method is the use of
dynamic quantizers, where the quantization error is fed back and filtered [4, 5, 6, 7].

Besides, there exists a limitation for the amount of data that can be transmitted per unit
of time in the networked control systems, which means that the number of quantization
levels is limited. A finite number of quantization levels may cause the saturation of
the amplitude of the quantized signal. Such saturation problem has the potential to
destabilize the systems [8, 9]. To overcome this, the design of dynamic quantizers with a
finite number of quantization levels has been tackled in [10, 11, 12, 13]. However, there
is no perfect method to design quantizers because the existing methods in [10, 11, 12, 13]
may not give optimal solutions to the quantizer design problems. The reasons are that the
relaxed problem of the original design problem solved in [10, 11] might give conservative
solutions, and the metaheuristic algorithms used in [12, 13] may give local minima.
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Motivated by the above background, this paper considers the design problem of finite-
level dynamic quantizers that (i) minimize the system’s performance degradation and (ii)
satisfy the channel’s data rate constraints. Then, we propose a reliable and easy-to-use
quantizer design method. Since the design problem is formulated as the optimization of
a non-linear and non-convex function, it cannot be directly solved by algebraic methods
or conventional numerical optimization methods. Thus, one reasonable approach is the
use of metaheuristic methods which are powerful tools to explore feasible solutions to
optimization problems [14, 15]. This paper focuses on the covariance matrix adaptation
evolution strategy (CMA-ES) algorithm [16, 17]. It is a state-of-the-art metaheuristic
algorithm, and it shows very good performance in the optimization of multimodal func-
tions. In addition, CMA-ES is an easy-to-use algorithm since most of the heuristic rules
and parameters in the CMA-ES algorithm are automatically chosen and determined. For
these reasons, CMA-ES is employed as a reliable optimization tool instead of particle
swarm optimization (PSO) in [12] and differential evolution (DE) in [13].

The contributions of this paper are the following. First, the CMA-ES based design
method of finite-level dynamic quantizers is proposed. Then, through numerical experi-
ments, it is shown that the proposed method gives satisfactory dynamic quantizers. Fur-
thermore, the CMA-ES based method is compared with other dynamic quantizer design
methods based on PSO [12] and DE [13], and it is verified that the proposed method
achieves better performance in terms of precision and convergence speed. Finally, this
paper presents a novel application of the CMA-ES algorithm since there are a few appli-
cations in the control and systems field [18, 19, 20, 21, 22], and CMA-ES has not been
used for quantizer design problems.

This paper is organized as follows. First, the quantizer design problem is formulated in
Section 2, and the CMA-ES algorithm is introduced in Section 3. Then, the effectiveness
of the CMA-ES based quantizer design method is verified with numerical experiments in
Sections 4 and 5. Finally, Section 6 concludes this paper.

Notation: Let R, R, , and N denote the set of real numbers, the set of the positive real
numbers, and the set of the natural numbers, respectively. For the matrix A := {4;;},
let abs(A) be abs(A) := {|A;;|} and when A is a square matrix, let A;(A) represent the
i" eigenvalue of A. For a vector v, the expression ||v|| represents the euclidean norm of
v. Finally, I is the identity matrix, 0 is the null matrix, and E||P|| is the expected value
of some probability distribution P.
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FIGURE 1. Error system

2. Problem Formulation. Consider the error system shown in Figure 1, composed of
the plant P, the quantizer (), and the communication channel.
The discrete-time SISO plant P is given by

| z(t+1) = Az(t) + Bu(?),
P { y(t) = Ca(t), M)
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where ¢ € {0} UN is the discrete time, € R"? is the state of P, u € R is the input,
y € R is the output, and A € R*?*"? B € R*»*! and C € R'*"? are constant matrices.
The initial state is given by x(0) = @, for x, € R"?, and we assume that all eigenvalues
of A are inside the unit circle in the complex plane.

On the other hand, the feedback type dynamic quantizer @ [10, 11] is given by

Cf E(t+1) = AE(t) + B(u(t) — ult)),
O { v(t) = q[C&(t) + u(t)], (2)

where € € R"@ is the state of @, v € {+d,+2d,. ..,:I:%d} is the quantized output,
A € Rwexme B ¢ Re*! and € € R'™™@ are constant matrices, and the initial state of
the quantizer is given by €(0) = 0. The static quantizer q[-|] rounds off the continuous-
values to the nearest discrete-ones. The parameters of the static quantizer are the number
of quantization levels M € N and the quantization interval d € R, . Figure 2 illustrates
the static quantizer ¢[-] in the case of M = 6. The design parameters of the dynamic
quantizer @ are A, B, € and d since M is given so as to satisfy the data rate constraints.

For this system, this paper makes the following assumptions: the communication chan-
nel has no losses and no delays, and the input signal u is bounded, i.e., u € U for a given

U= [umina umax]-
Q[@f(’—z"u(f)]

dl |

I
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FIGURE 2. Example of a static quantizer function q[-] (M = 6)

> @f(t)ﬂj[t)

Now, the following performance index is introduced to evaluate the performance degra-
dation of the system due to the quantization.
E(Q):= sup abs(y,(t) —y(t)), (3)

uelU
te{1,2,...,L}
where L € N is the evaluation interval, y, indicates the output of the plant P whose input
is the quantized signal v, and y is the output of the plant whose input is u. The perfor-
mance index E(Q) evaluates the maximum absolute value of e(t) = y,(t) — y(t), which
corresponds to the worst case performance of the system. Thus, by minimizing E(Q),
the system composed of the plant P and the quantizer ) can be optimally approximated
to the plant P, in terms of the input-output relation. Here, the value of E(Q) can be
calculated as follows [4].

R (e )] g

t=0

In order to obtain the smallest performance degradation caused by the quantization, it
is necessary to make the right hand side of (4) as small as possible by the appropriate
design of the dynamic quantizer Q).
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Furthermore, the data rate constraint of the communication channel imposes a limita-
tion in the design of dynamic quantizers. When the number of bits that can be transmitted
through the channel per sampling time is NV, the number of quantization levels M should
be given under the relation:

M < 2N, (5)
Besides, the quantization interval d has to satisfy the following condition derived from
Figure 2.

ﬂw@ﬂﬂ+u@)§%M¢ (6)

The design of d under (6) is equivalent to a reachable set problem [10], which is not easy
to solve. However, the smallest quantization interval d that satisfies (6) for u € U =
[tmin, Umax] 18 given as follows [10].

o abs(CT)abs(T 'B)A" L
d* = (Umax — Umin) (M 1—-A tX:O:

A = maxabs (A;(A + BE)), (8)

abs (C(A + BG)tB)> . (7)

where T € R"@*"@ is the matrix used for the diagonalization of the matrix (A + BC).
Based on the above setting, the finite-level dynamic quantizer design problem is formu-
lated as follows.

Problem 2.1. Suppose that the plant P, the number of quantization levels M and the
input signal range U are given. Then, find the quantizer parameters A, B, € and d which
minimize E(Q), under the conditions:

(i) Q is stable, i.e., A <1,

(ii) The data rate constraint is satisfied, i.e., d* > 0.

The optimization problem considered here is non-linear and non-convex, and thus it can-
not be directly solved by conventional methods such as linear programming or quadratic
programming. For this reason a metaheuristic approach is used to solve the problem.

However, the metaheuristic algorithm considered in this paper has been designed to
solve unconstrained problems. Therefore, the above constrained optimization problem is
transformed into the following unconstrained version, based on the method in [23, 24].

mpigivef2).J(@)= e G )

where
fo(@) == arctan[E(z)] — 7/2 with d = d*(z), (10)
hmax () := max [A(z) — 1, —d*(x)]. (11)

In these equations, the F(x), d*(x) and A(z) correspond to (4), (7) and (8) respectively.
Note that the design variable & € R” is constructed with the n unknown elements of the
matrices A, B and C.

3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In this pa-
per, the covariance matrix adaptation evolution strategy (CMA-ES) algorithm [16, 17] is
adopted to solve the quantizer design problem. The CMA-ES algorithm is an evolutionary
algorithm used for solving black-box optimization problems in continuous domains. The
main advantage of CMA-ES over other metaheuristics is that most heuristic rules and
control parameters are automatically chosen and determined. In fact, the only parameter
left to the user is the number of candidate solutions N. By increasing N, the exploration



DESIGN OF FINITE-LEVEL DYNAMIC QUANTIZERS BY USING CMA-ES 799

(e) Generation 9 (f) Generation 12 (g) Generation 15 (h) Generation 18

Ficure 3. Example of the operation of CMA-ES over a two dimensional
search space. It shows how the N = 20 search points (gray dots) and the
mean (black triangle) move in the search space through the generations.
The break line represents a contour of the multivariate normal distribution
with probability p; = 0.1, that helps to see the adaptation of the covariance
matrix.

capabilities and robustness of CMA-ES are usually improved, while the convergence time
increases.

In the CMA-ES algorithm, the candidate solutions, called search points, are generated
randomly according to a multivariate normal distribution with mean m and covariance
matrix 3. The initial value of m is provided by the user or it can be selected randomly
inside the search space, and the initial value of 3 is given by ¥ = I. Then, in each
iteration of the algorithm, the best points are selected and the parameters of the normal
distribution are updated. Thus, the mean m goes toward the best solution. In the next
iteration the search points are generated randomly according to the normal distribution
with the new parameters. An example of the operation of CMA-ES is shown in Figure 3
for a simple two dimensional optimization problem.

This paper uses the (u/pw, A\) CMA-ES version shown in Algorithm 1, which has been
presented in [25].

Algorithm 1: (u/py, A) CMA-ES

Initialization: Given N € N, k. € N, m € R”, the step size 0 € R, and the initial
search space S = [Tmin, Tmax)”. Initialize X € R**" p_ € R* and p, € R" as ¥ =1,
P, = 0 and p, = 0, respectively. Set the values of the parameters c., c,, 1, ¢y, dy, plesr
and w; (i =1,2,...,N) to their default values shown in Appendix A. Then, k£ = 0.

Step 1 (Sample new population): N search points {1, x5, ..., &y} are generated
randomly from the multivariable normal distribution N (m, 0%X) as follows
r,=m-+oy;, y,~N(0X) fori=1,2...,N. (12)

Step 2 (Selection and recombination): The objective function f(x;) is evaluated
for each x;, then the sets {1, xs,..., &y} and {y,,ys,...,yy} are ordered based on
the fitness value of ;. The ones with the best fitness go at the beginning. The first
i search points are the parents of the next generation. They are combined with each
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other to generate the new mean as follows

I
m = Zwiazi =m + 0y, (13)
i=1

1
Yy = > Wiy, (14)
=1

Step 3 (Step size control):

1

Py (1= co)Py + VCo(2 = Co) et =T 2 Yy, (15)

7 0 X exp [fl—i <%—1)], (16)

where E|[|N(0,T)|| = /n (1 — 1/4n + 1/21n?).
Step 4 (Covariance matrix adaptation):

L if%<(l.5+m) EIN(0, )|,
’ 0 otherwise,

P, (1 —co)p, + hov/ce(2 — co) heftY s (18)

I
S+ (- —c)E+c (pp. +(1—hy)ee(2—c)E) + ¢, ZwiyiyiT. (19)
i=1

(17)

Step 5 (Check stop condition): If k < k., k < k+1 and go to Step 1; otherwise,
terminate the algorithm and return m (or ).

In the (u/pw,\) strategy, p is the number of parents of the next generation, puy
indicates a weighted recombination of the parents and A is the number of search points.
Note that A is represented by N in this paper. In addition, the default setting of the control
parameters has been given in [28], and the parameters m, ¥, and o are automatically
updated in the algorithm. Thus, it is expected that the algorithm works well without
the careful tuning of the initial values of the parameters. This makes the CMA-ES an
easy-to-use algorithm.

4. Numerical Experiments. Consider the system in Figure 1. Then, we consider two
continuous-time plants:

s+ 20
P = = 20
() = e (20)
s+ 10
Py(s) = (21)

s* + 652+ 9s + 10
Note that the discrete-time plants in the form of (1) are obtained from P;(s), P»(s), and
the sampling time At = 0.1]s].

For P; and P,, the forms of the matrices of the quantizer are given by

0 1] [0

‘A'l = T 332_ ) Bl = -1 ) e1 = [1'3 1'4] ) (22)
0 1 0] [0

AQ = 0 0 1 s BQ =10 s 62 = |:II,'4 Ty .’IIG] 5 (23)
1 T .1'3_ _1

respectively, which are called the canonical controllable form. Then, the search points
are formed like = [xl To X3 x4]T for P, and & = [xl To T3 X4 Ts xg]T for Ps.
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Thus, the dimensions of the optimization problems are four and six, respectively. The
initial values for the CMA-ES algorithm are 0 = 0.3, S = [—1,1]" and m is selected
uniformly randomly within S.

The simulations are performed by trying N,,, = 50 runs of the algorithm for each
combination of the parameters N = {50,100,500} and k.. = {50,100, 200, 500, 1000}.
After performing the simulations with U = [—1,1], M = 2 and L = 150, it was found
that the optimal quantizers for P, and P, are given by

0 1 0
A, = [_0.7413 1.7241} , B = H , € =1[0.6532 —1.1619], d; =3.1082, (24)
and
0 1 0 0
A, =| 0 0 1 |, By= |0, Cy=[-0.2078 0.9785 —1.1550],
0.1391 —1.1584 2.0022 1
dy = 3.2337. (25)

The results of the simulations are summarized in Table 1. For each plant and each
combination of N and kpax, the best value of E(Q), the mean and the standard deviation
of Enin(Q), and the success rate SR in percentage [%] are shown. The success rate is
the ratio of the number of runs with the best solution to the total number of runs of the
algorithm N,.,.

TABLE 1. Simulation results for the second and third order plants by CMA-
ES (Npun = 50 trials)

second order system, P, third order system, P,

N  kpax | Best  Mean St. dev. SR | Best Mean St. dev. SR
50 50 [0.5091 0.5870 0.1059 66 |0.0719 0.0948 0.0335 0

50 100 | 0.5091 0.5395 0.0814 86 |0.0691 0.0797 0.0302 82
50 200 [ 0.5091 0.5800 0.1121 70 |0.0691 0.0751 0.0238 94
50 500 | 0.5091 0.5438 0.0861 86 |0.0691 0.0733 0.0200 92
50 1000 | 0.5091 0.5736 0.1089 74 |0.0691 0.0814 0.0328 86
100 50 |0.5091 0.5152 0.0353 98 | 0.0692 0.0704 0.0009 38
100 100 | 0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 100
100 200 | 0.5091 0.5140 0.0347 98 | 0.0691 0.0691 0.0000 100
100 500 | 0.5091 0.5140 0.0347 98 | 0.0691 0.0691 0.0000 96
100 1000 | 0.5091 0.5190 0.0486 96 | 0.0691 0.0691 0.0000 98
500 50 |0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 98
500 100 | 0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 100
500 200 | 0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 100
500 500 | 0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 100
500 1000 | 0.5091 0.5091 0.0000 100 |0.0691 0.0691 0.0000 100

To evaluate that the designed quantizer works properly, the control signal:

u(t) = 0.7sin (3t) + 0.3 sin (4¢) (26)
is applied to the error system in Figure 1. Note that u € U = [—1,1]. The results
are shown in Figure 4: (a) and (b) show the time responses for the second order sys-
tem P, and (c) and (d) show the results for the third order system P,. Notice that

in both cases the quantized input signal v(¢) has only two levels since it was specified
that M = 2. Figure 4 shows how the quantized output y,(t) follows closely the desired
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| u(t) o(t)] | y(t) ——u,(0)]
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FIGURE 4. System responses when the control signal u(t) is applied to the
plants P, and P,. The black thick lines represent the signals of the system
without quantization. Meanwhile, the blue thin ones are the signals when
the quantization is performed.

output y(¢) and the error between them is very small. In fact, the maximum error is
maxeq1 2,150} abs (yq(t) — y(t)) = 0.3462. Then, since E(Q) = 0.5091 for the designed
quantizer, it is verified that the maximum error in this example is less than the value of
the performance index E(Q). The same situation happens for the third order system,
where max;c (10,1503 abs (y4(t) — y(t)) = 0.0319 and E(Q) = 0.0691.

5. Comparison with DE and PSO. In order to evaluate the performance of the pro-
posed finite-level dynamic quantizer design method, which is based on CMA-ES, further
simulations were carried out. In those simulations, the quantizer design optimization
problems in Section 4 are solved by using DE and PSO, since the previous studies [12, 13]
have proposed the DE and the PSO based quantizer design methods.

Differential evolution (DE) is a population based metaheuristic algorithm inspired in
the mechanism of biological evolution [26]. In this algorithm, the objective function f(x)
is evaluated iteratively over a population of search points x;, known as target vectors in
the DE literature. In each iteration, the search points improve their values and move
toward the best solution. Finally the search point with the best fitness value in the last
iteration is regarded as the optimal solution. The DE algorithm is shown in Appendix B.

On the other hand, particle swarm optimization (PSO) is a population based meta-
heuristic algorithm that is inspired in the behavior of biological communities like swarms
of bees and flocks of birds [27]. In the PSO algorithm, a search point is called particle
and the set of all particles is called swarm. The PSO implementation used in this study
is shown in Appendix B.

The only changes performed to the quantizer design problems in Section 4 are the
parameters of the metaheuristic algorithms. In the case of DE, the control parameters
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are F' = 0.6 and H = 0.9; in the case of PSO, the parameters are yp, = 0.9, y; = 1 and
X2 = 1. These parameters are the same as those in the previous studies [12, 13].

The results are summarized in Table 2 for DE and Table 3 for PSO.

The comparison among design methods based on CMA-ES, DE and PSO is given in
terms of the success rate and convergence behavior. All these data can be found in the
Tables 1, 2 and 3.

For the second order system the best solutions found by CMA-ES and DE are the
same, namely, E(Qcaars) = E(Qpr) = 0.509057, while the best solution found by

TABLE 2. Simulation results for the second and third order plants by DE
(Nyun = 50 trials)

second order system, P; third order system, P,

N  kpax | Best Mean St. dev. SR | Best Mean St. dev. SR
50 50 [0.5091 0.6051 0.1197 62 |0.0692 0.1113 0.0461 4

50 100 [ 0.5091 0.5885 0.1158 68 | 0.0691 0.0949 0.0419 30
50 200 [0.5091 0.5984 0.1191 64 |0.0691 0.0963 0.0433 32
50 500 [0.5091 0.5896 0.1153 68 | 0.0691 0.0966 0.0432 44
50 1000 | 0.5091 0.5741 0.1086 74 |0.0691 0.0838 0.0345 62
100 50 |0.5091 0.5641 0.1026 78 |0.0692 0.0871 0.0358 28
100 100 | 0.5091 0.5885 0.1158 68 |0.0691 0.0817 0.0324 68
100 200 | 0.5091 0.5666 0.1023 78 |0.0691 0.0853 0.0366 80
100 500 | 0.5091 0.5488 0.0910 84 |0.0691 0.0832 0.0347 84
100 1000 | 0.5091 0.5438 0.0861 86 | 0.0691 0.0852 0.0367 84
500 50 |0.5091 0.5190 0.0486 96 |0.0692 0.0745 0.0198 76
500 100 | 0.5091 0.5438 0.0861 86 |0.0691 0.0711 0.0140 98
500 200 | 0.5091 0.5425 0.0813 86 |0.0691 0.0712 0.0140 96
500 500 | 0.5091 0.5438 0.0861 86 |0.0691 0.0791 0.0300 90
500 1000 | 0.5091 0.5438 0.0861 86 |0.0691 0.0691 0.0000 100

TABLE 3. Simulation results for the second and third order plants by PSO
(Nyun = 50 trials)

second order system, P, third order system, P,
N kpax | Best Mean St. dev. SR | Best Mean St. dev. SR
50 50 [0.7291 0.7910 0.0271 0 |0.1386 0.2052 0.0340 0
50 100 | 0.6467 0.7612 0.0196 0 |0.1297 0.1814 0.0157 0
50 200 |0.7437 0.7577 0.0027 0 |0.0867 0.1650 0.0182 0
50 500 | 0.7015 0.7556 0.0080 0 |0.0713 0.1579 0.0300 0O
50 1000 | 0.5731 0.7518 0.0274 2 |0.0706 0.1529 0.0333 0
100 50 |0.7300 0.7815 0.0211 0 |0.1047 0.1867 0.0195 0
100 100 |0.6960 0.7593 0.0101 0 |0.1556 0.1734 0.0063 0
100 200 | 0.6160 0.7491 0.0316 0 |0.0789 0.1557 0.0293 0
100 500 | 0.5150 0.7476 0.0429 4 |0.0716 0.1430 0.0405 O
100 1000 | 0.6261 0.7535 0.0194 0 |0.0729 0.1510 0.0362 0
500 50 |0.5204 0.7550 0.0366 2 |0.0920 0.1660 0.0209 0
500 100 | 0.5561 0.7447 0.0436 4 |0.0774 0.1505 0.0342 0O
500 200 | 0.5114 0.7458 0.0477 4 |0.0712 0.1491 0.0374 O
500 500 | 0.5097 0.7025 0.0964 22 |0.0709 0.1357 0.0426 O
500 1000 |0.5091 0.6777 0.1132 32 | 0.0701 0.1305 0.0453 0O
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PSO is slightly bigger F(Qpso) = 0.509073. For the third order system, F(Qcnyags) =
E(Qpr) = 0.069132 and E(Qpso) = 0.070130. The best solutions provided by CMA-
ES and DE are the same in both cases, which means that CMA-ES and DE have the
exploration ability to solve the considered quantizer design problem.

A more important result is the success rate when comparing these algorithms. A low
success rate indicates that the algorithm gives local minima. Thus, an algorithm with
high success rate is reliable. The success rates of the quantizer design algorithms are
shown in Figure 5 for the second order system and in Figure 6 for the third order system.
They show that the performances of CMA-ES and DE are quite better than that of PSO.
For the second order system, the success rates of CMA-ES and DE are always over 60%,
while the success rates of PSO are less than 40%. For the third order system, the success
rate of PSO is 0% in all cases. Thus, we can see that the quantizer designs based on
CMA-ES and DE are reliable methods, but the one based on PSO is not. Moreover, for
both plants, the success rates obtained by CMA-ES are better than the ones obtained by
DE, when the number of search points N and (or) the maximum number of generations
kmax are small. Thus, it is fair to say that the design method based on CMA-ES is better
and more reliable than the one based on DE.

100 N =50 100 N =100 100 N =500
I CMVA-ES
— 80 80 80 I— o)
= ——Jpso
g 60 60 60
g 40 40 40
5
& 20 20 20
0 0 0
50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000
Emaa Emaa Emaa
FIGURE 5. Success rate for the second order plant (P)
100 N =50 100 N =100 100 N =500
I CMVA-ES
— 80 80 80 I— o)
= ——Jpso
g 60 60 60
g 40 40 40
5
& 20 20 20
0 0 0
50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000
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FIGURE 6. Success rate for the third order plant (P;)

Finally, the convergence behavior of the algorithms is shown in Figure 7 for the second
order system and in Figure 8 for the third order system. In these, the cases of (i) N = 50
and Ky = 500, (ii) N = 100 and kpae = 500, and (iii) N = 500 and kpya = 500 are
shown. Note that the sequences are shown until £ = 50 in the figures. In each case, the
figures show that the CMA-ES and DE based methods fast converge to the global optima,
and that the PSO based design method slowly converges to the local optima.

6. Conclusion. In this paper, the finite-level dynamic quantizer design method based
on CMA-ES was proposed. Then, through numerical experiments, the effectiveness of
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FiGure 7. Convergence behavior of the different metaheuristics for the
second order plant P;

1.2

0.8

= 0.6

0.4

0.2

Ficure 8. Convergence behavior of the different metaheuristics for the
third order plant P,

the proposed design method was confirmed. The CMA-ES based design method shows a
very good performance in terms of success rate and convergence time without the careful
tuning of any parameters. Furthermore, compared to the other metaheuristic based design
methods, it was verified that the performance of the CMA-ES based method is better than
the methods based on DE and PSO. From these results, we can conclude that the CMA-ES
based method is very reliable for the design of the dynamic quantizer.
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Appendix A. Default Parameters for the (u/py, A) CMA-ES Algorithm. The
default values of the parameters were taken from [28].

(i) Selection and Recombination:

N
N =4+ [38In(n)], p=u], o=, (27)
w; ) , : :
w; = =, w;=In(x +0.5)—Ini fori=1,2,...,p, (28)
i=1"j
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1

floff = - (29)
’ iy W}
(ii) Step-size control:
2
o, = Mt 2 (30)
N+ e + )
-1
d, = 1 + 2max (0, “eHH —1) + ¢y (31)
n
(iii) Covariance matrix adaptation:
4
= _AFpet/n (32)
n+ 4+ 2pen/n
2
c1 = , 33
YT+ 1.3)2 4 pre (33)
. Heff — 2+ 1/Meff . o
¢, = min <1 -, (0 + 272+ appien2 with o, = 2. (34)

Appendix B. DE and PSO Algorithms. The DE algorithm is shown in Algorithm 2,

and the PSO algorithm is shown in Algorithm 3.

Algorithm 2: DE (DE/best/1/bin strategy)

Initialization: Given N € N, ky. € N, F € [0,2], H € [0,1] and the initial

search space S = [Tmin, Tmax]”- Set & = 0 then select randomly N search points
{x1,x2,...,xN} in the search space.
Step 1: The objective function f(x) is evaluated for each x; and ®puse = @y, is
calculated by:
lp = argmin f(x;). (35)
i€{1,2,..,.N}

If £ = kmax then @y, is the final solution, if not go to Step 2.
Step 2 (Mutation): For each x; a mutant vector M is generated by:

Mz' = Tpase t+ F(le,i - $T2,i)7 (36)

where 7 ; and 7; are random indexes subject to i # 7y ; # To; # li.
Step 3 (Crossover): For each x; and M, a trial vector L; is generated by:

Li,j = { Ml:] if Pij > H Of] Jrand, (37)

T otherwise,

where p; ; € [0,1] and jrena € {1,2,...,n} are generated randomly.
Step 4 (Selection): The members of the next generation k + 1 are selected by:

z; { L; if f(L;) < f(:), (38)

x; otherwise,

then k < k + 1 and go to Step 1.
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Algorithm 3: PSO

Initialization: Given N € N, kp.x € N, xo € [0,1], x1 € [0,4], x2 € [0,4] and the
initial search spaces Sy = [Zmin, Zmax]” and Sy = [Vmin, Umax|”- Set & = 0 then select
randomly N search points {?, 3, ..., 2%} and their velocities {v?,v9,..., v} in the
corresponding search spaces.

Step 1: The objective function f(x¥) is evaluated for each xF. Then, the personal
best solutions and the global best solution are selected by:

m];Zbest,i = arg min f(w)ﬂ (39)
:1:6{:1:{|j:1,2,...,k}
thy=  agmin f(x), (40)
we{zh, ., li=1,2,.,N}

If £ = kpmax then a:';best is the solution of the algorithm, if not go to Step 2.
Step 2: Sequentially the following update laws are applied to each search point.

vf“ = Xo’UéC + X1P1,i (mlgbest,i - mf) + X2p2, (mlgcbest o a:f) ' (41)
= zf 4 oF*! (42)

i )

ZhH

where py; and py; € [0,1] are random numbers uniformly distributed. Then make
k <+ k + 1 and go to Step 1.



