International Journal of Innovative
Computing, Information and Control ICIC International ©)2016 ISSN 1349-4198
Volume 12, Number 3, June 2016 pp. 847-857

MFGP-MINER: MAXIMAL FREQUENT GRAPH PATTERN MINING
FOR FAULT LOCALIZATION

JiaApoNG RENM2, HuirANG WANGH?* YUE MAM2, HongDoU HE'?
)))
AND JUN DonNg!?

LCollege of Information Science and Engineering
Yanshan University
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China
{jdren; dongjun }@ysu.edu.cn; *Corresponding author: 1215847706fang@sina.com
my824808617@163.com; hehondou@yeah.net

Received September 2015; revised January 2016

ABSTRACT. With the increased workload and difficulty in software maintenance, the
researches in automatic debug and software fault localization are more significant to im-
prove software quality. This paper presents a simple framework of software fault localiza-
tion. Firstly, software execution sequences are collected on the granularity level of basic
blocks during the software testing phase. These software execution sequences are mapped
as directed software execution graphs. Next, Dynamic BitCode (DBC) data structure is
constructed by scanning the graph database just once. In order to discover feature nodes
with software faults, this paper proposes MFGP-Miner (mazimal frequent graph pattern
mining) algorithm to mine mazimal frequent graph patterns based on Dynamic BitCode
(DBC) data structure. Finally, taking account of the executions set and the executions
complementary set, a measure based on Ochiai is designed to calculate the suspicious
value of feature nodes. These feature nodes are ranked to help programmers to find faults
in descending order according to the suspicious value. Siemens benchmark test suite is
used in our experiments, and experimental results display that our approach is both effi-
cient and effective for locating software faults.

Keywords: Software fault localization, Software execution graph, Maximal frequent
graph pattern, Dynamic BitCode

1. Introduction. As we know, the most time is spent on software testing and debugging
in software development and maintenance. Software fault localization is the most difficult
and time-consuming task in the process of software debugging [1]. Therefore, in order to
increase software stability and reduce the amount of time required to debug manually,
many researchers have studied automatic and effective techniques for fault localization.
Recently a lot of researches on software fault localization help programmers to locate
faults such as model-based methods, statistical spectrum analysis and program slicing. L.
Mariani et al. [2] presented a static analysis technique SEIM to extract interaction models.
In SEIM, a refinement strategy is included to identify infeasible elements from statically
derived models for analyzing service-based applications. With the purpose of locating
faults, Z. Zhang et al. [3] introduced a CP model by abstracting program executions
as edge profiles. CP captures suspicious propagation of program states and calculates
suspiciousness scores of these program states to identify faults. Since CP considers the
structural relationships among statements, it is more effective than coverage-based fault
localization. However, in order to analyze data dependence, G. K. Baah et al. [4] presented
a model called probabilistic program dependence graph (PPDG). The RankCP algorithm

847

848 J. REN, H. WANG, Y. MA, H. HE AND J. DONG

is proposed to rank probabilistic statements for fault localization in PPDG. Whereas
analyzing data dependence is a time-consuming process, D. Gong et al. [5] proposed a
two-step test-suite reduction approach by taking into account coverage information and
concrete execution paths. As this approach removes test cases having little effect on
fault localization, it is more effective than traditional techniques. In addition, D. Gong
et al. [6] put forward an SDPM model to obtain behavior state information. SDPM
analyzes the impact of control flow dependence between statements, and distinguishes
the state dependencies of program elements in passed and failed test cases. SDPM is
an effective model for fault localization even though few test cases are available. By
combining spectrum fault localization (SFL) with slicing-hitting-set-computation (SHSC),
B. Hofer and F. Wotawa [7] introduced a SENDYS method. Thus, SENDYS enhances
the ability of fault localization and solves these disadvantages of SFL. and SHSC. In order
to locate faults, S. K. Sahoo et al. [8] proposed an automated bug diagnosis technique
by combining program invariants, delta debugging and dynamic program slicing. Two
filtering heuristic methods are presented to reduce false positives and the number of
candidate bug signatures. Wong et al. [9] proposed the DStar(D*) technique based
on the Kulezynski coefficient for locating faults. DStar(D*) contributes to identifying
multiple fault locations automatically without regard to the prior knowledge of program
structure and program semantics. Statistical fault localization approaches need to collect
program executions from end-user. However, it is unrealistic that end-users run fully
instrumented programs. Thus, Z. Zuo et al. [10] put forward an iterative statistical bug
isolation approach based on systematic hierarchical instrumentation (HI). Coarse-grained
pruning and ranking measures are proposed in this approach. The HI technique prunes
some unnecessary instrumentation and decreases the performance cost of end-users. In
order to locate complex faults, X. Wang and Y. Liu [11] presented a hierarchical multiple
predicate switching (HMPS) method based on instrumentation method and switching
combination strategies. By utilizing spectrum-based fault localization techniques, HMPS
narrows the scope for identifying critical predicates.

Software executions can be transformed to call graphs. Analyzing software execution
graph can find faults early and reduce software maintenance cost. H. Cheng et al. [12]
transformed program execution paths to software behavior graphs. In correct and false
software behavior graphs, the Top-K LEAP algorithm is proposed to extract the most
discriminative subgraphs as bug signatures based on LEAP algorithm [13]. Nevertheless,
Top-K LEAP does not consider the influence from the occurrences number of subgraph on
fault localization. Thus, S. Parsa et al. [14] presented a discriminative function F-Scored
to calculate discriminative value of subgraphs on weighted graph instead of un-weighted
graph. F-Scored has higher precision and recall than RAPID and Top-K LEAP. Despite
all this, some less frequent subgraphs may be obtained by mining discriminative subgraph.
For solving this issue, F. Eichinger et al. [15, 16] proposed a software fault localization
framework using closeGraph [17]. This framework generates software call graphs by re-
duction techniques and combines information entropy and structure score to improve the
accuracy of fault localization. However, above methods only apply to single-threaded
programs rather than multithreaded programs. In order to locate faults in multithreaded
programs, F. Eichinger [18] introduced a general method for defect localization by re-
ducing program executions to call graphs. They calculate the defective probability of
methods. Those methods are ranked according to the probability for presenting to devel-
opers. Tree also can represent software execution process. Therefore, Narouei et al. [19]
developed a heuristic method DLLMiner based on DLL dependency tree. DLLMiner can
extract coarse-grain behavior features by mining closed frequent subtrees. These behavior
features are regarded as effective fault signatures.

MFGP-MINER: MAXIMAL FREQUENT GRAPH PATTERN MINING 849

Previous works use closeGraph algorithm to locate faults. However, the closeGraph
is not suitable for large-scale software. In the FP-GraphMiner algorithm [20], BitCode
is proposed to mine frequent subgraphs by scanning graph databases once. However,
BitCode of an edge is a fixed size (equal to number of graphs in graph databases). It leads
to expending more memory for storing BitC'ode of edges and the time for computing the
frequency of edges and subgraph. Thus, we introduce Dynamic BitCode data structure
for storing edges with an unfixed size by scanning graph databases once in the whole
mining process. This paper computes the frequency which is obtained by only computing
the number of bits 1 in Dynamic BitCode. We put forward an MFGP-Miner algorithm
based on Dynamic BitCode data structure. Advantages of this algorithm are based on
the intersection between two subgraphs for fast computing the support. Ochiai similarity
coefficient [21] is used to calculate the suspicious value which only supposes that faults
appear at the failing executions. Nevertheless, the passing executions may not appear
faults. By taking into account these two cases, we define a measure to calculate the
suspicious value of feature nodes for locating faults accurately and quickly.

In summary the following contributions have been made in this paper.

e In order to analyze program executions, we obtain software execution sequences at
the granularity level of basic blocks. We adopt a graph representation for locating
faults easily that avoids repeated substructures of software execution sequences.

e Dynamic BitCode data structure is devised to store graph information by visit-
ing graph database only once. We construct a potential maximal frequent graph
pattern tree (PMFGP-Tree) structure based on Dynamic BitCode data structure.
By traversing PMFGP-Tree, an efficient maximal frequent graph pattern mining
(MFGP-Miner) algorithm is presented to find all maximal frequent graph patterns.

e As Ochiai only considers the executions set to calculate suspicious values, a measure
is designed by taking account of the execution set and complementary execution set.

The remaining of the paper is organized as follows. Section 2 describes some definitions
and formulas. Section 3 presents a framework of fault localization with maximal frequent
graph pattern mining and a measure for calculating the suspicious value. Experiments
and analysis are shown in Section 4. Section 5 summarizes the paper.

2. Preliminary Concepts. A software execution graph ¢ is denoted as g = (V, E)
corresponding to a software execution sequences, where V' is a set of vertices and £ C
V x V is a set of directed edges. Figure 1 is a sample of graph database consisting of four
simple graphs.

The vertices represent program entities during program are executed. The edges repre-
sent call relationships among program entities respectively. If a program entity e; calls the

FIGURE 1. A sample of graph database

850 J. REN, H. WANG, Y. MA, H. HE AND J. DONG

program entity e;, there is a directed edge from e; to e;. All edges are unique in a software
execution graph. Program entities contain functions, basic blocks and statements.

A maximal frequent graph pattern can be defined as follows. Let D be a graph database
and minSup is a minimum support threshold. The support of a graph pattern g, denoted
as o(g), is the percentage of graphs in D containing g and D. ¢ is a frequent graph pattern
if o(g) > minSup. Formally, a graph g is called a maximal frequent graph pattern if it is
frequent, and it does not have any frequent graph pattern g; such that g C g,.

As described above, BitCode of each graph pattern or edge has the fixed size | D], so it
takes up more memory and time. In fact, if BitCode of a graph pattern or an edge contains
many bits 0, it can be simplified to reduce space and time. Therefore, Dynamic BitCode
data structure is proposed to solve the problem.

Definition 2.1. Dynamic BitCode (DBC). DBC of an edge e is DBC(e) = {indez,
BitCode}, where index is the position of the first nonzero bit in BitCode, and BitCode is
a bit string in BitCode after removing 0 from first position to index and from the position
where the last bit is 1 in BitCode to last position. DBC' of a graph pattern likes this.

Definition 2.2. Frequency of Edge. Frequency of an edge e denoted as fre(e) is the
number of 1 in BitCode of DBC'. Similarly, frequency of a graph pattern can be defined.

The DBCPattern structure combines a DBC' structure with a representation of graph
information. Each DBCPattern consists of two parts: subgraph information and a DBC'.
A DBC represents the positions of the subgraph which appears in the graph database.

Pattern-Extension (DBC,, DBC,): we start to do AND operation between DBC, and
DBC5 from the index which is the greater index value in two index values of them. If
the result is 0, index is increased by one until attaining the first nonzero value. We then
start to do AND operation for each bit of BitC'ode from this index until the result of the
rest bits is 0. A new DBC' is obtained.

Example 2.1. As shown in Figure 1, BitCode(bd) = 1011, BitCode(cf) = 0001,
DBC(bd) = {0,1011}, DBC(cf) = {3,1}, fre(bd) = 3. Assume that we do AND
operation between DBC(bd) = {0,1011} and DBC(cf) = {3,1}. Because index 1 > 0,

it implies index = 1. If index = 1, we have 0&1 = 0, so index = 2. In the same way,
1&0 =0, 1&1 =1, so index = 3. Next, new DBC' is {3,1}.

Definition 2.3. Potential Mazimal Frequent Graph Pattern Tree (PMFGP-Tree). The
potential frequent graph patterns are stored in PMFGP-Tree, which is a multi-tree. The
node of the tree contains three parts, edge list, frequency and node-link, where all edges
in edge list constitute a graph pattern, the frequency is the frequency of the graph pattern,
node-link is a pointer to its child node. The root node of the tree is defined by ¢.

TP and TF are defined as the passing and failing executions respectively. Given a
feature node n in software, P(n) and F(n) represent the number of n existing in the
passing and failing executions respectively; NP(n) and NF'(n) represent the number of
n not existing in the passing and failing executions respectively.

Ochiai is used to calculate the suspicious value for fault localization [21], given in
Equation (1).

V(F(n) + NF(n)) - (F(n) + P(n))

Since the passing executions may not execute feature node that leads to a fault, a
coefficient is defined to compute the suspicious value of feature nodes, given in Equation

Ochiai(n) =

(1)

MFGP-MINER: MAXIMAL FREQUENT GRAPH PATTERN MINING 851

1 NF(n) =0,
Un_Ochiai(n) = NP(n) ther. (2)
V(P(n) + NP(n)) - (F(n) + P(n))

A measure called Suspicious is devised to calculate the suspicious value of feature nodes
by combining execution sets with execution complementary set, given in Equation (3).
Ochiai(n) + Un_Ochiai(n)

Suspicious(n) = 5 : (3)

3. A Framework of Locating Software Fault. This framework of software fault lo-
calization which is described in Algorithm 1 has three phases mainly. First, software
execution sequences are collected during software executing. These software execution
sequences have a wealth of information for locating software faults. Every software execu-
tion sequence is assigned a label (passing, failing), which is determined by comparing and
analyzing sequence structure similarity. As software execution sequences are too long,
they are reduced to construct software execution graphs. Next, for a given support, the
maximal frequent graph pattern mining (MFGP-Miner) algorithm is used to find the fea-
tures which may contain faults. Finally, a measure to calculate the suspicious value of
feature nodes is proposed to help developers to locate faults quickly.

Algorithm 1 A Software Fault Localization Framework

Input: software execution sequences S, support o, graph database D

Output: Feature node n that contains faults

- D=¢

: for each trace s € S do
assign a label (passing, failing) to s;
transform s to a software execution graph g;
D =DUyg;

end for

Call MFGP - Miner(D, 0);

calculate the suspicious value of all feature nodes;

descending sort feature nodes by suspicious value;

find feature node n that contains faults;

: return n;

—_ =
—_ O

Since each edge is distinct for a software execution graph, a graph database is repre-
sented as edge list L. Each edge is expressed as < e, DBC(e) > in EL. EL is sorted in
descending order according to the DBC of edge. Edges that satisfy fre(edge) > o - |D)|
are selected from F'L as follows.

Algorithm 2 shows the pseudo code of MFGP-Miner algorithm in the framework. The
algorithm first scans the database D only once, and D is represented as edge list £ L where
each edge is expressed as < e, DBC'(e) > (lines 2-6). The list is sorted in descending order
according to the DBC of edge to reduce the steps in the extension phase (line 7). Then
the algorithm finds frequent patterns with an edge and then stores them in PMFGP-Tree
as child nodes of the root (line 8). Then, according to the child nodes of the root, DBC-
Pattern-Extension algorithm (Algorithm 3) is called to construct PMFGP-Tree (lines
9-11). All frequent graph patterns can be obtained by traversing PMFGP-Tree (lines
10-13).

852 J. REN, H. WANG, Y. MA, H. HE AND J. DONG

Algorithm 2 MFGP-Miner Algorithm

Input: graph database D, support o
Output: All maximal frequent graph patterns F'

1: F'= ¢, PMFGP-Tree.root = ¢, DEL = ¢;

2: for each distinct edge ¢; € D do

3: if fre(e;) > o - |D| then

4: insert < e;, DBC(e;) > into E'L;

5: end if

6: end for

7: descending sort E'L by frequency;

8: add F'L to child node of PMFGP-Tree.root;

9: Call DBC-Pattern-Extension(subNode, o);
10: if PMFGP-Tree.root.getChildren() != null then
11: Call TraverseTree(PMFGP-Tree, PMFGP-Tree.root, F);
12: end if

13: return [

Algorithm 3 DBC-Pattern-Extension(root, minSup)

Input: node N, support o

Output: A set of maximal frequent graph patterns root
1: Let nodelist = child node of N;
2: for each n; in nodelist do
3: for each n; in nodelist, i+ 1 < j < |nodelist| do

4: if fre(n;; = Pattern-Extension(n;,n;))> o - |S| then

5: add n;; to child node of n;;

6: end if

7: end for

8: Call DBC-Pattern-Extension(n;, 0);

9: if n;.getChildren() != null then

10: n;.label = non-max; // n; is not the maximal frequent graph pattern
11: end if

12: end for

Algorithm 3 shows that DBC-Pattern-Extension algorithm is called by the MFGP-
Miner algorithm. If the frequency of extended frequent graph pattern using Pattern-
Extension approach is more than o - |D|, the extended pattern is a child node of n;.
The process executes recursively (line 12) until no maximal frequent graph patterns are
generated. If the node has children, it will be not a maximal frequent graph pattern, so
the label of the node is set to non-max.

The process of traversing PMFGP-Tree is presented in Algorithm 4. PMFGP-Tree is
traversed by DFS strategy to find all maximal frequent graph patterns. If the label of the
node is non-max, we will call the TraverseTree algorithm recursively; otherwise, the node
is a maximal frequent graph pattern and is added to F'.

The MFGP-Miner algorithm uses DBC' data structure and graph information to mine
maximal frequent graph patterns. The MFGP-Miner algorithm is split into two main
phases: (1) the graph database is converted into DBCPattern structure, where each DBC-
Pattern stores the positions of frequent graph patterns appearing in the graph database;
(2) frequent graph patterns are generated and verified, and graphs which are not satisfied

MFGP-MINER: MAXIMAL FREQUENT GRAPH PATTERN MINING 853

Algorithm 4 TraverseTree(PMFGP-Tree, root, F)

Input: PMFGP-Tree, node N, F

Output: All maximal frequent graph patterns set F'
1: if N.getChildren() != null then

2 for each child ¢; € N.getChildren() do
3: if ¢;.label '= non-max then

4: add ¢; to F;
)

6

7

end if
Call TraverseTree(PMFGP-Tree, ¢;, F);
end for
8: end if
9: return F’;

frequency threshold are pruned early. The MFGP-Miner algorithm scans the graph data-
base only once and calculates the frequency based on the DBC' to generate new patterns.
Because of using the compacted structure, the MFGP-Miner algorithm is more efficient
to mine maximal frequent graph patterns in terms of runtime and memory usage.

All feature nodes can be obtained in maximal frequent graph patterns. We calculate
the suspicious value of feature nodes by using AllOchiai and rank these feature nodes in
descending order according to the suspicious value. Software developers can find faults
by analyzing source code and these feature nodes.

4. Experiment. In this section, our proposed Suspicious compared the performance
with Ochiai, Jaccard and Tarantula which are efficient statistical measures to statistical
fault location. Java is employed to implement these algorithms. We run all experiments
on 64 bit Windows 7 system, Xeon CPU E5-2603 @1.80GHz, 8G Memory.

4.1. Experimental data sets and parameter setting. Since a lot of methods use
Siemens benchmark test suite as experimental subject in previous researches of fault
localization, we also apply Siemens benchmark test suite as our experimental data set.
Siemens contains seven programs and each program has a correct version, a number of
wrong version and test cases. Table 1 provides an overview about relevant information of
programs in Siemens benchmark test suite. As some predefined faults appear in header
file and some faults are not detected by the available test cases in some version, we ignore
them. Thus, versions 4, 6 of printtokens version 1, 5, 6, 9 of schedule2 and version 32 of
replace are not considered. We employ 125 versions in our experiments at last. In our
experiments, the support is close to the percentage of failing executions and all executions.

TABLE 1. Siemens benchmark test suite

Program Faulty Versions LOC Basic Blocks Test Cases Description
printtokens 7 565 107 4130 lexical analyzer
printtokens?2 10 510 106 4115 lexical analyzer

replace 32 063 124 0H42 pattern recognition
schedule 9 412 55 2650 priority scheduler
schedule2 10 307 60 2710 priority scheduler
tcas 41 173 21 1608 altitude separation

totinfo 23 406 45 1052 information measure

854 J. REN, H. WANG, Y. MA, H. HE AND J. DONG

4.2. Result and performance analysis. We use two metrics to evaluate the perfor-
mance of our approach. The first metric is the percentage of codes which is examined
until finding fault in the whole executable codes. If the percentage of faults which are
located is more, it means that the approach is clearly more effective for software fault
localization. The second metric is the average percentage of codes which need not be
examined in seven programs. If the average percentage of code examined is less, it refers
that Suspicious is more efficient to locate faults. Description and analysis are shown as
follows.

Each figure in Figure 2 compares the fault localization efficiency of four approaches
for seven programs respectively. The abscissa represents the percentage of code that is
examined. The ordinate represents the percentage of faults which are located among
amount of code. In order to facilitate the comparison, we demonstrate the percentage of
faults using subsection statistics. Every ten percent constitute a subsection. [0%, 1%] is
the first subsection. It is impossible that the percentage is 0%, whereas if the percentage is
less than 1%, faults can be quickly found. Thus, [0%, 1%] has a good practical significance.
The purpose of combining the numbers of front subsections is to compare the efficiency
clearly. Figure 2(h) implements the percentage of faults for all the subsection statistics
according to the percentage of codes which is examined in seven programs.

In our experiments, almost all faults can be localized. Since the given support is
greater, we cannot find some faults in some versions unless we check all code. In order
to solve the above problem, we can reduce the support. We can discover that the results
of Suspicious are superior to Ochiai, Jaccard and Tarantula in Figures 2(b), 2(e), 2(f),
2(g). For example, we only examine the code size of 40% to find 80% faults in Figure 2(f).
As shown in Figure 2(g), if all faults are checked out unless few faults need to examine
all code, Suspicious only need to check the code size of 40%, while Ochiai, Jaccard and
Tarantula require to check 90% code size. In Figure 2(d), we can find that Suspicious is
slightly better than Ochiai, Jaccard and Tarantula. We use a more comprehensive view
to present the performance of our approach in Figure 2(h). By observing and analyzing
the trend of Figure 2(h), we can draw a conclusion that Suspicious is better than Ochiai,
Jaccard and Tarantula with the increasing percentage. Figure 2 proves that Suspicious
is better than Ochiai, Jaccard and Tarantula in locating software fault. That is because
Suspicious considers that feature node containing faults may not be executed in passing
executions; nevertheless Ochiai, Jaccard and Tarantula ignore this case.

Table 2 shows the average percentage of code that must be examined in all versions of
every program by using different fault localization approaches. This table presents that
the performance of Suspicious is better than Ochiai, Jaccard and Tarantula in printto-
ken2, replace, schedule2, tacs, and totinfo obviously. Suspicious is larger than Jaccard,
Tarantula, but as good as Ochiai in printtoken. And Suspicious is superior to Jaccard,
Ochias, but slightly poorer than Tarantula in schedule. In general, it refers that Suspi-
cious performs better than Ochiai, Tarantula and Jaccard to find faults. Therefore, it
shows that using Suspicious can improve the capability of fault localization, and it can
be applied to improve software quality.

5. Conclusion. In this paper, we propose a software fault localization framework. This
framework contains three main sections. (1) Software execution sequences are obtained at
the granularity level of basic blocks and categorized as the passing and failing execution
sequences by analyzing and comparing sequence structure similarity. Each software ex-
ecution sequence is reduced to a software execution graph for compact representation of
program execution. (2) A potential maximal frequent graph pattern tree (PMFGP-Tree)

% of faults located % of faults located % of faults located

Yo of faults loeated

120%
100% | -/!
B - * * * * - o
6%
4l —+—Jaccard
=¥ Tarantula
208 = Ochiai
—— Suspicious
0% " L L L " L L N L
0% 10% 20% 30% 40% 350% 60% T70°% 80% 90% 100%
Y of code examined
(a) The percentage of printtokens
120%
100% / / /
8P |
6P
40% F == Jaccard
== Tarantula
s | —4— Ochiai
—#i— Suspicious
0% . A . L A . . . A
0% 10% 20% 30% 40% 350°% 60% T0% 8% 90% 100%
% of code examined
(c) The percentage of schedule
1200

100%%

= Jaccard
== Tarantula
0% —— Ochiai
—8— Suspicious
i
e 0% 0% 30% 4% 0% 60% T0% B0% 9%
% of code examined
(e) The percentage of replace
120%
100°%
80%
0%
4% —— Jaceard
—¥—Tarantula
20% ==de=Ochiai
== Suspicious
*s ™ " " " " i m " "
MPe 10% 20% 30% 40% 30% 60% T0% 80% 90%

% of code examined

(g) The percentage of totinfo

10084

MFGP-MINER: MAXIMAL FREQUENT

% of faults located % of faults located % of faults located

% of faults located

GRAPH PATTERN MINING

120%
100% | -
80% |
o0%
0% F = Jaccard
—#—=Tarantula
20% 4 4= Ochiai
4 —s— Suspici
0% L " L . L L L L)
0% 10% 20% 30% 400 50% 60% T70% 80% 90% 100%
% of code examined
(b) The percentage of printtokens2
120%
100% F o e -
80% P
o0%
40% =4 Jaccard
=#="Tarantula
20% —#—Ochiai
~¥—Suspicious
0% L " L L L L L L L
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined
(d) The percentage of schedule2
120%
100%
0%
60%
40% =+ Jaccard
= Tarantula
20% &= Ochiai
P —¥— Suspicious
% i A . A
Po 10% 0% 30% 40% 0% 60% T0% % W%
% of code examined
(f) The percentage of tcas
120P%
1008 |
B0% [
6%
40% === Juccard
—¥#—Tarantula
20% ==d=—(chiai
—#— Suspicious
0%

1)

10% 20% 30% 40%

50% 60% T0%
% of code examined

(h) The percentage of all

FIGURE 2. The percentage of codes examined on Siemens

80% 90% 100%

856 J. REN, H. WANG, Y. MA, H. HE AND J. DONG

TABLE 2. The average percentage of code checked on Siemens

Program Suspicious Ochiai Jaccard Tarantula

printtokens 20.80% 20.80% 25.00% 27.20%
printtokens2 7.60% 13.50% 18.60% 15.70%
replace 13.77% 14.26% 15.00% 15.29%
schedule 11.00% 20.00% 15.80% 5.00%
schedule2 11.00% 12.60% 11.20% 11.20%

tcas 26.12% 36.10% 38.54% 38.93%
totinfo 12.78% 18.91% 19.65% 20.43%
all 14.72% 19.45% 20.54% 19.11%

is devised by employing Dynamic BitCode data structure which is generated by access-
ing graph database only once. The MFGP-Miner algorithm is proposed to mine maximal
frequent graph patterns based on PMFGP-Tree. Basic blocks which are frequently exe-
cuted are found as feature nodes using MEGP-Miner. (3) Based on Ochiai, a measure is
designed to calculate the suspicious value of feature nodes by taking into consideration
both executions set and complementary set of executions. These feature nodes are sorted
in descending order according to the suspicious value for locating faults rapidly and accu-
rately. At last, experimental results demonstrate that our approach is efficient on Siemens
benchmark test suite. Therefore, our approach can facilitate software developers to locate
faults efficiently and reduce their debugging time for large-scale software.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61170190, No. 61472341 and the Natural Science Foun-
dation of Hebei Province, China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326. Authors are grateful to receive the helpful comments and suggestions
of the reviewers.

REFERENCES

[1] 1. Vessey, Expertise in debugging computer programs, Information Systems Working Papers Series,
pp-459-494, 1985.

[2] L. Mariani, M. Pezze, O. Riganelli and M. Santoro, SEIM: Static inference of interaction models,
Proc. of the 2nd International Workshop on Principles of Engineering Service-Oriented Systems,
pp-22-28, 2010.

[3] Z. Zhang, K. Wing, T. Tse, J. Bo and X. Wang, Capturing propagation of infected program states,
Proc. of the Tth Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp.43-52, 2009.

[4] G. K. Baah, A. Podguiski and M. J. Harrold, The probabilistic program dependence graph and its
application to fault diagnosis, IEEE Trans. Software Engineering, pp.528-545, 2010.

[5] D. Gong, T. Wang, X. Su and P. Ma, A test-suite reduction approach to improving fault-localization
effectiveness, Computer Languages, Systems € Structures, pp.95-108, 2013.

[6] D. Gong, X. Su and T. Wang, State dependency probabilistic model for fault localization, Informa-
tion and Software Technology, pp.430-445, 2015.

[7] B. Hofer and F. Wotawa, Spectrum enhanced dynamic slicing for better fault localization, European
Conference on Artificial Intelligence, pp.420-425, 2012.

[8] S. K. Sahoo, J. Criswell, C. Geigle and V. Adve, Using likely invariants for automated software fault
localization, ACM SIGARCH Computer Architecture News, pp.139-151, 2013.

[9] W. E. Wong, V. Debroy, Y. Li and R. Gao, Software fault localization using DStar (D*), Proc. of
the IEEE 6th International Conference on Software Security and Reliability, pp.21-30, 2012.

[10] Z. Zuo and S. C. Khoo, Iterative statistical bug isolation via hierarchical instrumentation, Technial
Report TRV7/14, School of Computing, National University of Singapore, 2014.

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

MFGP-MINER: MAXIMAL FREQUENT GRAPH PATTERN MINING 857

X. Wang and Y. Liu, Automated fault localization via hierarchical multiple predicate switching,
Journal of Systems and Software, pp.69-81, 2015.

H. Cheng, D. Lo, Y. Zhou, X. Wang and X. Yan, Identifying bug signatures using discriminative
graph mining, Proc. of the International Symposium on Software Testing and Analysis, pp.141-152,
2009.

X. Yan, H. Cheng, J. Han and P. S. Yu, Mining significant graph patterns by leap search, Proc. of
the ACM SIGMOD International Conference on Management of Data, pp.433-444, 2008.

S. Parsa, S. A. Naree and N. E. Koopaei, Software fault localization via mining execution graphs,
International Conference on Computational Science and Its Applications, pp.610-623, 2011.

F. Eichinger, K. Bohm and M. Huber, Improved software fault detection with graph mining, Proc.
of the 6th International Workshop on Mining and Learning with Graphs, 2008.

F. Eichinger, K. Béhm and M. Huber, Mining edge-weighted call graphs to localise software bugs,
Proc. of the Machine Learning and Knowledge Discovery in Databases, pp.333-348, 2008.

X. Yan and J. Han, CloseGraph: Mining closed frequent graph patterns, Proc. of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.286-295, 2003.
F. Eichinger, V. Pankratius and K. Béhm, Data mining for defects in multicore applications: An
entropy-based call-graph technique, Concurrency and Computation: Practice and Experience, pp.1-
20, 2014.

M. Narouei, M. Ahmadi and G. Giacinto, DLLMiner: Structural mining for malware detection,
Security and Communication Networks, 2015.

R. Vijayalakshmi, R. Nadarajan, J. F. Roddick, M. Thilaga and P. Nirmala, FP-GraphMiner: A
fast frequent pattern mining algorithm for network graphs, Journal of Graph Algorithms and Appli-
cations, vol.15, no.6, pp.753-776, 2011.

D. Hao, L. Zhang, Y. Pan et al., On similarity-awareness in testing-based fault localization, Auto-
mated Software Engineering, pp.207-249, 2008.

