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ABSTRACT. This paper presents the optimal gains of backstepping controller by using the
particle swam optimization technique. The mathematical model is developed by Newton’s
second law, compressible fluid flow and flow rates of valve. The control law is formulated
by employing a Control Lyapunov Function. The core feature of this paper is the com-
bination of the backstepping and particle swam optimization for optimal performance of
controller. The controller gains are determined in automatic selection gains by minimiz-
ing the integral of time multiplied by absolute error function on step input. The fitness
value can be guaranteed to the convergence of controller gains. The implementations are
separated into two cases which are the real and estimated state feedbacks. The experiment
has illustrated to find optimal controller gains. The results are also compared with the
tracking response of real and estimated state measures in step and square signal. The re-
sults show a better tracking performance by using the strong particle swarm optimization
(PSO) algorithm.

Keywords: Particle swarm optimization, Electro-hydraulic system, Optimal controller
gains

1. Introduction. Hydraulic system may be the first choice for power transmission in
heavy-duty applications due to its advantages such as high power-to-weight ratio, fast
response, high stiffness and high load capability. Major parts of electro-hydraulic systems
(EHS) include the power unit, oil pipeline, control valve and hydraulic actuators. Nor-
mally, the force of the hydraulic cylinder is controlled by varying the valve command [1] in
order to control the flow rate in and out of the actuator. The nonlinearities appear in term
of the relationship between the hydraulic flow rate and the cylinder pressure; hence, the
relationship between the command input and cylinder force is nonlinear. The nonlinear
behavior creates a challenge in the design of controller for electro-hydraulic systems.
Various linear control techniques were implemented to control EHS’s in the past [2,3].
Classical linearization techniques based on the root mean square (RMS) error prediction
were proposed and implemented [2]. The controller was implemented on single-input and
single-output (SISO) plant that was decoupled from multiple-input and multiple-output
(MIMO) system. The result with small steady state error was shown. A proportional-
integral-derivative (PID) controller with feedback linearization was presented [3]. The
control system was designed without the consideration of friction. Since many nonlinear
behaviors need to be linearized in order to be controlled by linear controllers which may
not be suitable. Some researchers used nonlinear controller to solve this problem. Several
nonlinear controllers were also investigated [4-9]. Sliding mode with friction compensa-
tion [4] was proposed and high accuracy performance was achieved. However, when the
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controller was implemented with friction compensation turned off, the tracking perfor-
mance was less than satisfactory. Lyapunov algorithm based controller [5] was proven to
be effective when the system has uncertainty parameters.

Backstepping is a popular nonlinear control methodology that is applied when design-
ing most controllers for nonlinear systems such as hydraulic systems, flight control and
chemical reactor systems. Its methodology has been developed continuously in order to
achieve performance target. The designed backstepping control for a continuous-stirred
tank reactors (CSTRs) is shown in [6]. The controller performances are compared with
the standard PI controller. Backstepping controllers for position tracking of an EHS are
modeled in [7]. The model simulation used a sinusoidal reference input on top of which
disturbances of about 10% were applied to each state. The resulting controller predicted
good tracking performance and robustness to disturbances. Backstepping controllers for
electro-hydraulic systems were presented in [8] and [9]. Nonlinear adaptive robust motion
control of electro-hydraulic servo systems was presented in [10]. The incorporation be-
tween backstepping and another technique was presented as artificial intelligent technique
and optimization algorithm [11,12]. In [11] the backstepping parameters were tuned by
neural network to improve the tracking performance of mobile robots. The backstepping
controller tuned by fuzzy logic was implemented for stabilizing and attitude control of a
quad-rotor helicopter [12]. Searching for optimal parameters of a backstepping controller
is difficult such as trial and error. Moreover, the tuning process could be time-consuming
and the target performance cannot be guaranteed. To solve the problems, the particle
swarm optimization (PSO) algorithm is an alternative technique for tuning the backstep-
ping controller. PSO was widely investigated in [13,14], and proved its ability to solve the
optimization problems. The PSO is powerful for searching optimal variables for solving
complex control problems [15] and it could be able to solve for optimal power flow of elec-
tric energy [16]. PSO has been applied to various controllers because of its faster conver-
gence compared with other techniques such as Genetic Algorithm [17]. The optimization
of backstepping control parameters is presented in [18] comparing two algorithms, namely
PSO and gravitational search algorithm (GSA). The simulation results have shown that
the backstepping controller with PSO outperformed the same controller with GSA tech-
nique. A significant requirement of backstepping design is full-state feedback which is,
however, not always possible due to cost, space limitations and measurement noise. The
estimated state based backstepping control that is used for the SISO nonlinear uncertain
system is presented in [19]. However, the study was based on simulation results rather
than experiments.

In this paper, the search for optimal parameters of a backstepping controller in a force
tracking EHS is proposed. The PSO algorithm is used to tune for the optimum backstep-
ping gain. The current investigation presents two experimental approaches: real measured
states and using a reduced order state observer.

Nomenclature
A; = Piston area side head-end P, = Reservoir pressure
Ay = Piston area side rod-end u = Control signal
f = Effective bulk modulus 21 = Flow rate of head-end side
¢ = Viscous coefficient ()2 = Flow rate of rod-end side
Fypring = Spring action force V1 = Volumes cylinder of head-end
K, = Flow/signal gain of valve V5 = Volumes cylinder of rod-end
ks = Stiffness of spring Vo1 = Initial head-end volume
m = Mass of piston Voo = Initial rod-end volume

P, = Pressure side head end Vin = Command voltage
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P, = Pressure side rod end x, = Piston’s displacement
P, = Supply pressure v = Piston areas ratio (A;/As)

2. System Description. Figure 1 shows the schematic diagram of the EHS used in this
study. A linear spring is connected to the end of the piston rod and acts as a resistive load.
The mathematical model for force control of the EHS is obtained using Newton’s second
law and compressible flow [20]. The force balance on the piston is shown in Equation (1),
where friction is neglected for simplicity.

ma'ép = P1A1 — PQAQ — C.ft'p — Fspring (1)
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I

r
1

Com puter Controller

FIGURE 1. Schematic diagram of EHS

Equations (2) and (3) present the pressure changes in the cylinder for the compressible
flow.

. 64 .

P = Vor  Avr, (@1 — Avip) (2)
- 3 .

Py = Voo & Ao, (Agdy — Qo) (3)

The piston motion is controlled by the flow through a proportional valve. The voltage
command to the proportional valve is related to the flow rates of high pressure fluid flow.

The oil flow rate is assumed to be in a linear relationship with the valve command signal
(Vin), and flow rates Q1 and Q)2 are shown in Equations (4) and (5) respectively. 7 is the
area ratio A;/As. The bandwidth of the control valve is around 100 Hz which is much
faster than the dynamics of the cylinder actuator [21]. The valve dynamic is neglected.

KV, @y >0
Ql_{ VKoV, iy < 0 4)
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K, )
—Vin, 2, >0

Q2 = Y (5)
K,\Vin, 2, <0

Since a linear spring is connected to the end of the piston, the motion of the piston is
described by definition (6).

Tp=-—, Zp=-— and z,=

— 6
S ’ kS kS ( )
Substituting Equation (6) into (1) yields,

F="(PA - PA) — —F — 2F (7)
m m m
Replacing Equation (7) into (2) and (3) yields,
Pp=———7-—kQ— A F
= e (@A) ®)
Therefore,
Py=———70Z-—"(AF —k,
= v (A2~ h2) (%)

Figure 2 shows the definition of each state variable in an EHS and Equation (10) shows
the states equation of the system.

I = F
zy = dF/dt (10)
.Z'?,:PIAI—PQAQ

Cylinder
— P1A1

C‘ x=(P1A,-PrA,

PyA, x=(dEde) o

*

%_; . ~\'1=(F)>

F=flxy, X9, x3)

FIGURE 2. The definitions of state variables of an EHS

Rearrange Equations (7)-(9) to obtain the nonlinear model of an EHS strict-feedback
form as,
Ty = Ty
Ty = —thoty — 172 + Py (11)
T3 = —p1(21)T2 + P2(21)u
where,

c kg
’QZ}l = —, and ¢2 = —
m m
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B BA? BA3
er(on) = ksVor + A1y * ksVoa — Asxy
BA%Kvks ﬁA%Kvks

Palon) = ksVor + Avzy (ksVoe — Aazy)y

_ S Vs 1, >0
and “_{vvm; i <0

3. Controller Design. The backstepping method is a Lyapunov-based design technique
which can be applied directly to strict-feedback nonlinear systems. The process starts with
defining error for each state as,
€ = Ty — Tid

where ¢ = 1, 2, 3 are the error index for each state, x4 is reference signal, xo4 and x34 are
visual control signals of each state. The process of control law design is presented in this
section as follows.

Step 1: The system tracking error in first state can be defined as,

€1 =1 —T1gq=21—T
Then, the time derivative term of the tracking error is,
élzit'l—?;:.fb'g—f'
The positive definition of Lyapunov function, V;(x;), is,
1

Vi(zy) = 56%

Then, the time derivative of Lyapunov function is,
V1(£E1) =e16; = ey(vy —7)
Define the virtual control signal (za4) so that the first time derivative of Lyapunov

function V] is negative,
l‘QZI‘Qd:’f“—klel, ki >0

Thus, .
‘/1(55'1) = —k16% <0
Step 2: Let the tracking error of the second state be,
€9 = X9 — Tod
Then, the first time derivative of tracking error, es, is
gy = dg — doqg = (—1hom1 — 1T + 1hox3) — dag

Again, consider a Lyapunov function, V5(z1, z5),

1
Va(z1,29) = Vi(z1) + 563

Then, the first time derivative of Lyapunov function V5 is,
‘./2(«T1, Ty) = —ki€] + €269 = —kie; + ea(—=1Pomy — Y119 4 Vo3 — Tog)

Define the virtual control signal (z34) so that the first time derivative of Lyapunov
function V5 is negative,

1 )
Ty = Xgq = — (Pax1 + Y129 + Tog — kaes)

(5%
where, ko > 0 and 1, # 0. Thus,

Va1, 22) = —k1€? — kel < 0
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Step 3: Let the system tracking error in last state can be defined as,
€3 = T3 — T3d
Then, the time derivative term of tracking error is calculated as,
€3 = I3 — B30 = —1(T1)T2 + p2(71)u — T34

Again, consider a Lyapunov function.

1
Vi(y, 2o, 23) = Va(ay, 22) + =€

2
Then, the time derivative of Lyapunov function Vj3 is
Va(21, T, w3) = —k12 — kped + egés = —kie? — ko2 + es(—1 (1) 22 4 @ox1)u — d3q9)
The real control signal (u) is,
u = ﬁ(%(ﬂh)h + &34 — kzes) (12)
where, k3 > 0 and @o(z1) # 0. Thus,
Va(21, 29, 23) = —k1€2 — kye2 — kse < 0

Equation (12) is the control law of backstepping controller. The signal u is the command
signal for controlled force x; to track a reference signal. The gains controller &, ko and
k3 are optimized by using PSO algorithm.

3.1. States observer design. The backstepping control algorithm used in this study
needs the information of 3 states. Two approaches are studied and compared. The values
of all states are measured and calculated for the first approach. For the second approach,
only z; is measured, and the values of two other states are estimated by a linear reduced
order observer.

0 1 0 0
A=t . Y2 |, B= 0 ,C=[10 0] (13
0 _ ,BA% _ ,BA% _ BA1Kv  BA3Kw
ks Vo1 ks Vo2 Vo1 Vo2

The EHS mathematical model (11) is linearized based on the Taylor series expan-
sion. The ¢;(z;) and @y(x;) parameters in Equation (11) are linearized. To case the
linearization, define the following: kVy + Ayxy ~ kVo1, ksVoe + A1xy = ksVoe and
(ksVoo + Asz)y = kg Vooy.

The linearization was performed around an operating point at x; = 1000N, 25 = ON/s
and x3 = 1000N. Matrices A, B and C of the linearized mathematical model are shown
in Equation (13). Then, substituting all parameters in Table 1. Finally, the constant
matrices of the mathematical model are shown in Equation (14). Note that all parameters
in Table 1 are real specifications of each part in EHS.

0 1 0 0
A=| —2x10® —6x10° 2x10% |, B= 0 ,C=[10 0]
0 ~1.011x 107 0 3.1124 x 10°

Figure 3 shows the scheme for the observer state estimate. The observer design is
started from Equation (15).

& = A% + Bu+ K(y — Ci) (15)

where, K is observer gain matrix. u is control signal. y is process measurement.
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TABLE 1. Parameters setup of EHS

Symbol Parameters Value
3 Effective bulk modulus 1.5 x 10°N/m?
c Viscous damping coefficient 500N /m.s!
Ay Piston area side head-end 1.256 x 10 3m?2
A, Piston area side rod-end 6.408 X 10 *m?2
Vor Initial head-end volume at z, =0 3.141 x 10 °m?
Vo2 Initial rod-end volume at z, =0  1.602 x 10 °m?
m Mass of piston bkg
K, Flow/signal gain of valve 3.7 x107°m?/V
ks Stiffness spring 2 x 10°N/m?
ST
EHS input I
}) | I X
3 X N j .
Observation Estimated

| state

C

EHS model I

|
|
1
1
Yol

FIGURE 3. Observer states estimate scheme

The calculation of matrix K can be done in various ways such as optimization and
pole-placement method. The kalman filtering algorithm is used for calculating matrix K
in this study.

K = PCTR™! (16)

P is the covariance matrix of the estimation error and satisfies the matrix of Riccati
Equation (17).

AP+ PAT - PCTR'CP+Q =0 (17)

R is a positive-definite matrix and () is a positive or semi-definite matrix. The matrices
R and () are measured between control signal and output force signal that are approx-
imately equal to 0.01V and 10N, respectively. Thus, the observation and process noise
covariance are (Q = 0.01?(BB”) and R = 10%. Note that matrix @ is to be used as state
estimates in the close-loop control system. The LQE command in MATLAB function is
used to solve the Algebraic Riccati Equation, and obtain the matrix K.

K =[0.0589 0.173 —0.395] (18)

3.2. PSO-backstepping design. The PSO was introduced by Eberhart and Kennedy in
1995. This method is a stochastic algorithm based on the principles of natural selection.
The controller gains are equivalent to the particles in PSO algorithm. The controller
gains are tuned for three step inputs (k;, ks and k3) following the control law described in
Equation (12). Particles of positions z; are related to controller gains k;, ko and k3 with
its corresponding velocities v;. The velocity of each particle is updated in the next step
(according to Equation (19)). The position of each particle is then updated in the final
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step according to Equation (20).
Vi = w - Vi1 + ¢ - Ry - (Prest — Tim1) + 2+ Ry - (Grest — Tiz1) (19)
Ty = i1 + v, i:1,2,...,n (20)
where, n is the number of particles in the group. R; and R, are random numbers between
0 to 1. ¢; and ¢y are acceleration constants, v;_; is the velocity of the previous particle
movement, x;_; is the previous position, Py is the best value of all individual and G
is global best position. The initial values of the parameters used in Equations (19) and

(20) are shown in Table 2. More information on the definition of the PSO can be found
in [22,23].

TABLE 2. The initial parameters of PSO

PSO Property Value
Population number 5
Maximum iteration 250
Social coefficient (c;) 2.0
Cognitive coefficient (cq) 2.0
Performance index ITAE
Inertial weight (w) 0.8
Lower limit of [kl k2 k3] [0 0 0]
Upper limit of [ky ko ks3] (15000 500 100]

Generate initial velocity and position
randomly for each particle

-
-

Y

Replace position value to controller gains

v

Run EHS controller testing for each set gains

v

Calculate the fitness value by ITAE function

v

Calculate the Phest and Gbhest of each particle

v

Update the Phest and Ghest of particles

Maximum iteration
number reached ?

FiGURE 4. The PSO algorithm process
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3.3. The process of tuning a PSO-backstepping. Figure 4 shows the sequence of
the gain tuning process and can be explained as follows.

(1) The backstepping controller needs three gains controller [k; ks k3]. The population
number was chosen to be five sets. Therefore, the dimensions of the position and velocity
matrices are both 3 x 5. These two matrices are generated randomly, such as the values
of all elements within the lower and upper bounds. Both matrices are the initial particles
of positions x; and velocities v;.

(i) Each row of the position matrix contains the controller gains [k ky k3] of each
population set: the first row belongs to the first set, the second row belongs to the second
set and so on. All sets of position (or controller gains) are tested experimentally in the
EHS. The fitness value for each set of position particles is then obtained according to the
integral of time multiplied by absolute error (ITAE) function in Equation (21).

[TAE = /oot e(t)| dt (21)

(#ii) The Pyegs is chosen by comparing fitness value in each cycle. The set of the position
particles that give the minimum fitness value is set to be the P, of this cycle. Geg is
then obtained by comparing the current P, with all previous values of P,;.

(iv) The velocity and position in the next cycle are updated by Equations (19) and
(20) using the values of Pyes; and Gpes from step (iid).

(v) The whole process is repeated until the condition defined previously is satisfied. In
this study the process is run for 250 cycles.

4. Experimental Results. The optimal gains of backstepping controller with observed
states and measured states were obtained experimentally using the PSO algorithm. A
1000N force step command is used in the PSO training, where 250 cycles were implemented
for each training case. With 9 seconds per cycle, it took 37.5 minutes to obtain the optimal
gains. The process of finding optimal gains follows that shown in Figure 4 and the ITAE
function in Equation (21) was used to indicate the optimal gain.

Figure 5 shows the fitness values of the backstepping controller using observed states
and measured states. Both fitness values are optimized by PSO algorithm. This method
can increase value from 4000 to the best value within 250 cycle times. The optimal fitness

5000
o 4000 .
= .
=~ k] [ ) »
= 3000 |
7] i
5
2 2000 -ﬂ; . .
= v * *® ™ .
= o * : .
0 T T T T 1 T T T T 1
0 50 100 150 200 250 0 50 100 150 200 250
Iteration Iteration
(a) (b)

FIGURE 5. Fitness value of step input of (a) controller using real states
and (b) controller using estimated states



818 P. MOONUMCA AND N. DEPAIWA

16000
14000
12000
10000
8000
6000
4000
2000

K1

600
500
400
300
200
100 P

K2

120 120
100 - 100
80 W 4 80 |
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ol A | 40
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s s 20
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FIGURE 6. The convergence of controller gains of (a) controller using real
states and (b) controller using estimated states

TABLE 3. Optimal gains of PSO based on backstepping

Controllers Fitness value | Optimal gains
ky = 13550.7
PSO-based backstepping in real states 427.76 ko = 483.54
ks = 32.03
ky = 14510.07
PSO-based backstepping in estimated states 433.17 ko = 401.77
ks = 27.49

values were found to be 433.17 and 427.76 for the observed states and measured states,
respectively. Figure 6 shows the convergence of controller gains for both controllers, which
resembles the convergence of the fitness values. The optimal gains kq, ks and k3 were
found within 50 cycles after which the tuning was more refined. The best backstepping
controller’s gains were found for both observed state and measured state cases.

Table 3 shows the values of the optimal controller gains of both controllers.

Figure 7 shows the response of using the best gains [k; ko k3]. It can be observed that
the rise time of 0.4 seconds was achieved with no overshooting. The responses in both
cases were not different, indicating the capability of the state estimation. Figure 8 shows
the convergence of the observed state compared with the measured values. The measured
state x3 (Equation (10)) shows approximately 360 Vpp noise due to the noise picked up
at the pressure transducers. Though the observed state signal was different from the
measured one, the step response of EHS still shows effective force tracking. Figure 9
shows the comparison results of a force square input. The bound amplitude of square
signal is 1000N and 200N at 1Hz of frequency. The controller gains from Table 3 are used
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FIGURE 7. Step response
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FiGURE 8. States comparison

in this experiment. Both controllers yield almost identical tracking performance, both
exhibiting the rise time of 0.35 seconds. No significant overshooting was observed.

Figure 10 shows the convergence of the value of each observed state comparing with
the measured values in the square input. The measured state x3 shows a small degree of
noise (360 Vpp), resembling the states comparison in the step input.

5. Conclusions. A backstepping controller was implemented on a force-controlled elect-
ro-hydraulic system. The backstepping controller gains were optimally obtained by using
the PSO technique. Two types of controller were designed and tested: backstepping with
observed states and backstepping with measured states. Both controllers were tested and
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FIGURE 9. Square response
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FIGURE 10. States comparison

compared by using a square wave input. The experimental results show the effectiveness
of the force tracking and the searching for controller gains. The PSO algorithm was proven
to be an effective tool for finding the optimal gains for the backstepping controller with
both observed and measured states. The backstepping controller when implemented with
observed states could save the cost of measuring devices without sacrificing the tracking
performance.
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