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ABSTRACT. The single row facility layout problem (SRFLP) is an NP-hard problem of
arranging facilities with given lengths on a line, while minimizing the total cost associated
with the flows between all pairs of facilities. In this paper, we present a multi-start local
search algorithm to solve the SRFLP. A diversification generator based on a probability
function is proposed to construct good quality and diverse multiple starting solutions. A
fast local search including first-improvement procedure and fast evaluation technique is
adopted to enhance the exploitation ability. An efficient restarting mechanism is applied
to exploiting the potential search space. Computational experiments show that the pro-
posed algorithm is competitive with other heuristics for solving the SRFLP.
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1. Introduction. The single row facility layout problem (SRFLP) seeks to arrange some
facilities in a line with the purpose of minimizing the weighted sum of the distances be-
tween all pairs of facilities. It has numerous practical applications including the arrange-
ment of rooms in hospitals, the arrangement of departments in office buildings [1], the
assignment of disk cylinders to files in computer storage [2], and the arrangement of ma-
chines in flexible manufacturing systems [3, 4]. So the SRFLP has attracted significant
attention in recent years, since the problem was first proposed by Simmons in 1969 [1].
Much research has been done in obtaining an exact solution to the problem [5]. A branch
and bound algorithm was reported to produce exact solutions for instances of size up to
11 [1]. Integer programming approaches were applied to finding a better model for the
SRFLP [6, 7, 8, 9]. A dynamic programming was able to solve SRFLP instances with 20
facilities [10]. Amaral and Letchford presented a polyhedral approach with branch and
cut to yield excellent lower and upper bounds very quickly for instances with 30 facilities,
but computing times are quite long for larger instances [11]. Even though semidefinite
programming approaches were reported to produce exact solutions for large instances,
they require much computational time [12, 13, 14, 15]. The SRFLP is known to be NP-
hard [16], so exact methods are computationally prohibitive to solve large instances. To
solve large size SRFLP instances in acceptable time, researchers have focused on heuristic
solution methods [5].

Heragu and Alfa reported an experimental analysis of simulated annealing based algo-
rithms. A modified penalty method was applied to generating the initial solution [17].
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De Alvarenga et al. presented simulated annealing and tabu search procedures to solve
a class of the facility layout problems in the context of manufactures environment. They
observed that the processing time of the tabu search was smaller than the simulated an-
nealing [18]. Solimanpur et al. proposed an ant colony optimization algorithm to solve the
SRFLP in a non-linear 0-1 mathematical programming model [19]. Kumar et al. applied
a scatter search algorithm to searching the optimum solution by a reference set containing
best solutions and diverse solutions [20]. Samarghandi et al. developed a particle swarm
optimization algorithm based on factoradic coding technique. The factoradic coding tech-
nique was employed to map the discrete feasible space of the problem into a continuous
space [21]. Samarghandi and Eshghi presented and proved a theorem to find the optimal
solution of a special case of SRFLP. The theorem was utilized to generate a number of
better initial solutions for a tabu algorithm [22]. Kothari and Ghosh introduced two tabu
search implementations, one involving an exhaustive search of the 2-opt neighborhood and
the other involving an exhaustive search of the insertion neighborhood [23]. Datta et al.
developed a permutation-based genetic algorithm. Four techniques were used to initialize
good and diversified individuals [24]. Ou-Yang and Utamima proposed a hybrid estima-
tion of distribution algorithm based on particle swarm optimization and tabu search [25].
Palubeckis proposed a fast local search algorithm based on the developed neighborhood
exploration procedures. It is faster than the best existing local search techniques [26].

From the literature, it can be seen that many algorithms incorporate a local search
procedure. Most of local search procedures probe the best solution in all neighbors of the
current solution. Due to the exhaustive neighborhood search, these best-improvement
local searches are very time consuming. To the flow shop problem, the first-improvement
local search gives significantly better results than the best-improvement, in the same
amount of allowed computation time. [27] is the only study which has applied first-
improvement to the SRFLP, but it deals with SRFLP instances of size up to 30 facilities
only. Two main kinds of neighborhood structures have been used in the local searches
for this problem. The first of them is based on pairwise interchanges of facilities whereas
the second one is based on insertion movement. From [23], it made an observation that
the insertion neighborhood is better than the interchange neighborhood. Clearly, for
an SRFLP instance of size n, O(n?) time will be required to compute the cost of a
neighbor, according to the conventional formula. [23] developed a book-keeping technique
whose time complexity is O(n). However, the technique is used for the best-improvement
local search in fixed order. It is not suitable for the first-improvement local search in
random order. Multi-start strategies are designed to provide diversity of the search and
overcome local optimality [28]. Multi-start strategies hybridized with other heuristics have
been applied to solving some combinatorial optimization problems effectively [29, 30, 31].
Therefore, the primary motivation of this paper is to develop a multi-start algorithm
with local search to solve the SRFLP of large size in competitive time. The local search
procedure probes a first-improvement solution in the insertion neighborhood by random
order. We propose a gain technique to speed up the objective function value calculation
for our local search procedure.

The proposed algorithm combines the advantages of the diversification of multi-start
strategy and the rapidity of first-improvement local search. The multi-start strategy is
responsible for escaping from the local optimum and moving towards new unexplored areas
of the search space. In first-improvement local search, the first profitable solution found is
the one that is accepted, which can often do less computational effort. The computational
results indicate that the proposed MSLSA algorithm is effective and efficient in solving
SRFLP.

The major contributions of the proposed algorithm can be summarized as follows.
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e A diversification generator is proposed to construct good quality and diverse multiple
starting solutions. A probability function utilized in diversification generator is devised
to enhance the diversification.

e We incorporate a fast local search procedure into multi-start framework. The local
search procedure probes a first-improvement neighbor in random order. Its randomness
can explore broader solution areas and prevent search stagnation to some extent. Mean-
while, a gain technique is applied to evaluating the objective function value shortening
the computational time.

e To exploit the potential search space more efficiently, a novel and powerful restarting
mechanism is employed.

The remainder of the paper is organized as follows. The SRFLP is analyzed and
formulated as an unconstrained optimization problem in Section 2. Section 3 describes
the details of the multi-start local search algorithm for the SRFLP. In Section 4, we present
a computational evaluation of the proposed algorithm through benchmark instances, and
compare the result with other heuristics from the literature. Finally, some concluding
remarks of the work are offered in Section 5.

2. The Formulation of the SRFLP Model. Given a set F' = {1,2,--- ,n} of n >
2 facilities, where facility = has length [,, and there is a flow ¢;, between each pair
(x,y) of facilities, z,y € F, x # y, the single row facility layout problem (SRFLP) is
to arrange the facilities in a line with the purpose of minimizing the weighted sum of
the distances between all pairs of facilities. In other words, it is to find a permutation

IT = {m,m, - ,m,} of facilities in F' that minimizes the total cost given by the expression
n—1 n
() = Z Z Crimj iy (1)
i=1 j=i+1

where drr; = lr, /2 + 32, 4o ln, + lx;/2 is the distance between the centroid of facilities
m; and 7; in the arranged permutation II. m; and 7; denote the facilities at the ith and
jth positions in II respectively. For notational convenience we use the notations : and j
to represent 7; and 7; respectively.

3. Multi-Start Local Search Algorithm. Multi-start method is the one that executes
sequential independent searches from multiple initial points in the solution space, and
identifies the best solution from all searches at the end. It is designed to provide diversity
of the search and overcome local optimality. In this section, we will propose a multi-
start algorithm with first-improvement local search for solving the SRFLP. Our proposed
algorithm consists of three steps: diversification generator, local search and speeding up
cost calculation. First, we will introduce a diversification generator to create the initial
population with good and diversified solutions. Then we use a first-improvement local
search to obtain better solutions. To speed up the first-improvement local search, we
propose a different fast cost calculation to reduce the complexity. Finally, the architecture
of our multi-start local search algorithm is described.

3.1. Diversification generator. Diversification significantly contributes to the quality
of solutions in the algorithm. Our algorithm designs L initial permutations for start
exploration to ensure the diversification. They contain L; good solutions and L, diverse
solutions and are stored in a memory called Adaptive Memory (AM). L; and Ly are
determined by the dimension of the instance. The method to generate diversification
initial solutions, called DIS, is described as Algorithm 1.
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Algorithm 1 DIS

Require: An initial seed permutation I1, L, L,.

Ensure: The initial population I P_List with L permutations.
1: set IP_List < ().
2: fori=1to L; do
3 set Pi* < I

4: for j =1to|n/2| do

5: r <— random number chosen from [0, 1];
6: if (r < Lil) then

7 interchange Pi*[j] and Pi*[n — j + 1] ;
8: end if

9: end for

10 set IP_List « IP_List|J{Pi*};

11: end for

12: for i = 1 to L, do

13:  generate a completely random permutation Pi*;
14:  set IP_List <— IP_List|J{Pi*};

15: end for

16: output [ P_List

First, L; good permutations are constructed from a seed permutation. In Theorem 1
[22], suppose that flow ¢,, between each pair of facilities is a constant. When the facilities
are sorted in non-decreasing order of their lengths, as [y < [, < .-+ < [,, the optimum
permutation can be given as follows:

(n)(n—2)-+-(3)(1)(2)-+-(n—3)(n—1), if n is odd or
(n)(n—2)-+-(2)(1)(3) -+ - (n—3)(n— 1), if n is even.

It is noted that the permutations are still optimum by exchanging the locations of
facilities 7 and j, provided that the same number of facilities is at the left and right sides
of 7 and j, respectively. Therefore, we choose the optimum permutation as an initial seed
permutation. The seed permutation is copied as a template for new good permutations.
In the ith template, for each j between 1 and n/2, the facility located at the jth position
is interchanged with the facility located at the (n — j + 1)th position by a probability
function Lil, where ¢ = 1,2,---, L;. The probability function is different from those of
[23, 32]. Tt helps to construct good solutions while maintaining the diversification.

Then, L, permutations are completely randomly generated. It is considered for obtain-

ing a diversified population.

3.2. Local search. The following two kinds of neighborhood structures are often used in
local search procedures for the SRFLP: 2-opt neighborhood and insertion neighborhood.
In the 2-opt neighborhood, a neighbor is formed by interchanging the positions of two
facilities in a permutation. In the insertion neighborhood, a neighbor is formed by remov-
ing a facility from a position and re-inserting it at another position in the permutation.
Prior literature has shown that insertion neighborhood search performs better than 2-opt
neighborhood search [33].

Most of published literature exploited the best-improvement local search to obtain
high quality solutions. Due to the exhaustive neighborhood search, the best improvement
is very time consuming. To the flow shop problem, the first-improvement local search
gives significantly better results than the best-improvement one, in the same amount of
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allowed computation time [34]. Therefore, our local search procedure looks for solutions
by probing the first-improvement solution in the insertion neighborhood.

To increase the diversification, our local search procedure probes neighbors in random
order. Its randomness can explore broader solution areas and prevent search stagnation to
some extent. Let (r,s) be an inserting operation, removing a facility at the rth position
and inserting it to the sth position in the permutation. A random order is generated
based on a pool of inserting operations in the natural order:

{(172)v"' 7(17n)7 (2v1)7 (2v3)7"' 7(2vn)7"' ,(T,S) 7(n_ lan)}a
where r # s, with n X (n — 1) numbers of inserting operations.

We use the first-improvement local search algorithm (FILS) as the improvement me-
thod, and the pseudocode is shown in Algorithm 2. A pool of inserting operations in
the natural order is initialized at line 4. It is used to search the neighbors of the current
solution in random order (lines 6-8). Once the cost of a neighbor is smaller than those of
the current solution, the neighbor is accepted as the current solution and restart the local
search procedure (lines 10-14). When no better neighbor is found among all neighbors of
the current solution, the local search procedure stops. The algorithm is very simple and
effective.

Algorithm 2 FILS

Require: A current solution Sy.
Ensure: The improved solution.

1: set flag < TRUE.

2: while (flag = TRUFE) do

3:  flag + FALSE.

4: initialize a pool of inserting operations in the natural order.
5. fori=1tonx(n—1) do

6: 56 — Sg.

7: select an operation (r, s) from the pool randomly.

8: remove a facility at the rth position and insert it to the sth position in S;.
9: remove the operation from the pool.

10: if (Z(S;) < Z(Sp)) then

11: So — S5

12: flag < TRUE.

13: break.

14: end if

15: end for

16: end while

17: output the improved solution

3.3. Speeding up cost calculation. Clearly, for an SRFLP instance of size n, there
are O(n?) neighbors of a permutation in the insertion neighborhood, and O(n?) time will
be required to compute the cost of a neighbor, according to Equation (1). A single imple-
mentation of the insertion neighborhood requires O(n*) time to search the neighborhood
exhaustively for the best solution. This makes exhaustive neighborhood search for large
SRFLP instances very time consuming. A book-keeping technique is applied to reducing
the complexity to O(n?) time in [23, 33]. However, the technique is used for the best-
improvement local search in fixed order. It is not suitable for our first-improvement local
search in random order. We propose a different fast evaluation technique to reduce the
complexity for our local search.
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Suppose that the neighbor IT* is obtained by moving the facility p from the pth position
and inserting it at the ¢th position in the permutation II, where p < ¢. In fact, some
distances between two facilities in IT* and IT are the same, which avoids having to repeat
all of the computing effort in the implementation. This observation inspires us to propose
a gain technique to get the cost of the neighbor, saving the computation time. The cost
of IT* can be calculated by the expression z(IT*) = z(II) + gain.

SRR N TR S RN S
- U A )
S1 S2 S3
SN I KRR EN S

\ A J \ _
v v

S1 S2 S3

FIGURE 1. Sets partition for the facilities

To explain the gain technique, we partition all facilities in the layout to three distinct
sets, as Figure 1 shown:
1. Set S1 consists of facilities from position 1 to (p — 1);
2. Set S2 consists of facilities from position (p + 1) to ¢. The sum length of facilities in
S2 is denoted by D2, i.e., D2 =3 ., l;;
3. Set S3 consists of facilities from position (¢ + 1) to n.

So, the objective function of the SRFLP can be rewritten as:

AW =D D e+ Y cipdip+ DD cidi+ > Y cigdiy+ Y Cdy

1€S1jESLi<y 1€S1 i€S1jES2 i€S1 j€S3 €S2 (2)
+ E Cpidpi + E E Ci]‘di]‘ + E E Cijdij + E E Ci]‘di]‘.
1€S3 1€52 j€S2,1<j 1€52 j€S3 1€53 jES3,i<)

Observing Figure 1, we can find that the distances {d;;|{i € S1,j € S1,i < j}},
{dijl{i € S1,5 € S3}}, {dyl{i € S2,j € S2,i < j}}, {dij|{i € 93,5 € S3,i < j}} in
IT* are the same as those in II. Those components of the cost function do not need to
be recalculated, which can save time in the implementation. Therefore, we can formulate
the gain as:

gain = z(II*) — z(II)

= Z Cipd;:p + Z Z Cz’jd:j + Z Cpid;i + Z Cpid;i + Z Z Cijd;(j

1€S1 i€S1 jES2 1€S52 i€S3 €52 j€S3
— < E Cipdip + E E Cijdij + E Cpidpi + E Cpidpi + E E Cijdij)
i€S1 1€S1jES2 1€S2 i€S3 1€52 j€S3
= < E Cipdip — Cipdip> + ( Cijdi]- — Cijdij> ( )
i€s1 i€s1 icS1jeS2 icS1jeS2
* *
+ < E Cpidpi — E Cmdm) + ( E Cpidpi — E Cmdm)
€S2 1€S52 i€S3 i€S3

+ (Z > eud; =Y 0> cijdij> .

i€S2 j€S3 i€S2 jES3
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Compared to II, the distance from each facility ¢ € S1 of II* to facility p is increased
by D2, so the following relation is obtained:

gainl = Z Cipdiy — Z Ciplip = Z cipD2. (4)
i€s1 i€S1 i€s1

Compared to II, the distance from each facility ¢ € S1 of II* to each facility j € S2 of
IT* is reduced by Ilp, so we know that:

gain2 =) | Y ey = Y ey == > clp. (5)

1€S1 j€S2 1€S1 j€S2 1€S51 jES2

D2
A
% N
p | ptl i a | ip
N J
N -« J v
dpi d’pi

FIGURE 2. Relationship between dp; and dj; in 52

According to Figure 2, d); +d;; = D2+ [p can be got, and we have the following result:

gain3 = Z Cpity; — Z Cpitly; = Z cpi(D2 +Ip — dy;) — Z Cpilly;

1€S52 1€52 1€S52 1€S52 (6)
=Y (D2 +1p — 2d,).
1€S52

Compared to II, the distance from each facility i € S3 of II* to facility p is reduced by

D2, so we can get:
gaind = Z Cpitly; — Z Cpilpi = — Z cpiD2. (7)

1€S53 1€S53 1€S53

Compared to II, the distance from each facility ¢ € S2 of II* to each facility j € S3 of
IT* is increased by Ip, so we have:

gam5 = Z Z Cz’jd;‘j - Z Z Cijdij = Z Z Ci]‘lp. (8)
1€S52 j€S3 1€52 j€S3 1€S2 j€S3

If p > ¢, set S1 consists of facilities from position 1 to (¢—1), set S2 consists of facilities
from position ¢ to (p— 1), and set S3 consists of facilities from position (p+1) to n. Using
the same method presented above, we can deduce the following result:

gainl = — Z cipD2, gain2 = Z Z cijlp,

i€S1 i€S1j€S2

gain3 = — Z cpi(D2 + Ip — 2d,;),

1€52

gaind = Z cpiD2, gaind = — Z Z cijlp.

i€S3 i€52j€S3
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Finally, we can calculate the gain by the expression
gain = gainl + gain2 + gain3 + gaind + gaind.

It is obvious that the gain technique spends less time than the conventional formula
calculation using Equation (1). It is important to emphasize that our technique is suitable
for the random insertion operation in the first-improvement search.

3.4. The architecture of the proposed algorithm. In this section, we present the
architecture of the multi-start local search algorithm called MSLSA. The pseudo-code
is shown as Algorithm 3.

Algorithm 3 MSLSA

Require: An SRFLP instance with n facilities.
Ensure: The best solution Sgpes:.
1: generate Sgpest using Theorem 1 proposed in [22].
2: set flag < TRUE.
3: while (flag = TRUE) do

4:  set flag + FALSE.

5:  the initial seed permutation IT <= Sgpes:

6:  fill AM with solutions generated by DIS algorithm.
7. fori=1to L do

8: select the 7th solution S; in AM

9: apply local search F'ILS to improving S;
10: obtain an improved solution S}

11: if (Z(S;) < Z(S;)) then

12: Si  SF

13: if (Z(S}) < Z(Sgpest)) then

14: Sgbest < S;

15: set. flag <+ TRUEF.

16: end if

17: end if

18: end for
19: end while
20: output Sgpest

First an initial seed permutation is generated by Theorem 1 in [22], and the incumbent
best solution Sgyes; is set to the initial seed permutation. Then L elite and diverse solutions
are generated from the seed by diversification generator DIS. They are stored in a memory
(AM) and are used as multi-start points. At each iteration, the first-improvement local
search FILS is applied to improving each solution S; in AM. The improved solution of S;
is S7. If the objective function value of S} is lower than that of S;, S; is updated by S;.
When L solutions in AM are all explored by FILS, an iteration of MSLSA is finished. In
this iteration, the incumbent best solution Sy is found and recorded. The algorithm is
terminated when the incumbent best solution Sy, has not been improved in an iteration.
Otherwise, the restarting mechanism works: the improved solution Sy, is accepted as
a new seed permutation; the solutions of AM are regenerated from the new seed by DIS
and next iteration restarts. After the MSLSA algorithm is terminated, a (near) global
optimal solution can be derived from Sgpes:.
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4. Computational Experiments. To evaluate the performance of the proposed algo-
rithm, we present the results of computational experiments on benchmark instances that
vary in size from 60 to 110 facilities. The instances include three series as follows:

(1) Anjos instances, first reported by Anjos et al. (2005), divided into 4 sets, each
containing 5 instances, of sizes 60, 70, 75 and 80, respectively;

(2) sko instances, first reported by Anjos and Yen (2009), including four sets of five
instances each of size 64, 72, 81, and 100;

(3) Amaral instances, proposed by Letchford and Amaral (2013), including a set of
three instances of size 110.

These benchmark instances have been widely used to test the algorithms for SRFLP in
the literature. Our algorithm was coded in Microsoft Visual C++ and run on a notebook
PC equipped with Intel Core i3-2350M 2.30GHz CPU and 4 GB RAM. Since heuristics
are probabilistic, it is usual to run implementations multiple times for each instance and
report the best results from these runs, like 100 times in [23] and 200 times in [35]. We
run implementations 50 times per instance. Based on initial experiments, the parameters
of the MSLSA for the problem are set as follows: L; = [0.6n], Ly = [0.4n].

4.1. Testing of gain technique. The first experiment is aimed at quantifying the per-
formance of gain technique for saving time. To evaluate the performance of the technique,
we tested it on nine benchmark instances of sizes 60, 64, 70, 72, 75, 80, 81, 100 and 110.
The MSLSA algorithm was run 50 times with cost calculations by Equation (1) and
Equation (3) respectively. The average computation time is shown in Table 1.

TABLE 1. Comparison of execution time (second) for two cost calculations

Instance Size | Conventional formula | Gain technique | Reduce
Anjos-60-05 60 34.80 11.39 67.27%
Anjos-70-05 70 87.66 26.07 70.26%
Anjos-75-05 75 137.58 46.40 66.27%
Anjos-80-05 80 186.50 59.94 67.86%

sko-64-05 64 76.42 24.02 68.56%

sko-72-05 72 179.63 60.21 66.48%

sko-81-05 81 338.21 110.10 67.44%
sko-100-05 100 1184.02 355.56 69.97%

Amaral-110-03 | 110 1747.43 529.71 69.68%

Table 1 presents a comparison of the computation time with two kinds of cost calcu-
lations: conventional formula calculation by Equation (1) and gain technique calculation
by Equation (3). The first column records the name of the instance, with its size in the
second column. Columns 3 and 4 refer to the computation time of the conventional for-
mula and of the gain technique, respectively. The fifth column exhibits the percentage of
the gain technique in reducing time when compared to the conventional formula calcula-
tion. It shows that the gain technique requires about 68% less time than the conventional
formula calculation. These results clearly demonstrate the effectiveness of the speed up
technique presented in Section 2.3.

4.2. Comparison on Anjos instances. We conducted the second experiment to com-
pare the MSLSA with three good and recently published algorithms on Anjos instances.
They are the permutation-based genetic algorithm (PGA) by Datta et al. [24], the hy-
brid genetic algorithm (HGA) by Ozcelik [36], and the scatter search algorithm (SSA) by
Kothari and Ghosh [32].
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Table 2 presents the comparison of solution costs with MSLSA and the other three
algorithms for the SRFLP on the 20 Anjos instances. The table identifies the instance
by its name and size n. Then we provide the best layout costs of MSLSA and the other
three approaches. The results in Table 2 show that the output costs of MSLSA are equal
to the best costs in the literature for all 20 instances. Table 3 reveals the comparison of
the average computational time with MSLSA and the other three algorithms. The results
show our algorithm is obviously faster than other algorithms for these instances.

TABLE 2. Comparison of solution costs for Anjos instances

Instance | Size PGA HGA SSA MSLSA | Times
Anjos-60-01 | 60 |1,477,834.0|1,477,834.0 | 1,477,834.0 | 1,477,834.0 | 21
Anjos-60-02 | 60 | 841,792.0 | 841,776.0 | 841,776.0 | 841,776.0 30
Anjos-60-03 | 60 | 648,337.5 | 648,337.5 | 648,337.5 | 648,337.5 15
Anjos-60-04 | 60 | 398,468.0 | 398,406.0 | 398,406.0 | 398,406.0 20
Anjos-60-05 | 60 | 318,805.0 | 318,805.0 | 318,805.0 | 318,805.0 26
Anjos-70-01 | 70 | 1,528,621.0 | 1,528,537.0 | 1,528,537.0 | 1,528,537.0 | 11
Anjos-70-02 | 70 | 1,441,028.0 | 1,441,028.0 | 1,441,028.0 | 1,441,028.0 | 16
Anjos-70-03 | 70 |1,518,993.5|1,518,993.5 | 1,518,993.5 | 1,518,993.5 | 17
Anjos-70-04 | 70 | 968,796.0 | 968,796.0 | 968,796.0 | 968,796.0 17
Anjos-70-05 | 70 |4,218,017.5 | 4,218,002.5 | 4,218,002.5 | 4,218,002.5 | 22
Anjos-75-01 | 75 |2,393,456.5 | 2,393,456.5 | 2,393,456.5 | 2,393,456.5 | 12
Anjos-75-02 | 75 |4,321,190.0 | 4,321,190.0 | 4,321,190.0 | 4,321,190.0 7
Anjos-75-03 | 75 | 1,248,537.0 | 1,248,423.0 | 1,248,423.0 | 1,248,423.0 6
Anjos-75-04 | 75 |3,941,891.5 | 3,941,816.5 | 3,941,816.5 | 3,941,816.5 | 15
Anjos-75-05 | 75 | 1,791,408.0 | 1,791,408.0 | 1,791,408.0 | 1,791,408.0 | 16
Anjos-80-01 | 80 | 2,069,097.5 | 2,069,097.5 | 2,069,097.5 | 2,069,097.5 9
Anjos-80-02 | 80 |1,921,177.0 | 1,921,136.0 | 1,921,136.0 | 1,921,136.0 | 29
Anjos-80-03 | 80 | 3,251,368.0 | 3,251,368.0 | 3,251,368.0 | 3,251,368.0 | 11
Anjos-80-04 | 80 | 3,746,515.0 | 3,746,515.0 | 3,746,515.0 | 3,746,515.0 | 19
Anjos-80-05| 80 | 1,588,901.0 | 1,588,885.0 | 1,588,885.0 | 1,588,885.0 5

4.3. Comparison on sko instances. The third computational study is carried out to
make the comparison on sko instances. The sko instances are larger and more complicated
than Anjos instances. Ozcelik applied a hybrid genetic algorithm (HGA) to tackling these
instances. However, it gave the experiment results only with the instances of size 100 [36].
Kothari and Ghosh had carried out several computational studies with good experiment
results on these instances by different approaches, such as the scatter search algorithm
(SSA) [32], the Lin-Kernighan heuristic (LKH) [33] and the efficient genetic algorithm
(GENALGO) [35]. So we carry out a computational study to compare the MSLSA with
these three approaches of Kothari and Ghosh.

The structure of Table 4 is similar to Table 2. The value marked in boldface indicates
the best known solution. From Table 4, the results show that for 19 of the 20 instances,
the costs of the solutions output by MSLSA match the best costs for these instances in the
literature. For the sko-100-03 instance, the cost output by MSLSA is marginally worse
than the best cost in GENALGO.

We next compare the average computational time required by MSLSA and the algo-
rithms of Kothari and Ghosh on the sko instances. To make the different CPU compara-
ble, we evaluate the performance of CPU by mark from http://www.cpubenchmark.net,
according to the CPU specifications of the related literature.



TABLE 3. Comparison of execution time (second) for Anjos instances
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Instance | Size | PGA HGA SSA | MSLSA
Anjos-60-01 | 60 | 19.540 | 11.642 | 46.73 11.22
Anjos-60-02 | 60 | 22.340 | 15.265 | 41.54 11.68
Anjos-60-03 | 60 | 68.810 | 45.125 50.4 17.24
Anjos-60-04 | 60 | 20.710 | 39.285 | 53.52 12.17
Anjos-60-05 | 60 | 26.410 | 12.803 | 52.35 11.39
Anjos-70-01 | 70 | 64.830 | 66.439 | 82.61 27.80
Anjos-70-02 | 70 | 77.490 | 40.708 | 88.16 24.67
Anjos-70-03 | 70 | 68.260 | 33.820 | 83.17 25.22
Anjos-70-04 | 70 | 100.590 | 64.399 | 102.26 35.14
Anjos-70-05 | 70 | 60.480 | 26.148 | 81.59 26.07
Anjos-75-01 | 75 | 125.260 | 106.495 | 127.66 41.83
Anjos-75-02 | 75 | 128.950 | 135.831 | 118.01 41.95
Anjos-75-03 | 75 | 157.950 | 72.470 | 143.69 45.44
Anjos-75-04 | 75 |119.920 | 76.394 | 125.37 35.62
Anjos-75-05 | 75 | 101.670 | 105.650 | 138.71 46.40
Anjos-80-01 | 80 | 75.410 | 156.687 | 162.59 | 139.47
Anjos-80-02 | 80 | 68.750 | 66.286 | 174.8 113.81
Anjos-80-03 | 80 | 85.900 | 124.992 | 181.84 71.62
Anjos-80-04 | 80 | 77.810 | 153.003 | 148.41 68.90
Anjos-80-05 | 80 | 196.510 | 153.003 | 199.79 59.94

TABLE 4. Comparison of solution costs for sko instances

869

Instance | Size LKH GENALGO SSA MSLSA Times
sko-64-01 | 64 96,933.0 96,881.0 96,883.0 96,881.0 4
sko-64-02 | 64 634,338.5 634,332.5 634,332.5 634,332.5 10
sko-64-03 | 64 414,323.5 414,323.5 414,323.5 414,323.5 11
sko-64-04 | 64 297,205.0 297,129.0 297,129.0 297,129.0 10
sko-64-05 | 64 | 501,922.5 501,922.5 501,922.5 501,922.5 9
sko-72-01 | 72 139,150.0 139,150.0 139,150.0 139,150.0 6
sko-72-02 | 72 712,005.0 711,998.0 711,998.0 711,998.0 18
sko-72-03 | 72 |1,054,110.5| 1,054,110.5 | 1,054,110.5 | 1,054,110.5 8
sko-72-04 | 72 919,635.5 919,586.5 919,586.5 919,586.5 12
sko-72-05 | 72 428.879.5 428,226.5 428,226.5 428,226.5 6
sko-81-01 | 81 205,166.0 205,108.5 205,106.0 205,106.0 2
sko-81-02 | 81 | 521,391.5 521,391.5 521,391.5 521,391.5 17
sko-81-03 | 81 970,862.0 970,796.0 970,796.0 970,796.0 9
sko-81-04 | 81 | 2,031,979.0 | 2,031,803.0 |2,031,803.0 | 2,031,803.0 5
sko-81-05 | 81 | 1,303,805.0 | 1,302,711.0 |1,302,711.0 | 1,302,711.0 16
sko-100-01 | 100 | 378,614.0 378,234.0 378,234.0 378,234.0 6
sko-100-02 | 100 | 2,076,048.5 | 2,076,008.5 |2,076,008.5 | 2,076,008.5 5
sko-100-03 | 100 | 16,148,818.0 | 16,145,598.0 | 16,145,614.0 | 16,145,614.5 11
sko-100-04 | 100 | 3,232,740.0 | 3,232,522.0 | 3,232,531.0 | 3,232,522.0 12
sko-100-05 | 100 | 1,033,345.5 1033,080.5 | 1033,080.5 | 1033,080.5 4
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TABLE 5. Comparison of execution time (second) for sko instances

Instance Size LKH |GENALGO | SSA |MSLSA
sko-64-01 64 196.98 15.42 82.80 37.55
sko-64-02 64 189.84 14.05 68.31 31.64
sko-64-03 64 185.22 14.16 80.33 32.50
sko-64-04 64 190.68 14.35 91.05 32.69
sko-64-05 64 182.70 14.00 75.86 24.02
sko-72-01 72 465.12 25.45 115.21 | 66.12
sko-72-02 72 419.04 22.91 192.12 | 52.54
sko-72-03 72 412.80 22.40 114.16 | 48.17
sko-72-04 72 418.56 22.23 135.46 | 50.68
sko-72-05 72 433.44 23.19 116.50 | 60.21
sko-81-01 81 1,298.16 40.77 311.63 | 160.93
sko-81-02 81 1,402.38 36.63 226.91| 78.88
sko-81-03 81 1,276.56 35.93 241.50 | 137.22
sko-81-04 81 1,425.06 36.85 193.98 | 109.79
sko-81-05 81 1,301.40 35.58 287.22 | 110.10
sko-100-01 100 7,279.14 99.75 877.12 | 518.03
sko-100-02 100 7,632.90 86.32 526.09 | 346.39
sko-100-03 100 7,510.80 82.94 099.92 | 317.32
sko-100-04 100 7,395.96 81.51 592.00 | 285.90
sko-100-05 100 7,087.08 85.37 091.75 | 355.60
Average execution time | 2,335.19 40.49 275.99 | 142.81

CPU Mark 1,261 6,494 6,494 2,655

In Table 5, our computer is approximately 2.1 times faster than the computer used in
LKH, whose average execution time is 16.3 times more than our algorithm. The computer
used in SSA is approximately 2.4 times faster than ours, and the average execution time
is 1.9 times more than MSLSA. So the execution speed of MSLSA is faster than LKH and
SSA. The average execution time that we use is approximately 3.5 times more than the
one used in GENALGO, whose CPU speed is 2.4 times faster than ours. The execution
speed of MSLSA is marginally slower than GENALGO.

4.4. Comparison on Amaral instances. The final comparison with other algorithms
was carried out on Amaral instances. In the published literature, a hybrid genetic al-
gorithm (HGA) proposed by Ozcelik had the lowest cost. The efficient genetic algo-
rithm (GENALGO) proposed by Kothari and Ghosh had the least computation time
[35]. Therefore, HGA, SSA and GENALGO are compared with MSLSA in this computa-
tional experiment. In Table 6, we present the costs of the best permutations obtained by
MSLSA and compare them with the results of the three algorithms. In Table 7, we make
the comparison between MSLSA and other algorithms regarding average computational
time.

TABLE 6. Comparison of solution costs for Amaral instances

Instance Size HGA GENALGO SSA MSLSA Times
Amaral-110-01| 110 |144,296,664.5 | 144,296,768.0 | 144,297,440.0 | 144,296,664.5| 14
Amaral-110-02 | 110 | 86,050,037.0 | 86,050,112.0 | 86,050,208.0 | 86,050,037.0 7
Amaral-110-03 | 110 | 2,234,743.5 |2,234,743.5 | 2,234,798.5 | 2,234,743.5 | 11
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TABLE 7. Comparison of execution time (second) for Amaral instances

Instance Size HGA | GENALGO | SSA | MSLSA
Amaral-110-01 110 | 2,584.62 191.99 975.11 | 519.81
Amaral-110-02 | 110 |2,396.77 190.67 680.10 | 581.09
Amaral-110-03 | 110 |2,332.70 119.57 811.08 | 529.71
Average execution time | 2,438.03 167.41 822.10 | 543.53

CPU Mark 1,747 6,494 6,494 | 2,655

We can make the following observations about the results in Tables 6 and 7:

(1) In terms of solution quality, the costs of the best permutations obtained by MSLSA
are the same as those of the best costs known in the literature for all instances in this set.
Our proposed algorithm found better solutions than GENALGO and SSA.

(2) Our computer is approximately 1.5 times faster than the computer used in HGA,
whose average execution time is 4.4 times more than our algorithm. The computer used
in SSA is approximately 2.4 times faster than ours, and the average execution time is
1.5 times more than MSLSA. So the execution speed of MSLSA is faster than HGA and
SSA. The average execution time that we use is approximately 3.2 times more than the
one used in GENALGO, whose CPU speed is 2.4 times faster than what we use. The
execution speed of MSLSA is marginally slower than GENALGO.

Through a series of experiments, we know that Anjos instances are easier than sko
instances and Amaral instances. In order to show the advantage of our proposed algorithm
over extant ones visually, we plot a figure based on the data of 23 hard instances from sko-
64-01 to Amaral-110-03. Figure 3 compares the percentage deviation of the best objective
value (BOV) to the current best known result (BKR) for GENALGO, SSA and MSLSA.
The percentage deviation is shown in Equation (9). From Figure 3, it can be seen that the
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best objective values of MSLSA are closer than those of GENALGO and SSA to the best
known values. Based on the results in this figure, the conclusion is that MSLSA exhibits
a better performance than both GENALGO and SSA in terms of solution quality.

deviation = (BOV — BKR)/BKR * 100%. (9)

The above observations show that MSLSA has a good performance in terms of solution
quality and time restriction for solving large size SRFLP instances.

5. Conclusions. In this paper, we have presented a multi-start local search algorithm
MSLSA with diversification and intensification for solving the SRFLP. A diversification
generator is designed to diversify the initial elite solutions. Afterward, the proposed
algorithm employs a first-improvement local search procedure FILS to intensify the quality
of solutions. FILS probes the neighbors in random order and its randomness can increase
the diversification, thus exploring broader solution areas. Moreover, the most important
feature of MSLSA is that a gain technique is applied to speeding up the cost calculations
of neighbors. The restarting mechanism repeatedly calls the diversification generator to
drive the search into a new round of local search phase. Additionally, the algorithm
MSLSA is very simple and easy to be implemented. Computational experiments showed
that MSLSA quickly attained the optimal solution for 42 of 43 classical instances in the
literature. Compared with the conventional formula calculation, the gain technique can
save more than 66% of the computational time. Compared with other algorithms, the
proposed algorithm is very competitive in solution quality and computation time.

The current study is limited in that it uses one type of neighborhood structure. This
has the advantage of making it easy to implement, but more neighborhood structures
may yield better results. So, as further research, we intend to test the performance of
heuristic MSLSA with different neighborhood structures. We also try to solve other layout
problems with heuristic MSLSA.

Acknowledgment. The authors are grateful to the anonymous referees for their con-
structive comments that have greatly improved the presentation of this paper. This re-
search was supported partially by the National Natural Science Foundation of China under
Grant 11301255, Natural Science Foundation of Fujian Province of China under Grant
2016J01025, and the Science and Technology Project of Minjiang University, China, under
Grant MYK15005.

REFERENCES

[1] D. M. Simmons, One-dimensional space allocation: An ordering algorithm, Operations Research,
vol.17, no.5, pp.812-826, 1969.

[2] J. C. Picard and M. Queyranne, On the one-dimensional space allocation problem, Operations Re-
search, vol.29, no.2, pp.371-391, 1981.

[3] S.S. Heragu and A. Kusiak, Machine layout problem in flexible manufacturing systems, Operations
Research, vol.36, no.2, pp.258-268, 1988.

[4] S. G. Ponnambalam and V. Ramkumar, A genetic algorithm for the design of a single-row lay-
out in automated manufacturing systems, The International Journal of Advanced Manufacturing
Technology, vol.18, no.7, pp.512-519, 2001.

[5] R. Kothari and D. Ghosh, The single row facility layout problem: State of the art, Opsearch, vol.49,
no.4, pp.442-462, 2012.

[6] A.R.S. Amaral, On the exact solution of a facility layout problem, European Journal of Operational
Research, vol.173, no.2, pp.508-518, 2006.

[7] A. R. S. Amaral, An exact approach to the one-dimensional facility layout problem, Operations
Research, vol.56, no.4, pp.1026-1033, 2008.

[8] S. S. Heragu and A. Kusiak, Efficient models for the facility layout problem, European Journal of
Operational Research, vol.53, no.1, pp.1-13, 1991.



A MULTI-START LOCAL SEARCH ALGORITHM FOR THE SRFLP 873

[9] R. Love and J. Wong, On solving a one-dimensional space allocation problem with integer program-
ming, INFOR, vol.14, no.2, pp.139-144, 1976.

[10] P. Kouvelis and W. C. Chiang, Optimal and heuristic procedures for row layout problems in auto-
mated manufacturing systems, Journal of the Operational Research Society, vol.47, no.6, pp.803-816,
1996.

[11] A.R.S. Amaral and A. N. Letchford, A polyhedral approach to the single row facility layout problem,
Mathematical Programming, vol.141, nos.1-2, pp.453-477, 2013.

[12] M. F. Anjos, A. Kennings and A. Vannelli, A semidefinite optimization approach for the single-row
layout problem with unequal dimensions, Discrete Optimization, vol.2, no.2, pp.113-122, 2005.

[13] M. F. Anjos and A. Vannelli, Computing globally optimal solutions for single-row layout problems
using semidefinite programming and cutting planes, Informs Journal on Computing, vol.20, no.4,
pp-611-617, 2008.

[14] M. F. Anjos and G. Yen, Provably near-optimal solutions for very large single-row facility layout
problems, Optimization Methods and Software, vol.24, nos.4-5, pp.805-817, 2009.

[15] P. Hungerlander and F. Rendl, A computational study and survey of methods for the single-row
facility layout problem, Computational Optimization and Applications, vol.55, no.1, pp.1-20, 2013.

[16] M. Beghin-Picavet and P. Hansen, Deux problemes daffectation non linéaires, RAIRO — Operations
Research Opérationnelle, vol.16, no.3, pp.263-276, 1982.

[17] S. S. Heragu and A. S. Alfa, Experimental analysis of simulated annealing based algorithms for the
layout problem, Furopean Journal of Operational Research, vol.57, no.2, pp.190-202, 1992.

[18] A. G. de Alvarenga, F. J. Negreiros-Gomes and M. Mestria, Metaheuristic methods for a class of
the facility layout problem, Journal of Intelligent Manufacturing, vol.11, no.4, pp.421-430, 2000.

[19] M. Solimanpur, P. Vrat and R. Shankar, An ant algorithm for the single row layout problem in
flexible manufacturing systems, Computers & Operations Research, vol.32, no.3, pp.583-598, 2005.

[20] R. M. S. Kumar, P. Asokan, S. Kumanan and B. Varma, Scatter search algorithm for single row
layout problem in fms, Advances in Production Engineering & Management, vol.3, no.4, pp.193-204,
2008.

[21] H. Samarghandi, P. Taabayan and F. F. Jahantigh, A particle swarm optimization for the single row
facility layout problem, Computers & Industrial Engineering, vol.58, no.4, pp.529-534, 2010.

[22] H.Samarghandi and K. Eshghi, An efficient tabu algorithm for the single row facility layout problem,
European Journal of Operational Research, vol.205, no.1, pp.98-105, 2010.

[23] R. Kothari and D. Ghosh, Tabu search for the single row facility layout problem using exhaustive
2-opt and insertion neighborhoods, European Journal of Operational Research, vol.224, no.1, pp.93-
100, 2013.

[24] D. Datta, A. R. S. Amaral and J. R. Figueira, Single row facility layout problem using a permutation-
based genetic algorithm, Furopean Journal of Operational Research, vol.213, no.2, pp.388-394, 2011.

[25] C. Ou-Yang and A. Utamima, Hybrid estimation of distribution algorithm for solving single row
facility layout problem, Computers & Industrial Engineering, vol.66, no.1, pp.95-103, 2013.

[26] G. Palubeckis, Fast local search for single row facility layout, European Journal of Operational
Research, vol.246, no.3, pp.800-814, 2015.

[27] A. R. S. Amaral, Enhanced Local Search Applied to the Single-Row Facility Layout Problem,
http://www.din.uem.br/sbpo/sbpo2008/pdf/arq0026.pdf, 2008.

[28] J. Pacheco, F. Angel-Bello and A. Alvarez, A multi-start tabu search method for a single-machine
scheduling problem with periodic maintenance and sequence-dependent set-up times, Journal of
Scheduling, vol.16, no.6, pp.661-673, 2013.

[29] M. Alfaki and D. Haugland, A cost minimization heuristic for the pooling problem, Annals of
Operations Research, vol.222, no.1, pp.73-87, 2014.

[30] W. Li, Seeking global edges for traveling salesman problem in multi-start search, Journal of Global
Optimization, vol.51, no.3, pp.515-540, 2011.

[31] M. Toril, V. Wille, I. Molina-Ferndndez and C. Walshaw, An adaptive multi-start graph partitioning
algorithm for structuring cellular networks, Journal of Heuristics, vol.17, no.5, pp.615-635, 2011.

[32] R. Kothari and D. Ghosh, A scatter search algorithm for the single row facility layout problem,
Journal of Heuristics, vol.20, no.2, pp.125-142, 2014.

[33] R. Kothari and D. Ghosh, Insertion based Lin-Kernighan heuristic for single row facility layout,
Computers & Operations Research, vol.40, no.1, pp.129-136, 2013.

[34] T. Stiizle, An ant approach to the flow shop problem, Proc. of the 6th European Congress on Intel-
ligent Techniques & Soft Computing, vol.3, pp.1560-1564, 1998.



874 J. GUAN AND G. LIN

[35] R. Kothari and D. Ghosh, An efficient genetic algorithm for single row facility layout, Optimization
Letters, vol.8, no.2, pp.679-690, 2014.

[36] F. Ozcelik, A hybrid genetic algorithm for the single row layout problem, International Journal of
Production Research, vol.50, no.20, pp.5872-5886, 2012.



