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ABSTRACT. In this paper, according to the problem of target threat assessment, a fuzzy
recurrent wavelet neural network (FRWNN) is proposed, which combined the good perfor-
mance of fuzzy neural network in approximating nonlinear functions with the prominent
analysis ability of wavelet transform in time-frequency two-dimensional signal domains.
Firstly, the structure of FRWNN and the influence of activation function on network
performance are analyzed. Then, the main factors affecting target threat assessment are
analyzed, and training algorithms and processes of the FRWNN are introduced. Finally,
in order to demonstrate the efficiency of the proposed model, several banks of threat as-
sessment techniques are compared by simulation results. It is shown that the mean square
error (MSE) of this method is obviously less than that of the PSO-BP neural network
method and the MPSO-BP neural network assessment method. In short, the obtained
MSE is presented to confirm the validity of our proposed strategy.

Keywords: Threat assessment, Particle swarm optimization (PSO), Modified PSO op-
timization BP neural networks (MPSO-BP), FRWNN

1. Introduction. With the rapid development of information and intelligence, the air
raid environment is becoming more and more complicated. Therefore, the demand for
real-time and precision is very important for the collaborative attack in modern warfare.
Threat assessment can not only provide reasonable decision-making basis for the modern
warfare, but also enhance overall effectiveness of the air defense combat by improving the
killing probability. So, the research of threat assessment is one of the most important
topics in modern warfare, which has important theoretical and practical significance.
Threat assessment can be executed by using several conventional approaches, such as
Bayesian network [1,2], multi-attribute decision-making method [3], analytic hierarchy
process [4], information fusion theory [5], and fuzzy logic theory [6,7]. However, for the
aforementioned threat assessment approaches, the reasoning methods must rely on ex-
perts’ knowledge to set weight vector, which increase subjective and ill-defined factors of
the target threat assessment. In addition, the evaluations are independent of each other
so that complex relationship among threat factors cannot be effectively and unambigu-
ously reflected. Especially, the aforementioned methods have not the self-learning and
self-adaptive capabilities, so it is hard to meet the changes of enemy tactical means and
weapons performance in the aspect of real-time. Consequently, the aforementioned ap-
proaches cannot appropriately learn the intricate behavior of input/output mapping. Ar-
tificial neural networks have a strong self-learning and adaptive capacity. On the contrary,
the general neural network cannot be described by a uniform architecture of networks.
Moreover, the training process can be easy to possess the drawback of over learning and
poor generalization capability. Wang et al. [8] studied threat assessment using glowworm
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swarm optimization algorithm to optimize the BP neural network, and achieved satisfac-
tory result in some way. However, the performance of the neural network is dependent
on the dimension of training data. With the dimension increasing, the deterioration of
network performance is unavoidable, such as premature convergence and slow convergence
speed. Furthermore, the choice of network structure is so difficult and the training process
is easy to converge to local minimum.

In recent years, it has become a hot spot that the wavelet neural network (WNN) is ap-
plied to the target threat assessment [9]. Compared with BP neural networks, the WNN
has a strong nonlinear mapping ability, adaptive organization capacity and adaptive learn-
ing capacity, as well as generalization ability. However, due to its feed-forward network
architecture, it cannot offer dynamic mapping capabilities to the nonlinear complex prob-
lem and there were also some irreconcilable contradictions in the practical application.

To remedy the above phenomenon, the superiority of fuzzy neural network (FNN)
in dealing with nonlinear function approximation [10], and the advantages of wavelet
function with good time-frequency two-dimensional analysis abilities were considered.
The FRWNN inherits the advantages of WNN and FNN in this paper. Moreover, the
proposed model is different from a fuzzy wavelet neural network (FWNN) [11], that is,
a single neuron used in consequent part of FRWNN is capable of capturing the previous
information of the networks instead of the consequent part of conventional TSK fuzzy
model [12]. As a result, the FRWNN substantially reduces the number of rules compared
with the FNN, converges in low number of iterations and is more reliable, reasonable and
efficient than FNN and WNN. In addition, dynamic approximation capability reduces the
increasing number of dimension and parameter generated by the use of a large number of
neurons, owing to a single neuron consequent part storing the past data of the network.

The main contributions of the present paper are highlighted as follows.

e Taking into consideration the disadvantages of the feed-forward network architecture
in approximating a complex dynamic system [11], we propose to use a single neuron
with the ability to record the previous data of the network as the consequent part
of each fuzzy rule of FRWNN.

e We use fuzzy recurrent wavelet neural network to model threat degree; FRWNN with
low computational burden, high flexibility and adaptive learning capacity can adapt
to the target complexity of battlefield and the requirements for quickly processing
information in the modern war.

The remaining sections of the paper are organized as follows. Section 2 describes the
architecture of fuzzy recurrent wavelet neural network. Influencing factors analysis of
target threat assessment is given in Section 3. The learning algorithm for the FRWNN
is introduced in Section 4. Construction and validation of assessment model based on
FRWNN are provided in Section 5. Finally, the conclusions and future work are presented
in Section 6.

2. FRWNN. Architecture of FRWNN is shown in Figure 1, which is a five-layer structure
including a single hidden layer with recurrent wavelet structure used as a consequent part
based on the TSK [13]. The modified consequent part is constructed by a single neuron
that can record the past useful information. Meanwhile, wavelet function is selected as
the activation function, which reduces computation burden and improves generalization
capability. Here, a single hidden layer stores the data of the past state of the network.
At the next time interval, the previous data stored by a single neuron is multiplied by a
feedback gain and then re-input to the neuron of a single hidden layer. As a result, the
characteristics of recurrent memory of a single hidden layer make the network enhance
the prediction accuracy by improving the dynamic approximation capability.
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FI1GURE 1. Architecture of the proposed FRWNN

The first layer is responsible for accepting and transmitting input vector z = {x1, s, . . .,
zn,, }. Now, suppose that z; is the i-th external input variable of the system, so i =1 : Ny,.
In second layer each node represents one linguistic term, and A;; is a linguistic term
characterized by a fuzzy membership function 4, (7;) for j = 1 : N,. Here Gaussian
membership functions are adopted as activation function of the second layer, and the
output of each node is computed as follows:

pa;; (T;) = exp (—(avZ - cij)Q/ain) , Yi=1:N;,; j=1:N, (1)

where the adjustable parameters c;; and o;; represent the center and scaling for the
membership function associated with rule j, respectively. In the third layer R; denotes
the fuzzy rule of node j, and the activation strength of each rule is calculated; the output
of this layer is calculated as follows:

,uj(x):HuAij(xi), i=1:Njp, j=1:N,and 0 < p; <1 (2)
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As consequent part of the fuzzy rules, the fourth layer is constructed by a single hidden
layer which uses Gaussian wavelet activation function in neurons. Four kinds of wavelet
functions frequently used are introduced as follows:

1) Haar wavelet function:

The Haar wavelet has the characteristics of close support and orthogonality. It is the
simplest wavelet function in the early application of wavelet analysis. Moreover, Haar
wavelet is not continuous in time domain. Haar function is defined as follows:

1 0<t<1/2
o(t) = -1 1/2<t<1 (3)
0 otherwise

Its curves can be seen from Figure 2.

2) Mexican Hat wavelet function:

Mexican Hat wavelet has good localization properties in time-frequency two-dimensional
domains. It cannot offer the orthogonality, due to the fact that it does not have the scal-
ing function. Although its convergence rate is fast, sometimes it cannot escape getting
into local minima. Mexican Hat is defined as follows:

o(t) =c(1—t*) exp (£*/2) (4)

1 . .
1, and its curves can be seen from Figure 3.

where ¢ = %ﬂ'

3) Gaussian wavelet, function:

Gaussian wavelet has global mapping generalization capabilities and also has an ef-
ficiency in terms of local details. Mexican Hat wavelet is the second derivative of the
Gaussian function, and the derivative of Gaussian wavelet is infinitely smooth. Not only
the convergence rate of Gaussian wavelet is faster, but also it can avoid the phenomenon
of over-fitting. Its expression is as follows:

o(t) =t -exp (—17/2) (5)

Its curves can be seen from Figure 4.

4) Morlet wavelet function:

Morlet wavelet has no scaling function and cannot do orthogonal decomposition. When
it was selected as an activation function, the convergence rate of the network is relatively
slow and sometimes it is prone to have poor fitting. I[ts expression is defined as follows:

o(t) = C - cos (5t) - exp (—1*/2) (6)
] Haar ] ’ Mexican Hat
0.5
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FIGURE 2. Haar FIGURE 3. Mexican Hat
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where C' is its normalized constant after reconstruction, and its curves can be seen from
Figure 5.

In this paper Gaussian wavelet function was chosen as the activation function, and the
output of each wavelet of the fourth layer is described as:

A ) .
vij = ij (2ij(k)) = @iy (uig (k) — ti;(k)) /dig(k)), Vi=1:Ngp; j=1:N,  (7)
where, at the discrete time k, the inputs of this layer can be expressed as:

In (7) and (8), t;; and d;; are defined as translation and dilation parameters, respectively;

0;; is a feed-back factor to describe the rate of data storage. The subscript ij denotes

i-th external input term of the j-th rule. In addition, the input of the layer includes the

memory term ;;(k — 1), which can capture the previous information of the networks.
The sub-wavelet function of fourth layer is denoted as follows:

N;

¥ (2i5) = H%‘j ((uig —tig) /dij), Vi=1:Np; j=1:N, (9)

i=1
The corresponding output of fourth layer is described as follows:
vi(k) =wj -y, j=1:N, (10)

where w; stands for connection weight between the product and the output layers.
The product of the fourth layer and the node outputs of the third layer is computed as
follows:

uj(z) = fij(x) -v;, j=1:Ny (11)
where ji;(x) is described as follows:

i) = ws(z) /32 i) (12)

The fifth layer as the output layer of the proposed network, its output is computed as
follows:

vk =Y i) v =3, 13
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3. Influencing Factors Analysis of Target Threat Assessment. Target threat as-
sessment needs to consider different types of factors. It is also not a simple linear combina-
tion between various factors, so it can hardly be created the explicit functional relationship
between the various factors and the target threat value. Many factors and relationships
between them should be taken into account such as target type, target speed, target in-
terference capability, target heading angle, target height and target distance. According
to G. A. Miller’s nine levels quantitative theory [14], main factors are analyzed as follows.

3.1. Target type. Different types of target have different flight speed and attack ability,
and the threat level to protected target is also different. In this paper, the target type
is divided into three kinds, reconnaissance plane, small target (such as tactical ballistic
missiles, stealth aircraft) and large target (such as bomber, fighter bomber). In general,
the threat degree of small target is the biggest, and the threat degree of reconnaissance
plane is the least. In order to facilitate quantitative study, in this paper, the target
threat attribute is quantified using G. A. Miller’s nine levels quantitative theory; the
reconnaissance plane, small target and large target were quantified for 3, 5 and 8.

3.2. Target speed. The velocity of the target is the vector synthesis of its approximation
rate and its lateral velocity, directly affecting the target threat assessment. Even if the
same type of target, if the flight speed is different, their threat degree is also not the same.
In general, the faster the flight speed, the greater the threat degree.

3.3. Target interference capability. Target interference capability is one of the typical
counter measures of enemy air raid formation, and it can be divided into four kinds: very
weak, weak, medium and strong. Generally, the stronger the target interference capability
is, the greater the threat degree is. In this paper, this index is quantified by G. A. Miller’s
nine levels quantitative theory; the very weak, weak, medium, strong was quantified for
2,4, 6 and 8.

3.4. Target heading angle. Heading angle of target is the angle between the target
advancing direction and the direction of target’s position to the protected target’s position.
In general, the smaller the heading angle, the more possible that the target suddenly
appeared, and the threat is also greater.

3.5. Target height. When the target is far, the threat of flying height to our side is not
obvious, but the target that suddenly appeared in low altitude will be a great threat to
us. In this paper, the index is quantified by G. A. Miller’s nine levels quantitative theory;
the ultralow altitude, low altitude, medium altitude and high altitude were quantified for
2,4, 6 and 8.

3.6. Target distance. The closer the distance between the incoming target and the pro-
tected target, the shorter the defense time, and the greater the incoming target threat
level. Contrariwise, the farther the distance between the incoming target and the pro-
tected target, the attack intent of incoming target is not more obvious, and the threat
level is lower.

4. The Learning Algorithm for the FRWNN. All parameters need to be automat-
ically adjusted in the consequent part of the fuzzy rules, during the training process of
the proposed networks. In this paper, the back propagation algorithm is used to adjust
the consequent parameters.

The quadratic objective performance function of FRWNN is denoted as follows:

1 1

B(k) = 5 | (v (k) = y(k))"| = 5¢(k) (14)
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where y?(k) is the desired output values and (k) is the current output values at discrete
time k, e(k) is the estimation error of FRWNN.

The weight vector is W = [w; t;; d;; 0;;]" in the consequent part of FRWNN, and it
was updated by using the following equations:

s+ 1) = (k) = 7(6) - S (15)
(k4 1) = ty;(k) — (k) - gfj ((’Z)) (16)
dij (k + 1) = dyy(k) — (k) - gfj ((’Z)) (17)
0 (k +1) = 0;;(k) —7° (k) - gf_j((kk)) (18)

where n = diag {ﬁw,ﬁt,ﬁd,ﬁe} denotes the matrix of learning rates for the weight of
FRWNN, diag {-} is denoted as diagonal matrix.

By differentiating E(k) with respect to y(k), y(k) with respect to v;(k) and ¢;(k) with
respect to z;;(k), it gives as follows:

OB (k)

k) y(k) — y*(k) (19)
dy(k) 1 ()

: = (20)
ov;(k) ;M(x)
o;(k) (1
0zi(k) (% - Zij) v (2)

Now, differentiating v;(k) with respect to w;(k) and v;(k), it gives as follows:

0w, (k)
=, 22
an k)
= w; 23
a0, " %
By differentiating z;;(k) with respect to t;;(k), d;;(k) and wu;;(k), it gives as follows:
= - (24)
Otij(k)  di(k)
= —— 2 2
odiy(k) — dy (25)
aZU(k) 1
= 26
Now, differentiating u,;(k) with respect to 6;;(k), it gives as follows:
1 — =) @7
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Combining (19) and (20) with (22), the chain rule of calculus can express the gradient
of Equation (15) as follows:

OE (k)

Ow; (k)

— (yl) — () -y () - w2 (28)
]; 115()

Considering Equations (19)-(21), (23), and (24), we may express the the gradient of
Equation (16) as follows:

Combining (19)-(21), (23) and (25), the gradient of the Equation (17) is denoted as
follows:

OE(k) o OE (k)

odij(k) — "7 ot(k)

Considering Equations (19)-(21), (23), (26) and (27), the gradient of the Equation (18)
is written as follows:

(30)

OB (k)

OB (k)

= —gi(k—1)-

(31)

5. Construction and Validation of Assessment Model Based on FRWNN. Our
goal is to build the relationship between threat degree and the influencing factors; mean-
while, the relationship is nonlinear. As mentioned in Section 3, six factors are mainly
considered as external inputs including the target’s type, speed, interference, heading an-
gle, height and distance. The performance of FRWNN is tested by these factors. After
acquired data normalization, part of the data used to validate the proposed model is
presented in Table 1. Large target, reconnaissance plane, and small target are listed in
the form of six groups, respectively. The input data is six-dimensional, while the output
data is one-dimensional.

5.1. The flow chart and the training process of target threat assessment. In
this paper, we select 60 groups of combat situation data including 45 group data as a
training set to train FRWNN, and then the target threat value of the rest of situation
data are predicted by using the trained network. Target threat algorithm flow chart based
on FRWNN is shown in Figure 6.

The process of training FRWNN is as follows.

(1) Data preprocessing. First, the acquired data is quantified and normalized [9], and
the data set was divided into training data set and testing data set, respectively.

(2) Initialization of the FRWNN. Connection weights, storage factors, center and scaling
parameters, translation and dilation parameters of the FRWNN are initialized.

(3) Training FRWNN: The FRWNN was trained using training test and then the error
indexes between the output and the expected value were calculated.

(4) Updating the weights. Based on the prediction error, the parameters and the
connection weights of FRWNN are updated in order to make the predictive value as close
to the actual value as possible.

(5) When the results meet the given criteria, testing set is used to test the FRWNN.
Otherwise, go back to Step 3 and repeat this cycle.
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TABLE 1. Part of the data

No. Type v(il:/cgy Inference Head1?og) angle Height Dl(sl;cslr;ce Threat value
1 8 460 6 9 6 310 0.5939
2 8 500 6 17 8 210 0.6031
3 8 400 8 5) 2 110 0.5869
4 8 280 6 9 6 160 0.5888
) 8 800 2 8 4 100 0.5763
6 8 600 6 16 6 200 0.5661
7 5 190 2 4 4 120 0.4302
8 5) 90 4 11 8 100 0.4013
9 5) 80 8 9 4 160 0.3639
10 5) 200 4 14 8 160 0.4692
11 5) 120 2 15 6 100 0.3906
12 5) 260 6 7 6 160 0.4968
13 3 630 8 7 4 210 0.6083
14 3 600 8 9 4 260 0.6485
15 3 610 6 17 8 310 0.6451
16 3 760 6 15 8 490 0.7078
17 3 400 2 8 6 170 0.4906
18 3 550 4 7 2 290 0.6039
E Data Preprocessing E E Construction of FRWNN E
' H E Construct the E
| quantiztion ot [ g T amm
Fo==ss=s=sssscccccscscccsssscsccssnsssssssssssnneny "
"""""""""""""""" Training network
FRWNN Test IN

Network
W }4— Test data
test

" ]
[} ]
: R 2 :
'Yy T e o T o '
o e Training Initializing -
: 'Tr \ ming end -t FRWNN FRWNN '
' . /_,-—’ ] ]
: .

]

FIGURE 6. Target threat algorithm flow chart based on FRWNN

5.2. Model validation and simulation. To verify the efficiency of the FRWNN, it
is compared with PSO-BP and MPSO-BP target threat assessment techniques under
MATLAB. The obtained results confirm the validity of developed approach for Figures
7-13.

The predicted results of the target threat based on PSO-BP, MPSO-BP and FRWNN
are shown in Figure 7. It can be seen that the prediction result based on FRWNN
provides a higher accuracy than PSO-BP and MPSO-BP. In the following paragraphs,
the other performance indexes such as error, relative error and mean square error (MSE)
are analyzed to demonstrate the effectiveness and feasibility of proposed FRWNN further.

The iterative curve of FRWNN is shown in Figure 8. It can be seen from the graph
that the network realizes the best training condition at 121 iterations, which indicates
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that the proposed FRWNN has faster convergence speed and converges in a small number
of iterations.

The network performance curves of FRWNN are shown in Figure 9. From the pic-
ture, the network performance obtains a reasonable and good verification; meanwhile, the
FRWNN has the best validation performance at 121 epochs and gets very small MSE.

The training state curves of FRWNN are shown in Figure 10. It can be seen that the
FRWNN has faster convergence rate, better adaptive learning rate and better validation

performance.
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The linear regression state of the FRWNN is shown in Figure 11. As can be seen from
pictures, the FRWNN has achieved a satisfactory linear regression state. The proposed
model gives the more precise prediction results, which is attributed to possess higher
R-value (close to 1) and lower MSE.
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By comparing and analyzing the real threat value and evaluation value of three kinds of
neural networks mentioned above, we got the actual error curve and relative error curve
and shown in Figures 12 and 13. In general, the actual error and relative error of the
proposed FRWNN achieve satisfactory results compared with other models. Meanwhile,
the error is further evaluated by MSE, which is shown in Table 2.
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TABLE 2. Error analysis

Network PSO-BP MPSO-BP  FRWNN
MSE 1.685 x 1072 1.305x 1072 9.5 x 107
Running times (s) 4 4 4

The simulation results show that the MSE of the FRWNN is 9.5 x 1073, which is
superior to the PSO-BP (1.685 x 107?) and the MPSO-BP (1.305 x 1072) neural network.
And the efficiency of the FRWNN algorithm is improved and has better performance in
achieving the global optimum. The assessment accuracy of the FRWNN is better than
the PSO-BP and the MPSO-BP neural network. The FRWNN has a competitive degree
of prediction ability, which provides a new method for the threat assessment.

6. Conclusions. In this paper, we developed a novel assessment modeling methodology
based on the FRWNN on target threat. The relationship between influencing factors and
target threat value is a very complicated non-linear model. The FRWNN with the ability
of capturing the dynamic data, can significantly reduce the computational cost and en-
hance generalization capability. The assessment modeling was used to fit the non-linear
relationship between input and output in modern warfare. Because of the dynamic ability
to store history data, the FRWNN based prediction model can flexibly adapt to the com-
plex modern warfare. Moreover, the proposed network can effectively overcome defects
of BP with PSO. Through the analysis of examples, it can be seen that the proposed
method has better evaluation ability, and can quickly and accurately evaluate the target
threat, and provide support for the task allocation and tactical decision. The perfor-
mance of the proposed FRWNN is evaluated in the prediction of the system problems, so
it can be further examined to solve other problems such as system identification, function
approximation, signal processing and attitude control subsystem.

By observing type-2 fuzzy systems [15,16], it is noteworthy that type-2 ones are exten-
sions of type-1. Thus, in our future work, using the type-2 fuzzy membership function
in the antecedent part of the FRWNN can be further considered. Meanwhile, to better
realize the algorithm in aspect of real-time and on-line, the improved algorithm and the
choice of the initial values of FRWNN are becoming challenges.
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