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Abstract. We report a stochastic resonance phenomenon in production processes. In-
tervention by outside companies and workers (internal force) is treated as an input noise
(stochastic element) to successive processes in the production system. We assume self-
similarity in this system. By varying two of the system parameters (external and internal
forces), we reveal an optimal combination of the throughput threshold for evaluating the
working process and the magnitude of volatility (noise intensity) in a worker’s ability.
Moreover, because of this optimal combination, a stochastic resonance occurs in this sys-
tem. The existence of stochastic resonance is confirmed in the actual data of a production
flow system. The results of this study can assist the development of market-driven, in-
novative production companies.
Keywords: Stochastic resonance, Self-similarity, Power spectral density, Lead time,
Production process

1. Introduction. Based on mathematical and physical understanding of production en-
gineering, we are conducting research aimed at establishing an academic area called math-
ematical production engineering. As our business size is a small-to-medium-sized enter-
prise, human intervention constitutes a significant part of the production process, and
revenue can sometimes be greatly affected by human behavior. Therefore, when consider-
ing human intervention from outside companies, a deep analysis of the production process
and human collaboration is necessary to understand the potential negative effects of such
intervention.

With respect to mathematical modeling of deterministic systems, a physical model of
the production process was constructed using a one-dimensional diffusion equation in 2012
[1]. However, many concerns that occur in the supply chain are major problems facing
production efficiency and business profitability. A stochastic partial bilinear differential
equation with time delay was derived for outlet processes. The supply chain was modeled
by considering as time delay [3]. With respect to the analysis of production processes in
stochastic systems based on financial engineering, we have proposed that a production
throughput rate can be estimated utilizing a Kalman filter based on a stochastic differen-
tial equation [2]. We have also proposed a stochastic differential equation (SDE) for the
mathematical model describing production processes from the input of materials to the
end. We utilized a risk-neutral principal in stochastic calculus based on the SDE [4].

With respect to the analysis of production processes based on physics, we have clarified
that phenomena such as power-law distributions, self-similarity, phase transitions, and
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on-off intermittency can occur in production processes [5, 6, 7, 8, 9]. On the other hand,
there is the famous theory of constraints (TOC) that describes the importance of avoiding
bottlenecks in production processes [10]. Small fluctuations in an upstream subsystem
appear as large fluctuations in the downstream (the so-called bullwhip effect) [13]. The
bullwhip effect generates a large gap between the demand forecasts of the market and
suppliers. Large fluctuations can be suppressed by the following mechanisms.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.
(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear

vibration theory).
(4) Basing the inventory management approach on stochastic demand.

When using manufacturing equipment, delays in one production step are propagated to
the next. Hence, the use of manufacturing equipment itself may lead to delays. The
improvement of production processes was presented that the “Synchronization with pre-
process” method was the most desirable in practice using the actual data in production
flow process based on the cash flow model by using the SDE of log-normal type [11]. In
essence, we have proposed the best way, which is a synchronous method using the Vasicek
model for mathematical finance [12]. Then, the supply chain theme, which was a time
delay in the production processes, was proposed for the throughput improvement based
on a stochastic differential equation of log-normal type [13].

Moreover, the analysis of the synchronized state indicated that this state was a much
better method from the viewpoint of potential energy [13, 14]. We have also shown that
the phase difference between stages in a process corresponded to the standard deviation of
the working time [16]. When the phase difference was constant, the total throughput could
be minimized. We showed that a synchronous process could be realized by the gradient
system. The above problem is not limited to small- and medium-sized companies; in all
cases, human interventions that directly affect the production process present a major
challenge.

In general, we may reasonably consider that human interventions within and outside of
the production system (internal and external forces, respectively) introduce uncertainties
into the system’s progress [4, 12]. The production system is formed by connecting both
elements. When human intervention from outside companies involves an uncertainty, the
noise element is frequently overlooked; instead, researchers have focused on efficient pro-
duction or manufacturing the best system. Moreover, by including the noise element,
we can recognize the unique advantage of the system. We consider internal and exter-
nal forces as two parameters in the production system. Rather than selecting the ratio
between lead time and throughput that optimizes an individual’s productivity, we select
the parameters that achieve overall synchronization [4, 12]. In our previous study of a
production system involving worker intervention, the specific abilities of workers required
empirical analysis. To optimize typical modern production systems, we must recognize
the importance of biological fluctuations. For example, the following aims typify technical
innovation in the engineering industries:

(1) Detecting a small signal using the noise in the force.
(2) Synchronizing the circuit groups using the noise power.

Stochastic resonance (SR) is utilized in physical systems such as electronic circuits, and
even in biological systems such as neurotransmission; as a result, the same phenomenon
has been confirmed [18, 19]. However, there have been no reports on application of SR
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in production processes for the improvement of throughput. Accordingly, we present the
improvement of throughput in production processes using SR in the present study.

In this study, worker productivity in a high-mix, low-volume production process is
optimized for the market demand, rather than the mass production process. To demon-
strate the effectiveness of the throughput when the worker productivity is analyzed in this
manner, we extract the probability distribution of the productivities of workers in a real
production firm. Analyzing the actual results, we ascertain the probabilities of human
factors in a production process.

Fujisaka and colleagues modeled the production process as a circuit system with an
annular structure and coupled synchronization loops [20]. A production flow process
used in our actual processes is regarded as the coupled synchronization loops reported
in Fujisaka’s reference [20]. Here, we apply their model to a relatively simple cascaded
system, and model the dynamics using their derived Fokker-Planck equation (FPE). The
FPE applies the modulation content of the equilibrium solution to the operator as the
stochastic variation, and seeks the response and correlation functions. In their numerical
calculations, Fujisaka and colleagues obtained the output signal-to-noise ratio, but did not
calculate the eigenvalues and eigenfunctions of the operators in the fluctuating solution.

As described above, we consider that the noise (stochastic component) in workers’ capa-
bility follows a probability distribution. We study the relationship between the intensity
of SR (volatility in workers’ ability) and the throughput (lead time) by capturing the pro-
cess as a type of threshold reaction element. The proposed concept can potentially lead
to innovative productivity by companies implementing a production system. Although
the test system is small, it contains useful data for analyzing an innovative production
system.

2. Mathematical Modeling of Production Processes.

2.1. Production systems in the production equipment industry. The production
methods used in equipment are briefly covered in this paper (refer to Figure 1). Please
see our research [5]. This system is considered to be a ‘Make-to-order system with version
control’, which enables manufacturing after orders are received from clients, resulting in
‘volatility’ according to its delivery date and lead time. In addition, there is volatility
in the lead time, depending on the content of the make-to-order products (production
equipment).

2.2. Production flow process. A manufacturing process that is termed as a production
flow process is shown in Figure 2. The production flow process, which manufactures
low volumes of a wide variety of products, is produced through several stages in the
production process. In Figure 2, the process consists of six stages. In each step S1-S6 of
the manufacturing process, materials are being produced.

The direction of the arrows represents the direction of the production flow. Production
materials are supplied through the inlet and the end-product is shipped from the outlet
[11].

2.3. Concept of production flow. We have reported a mathematical model of the
production process in the past manuscripts. We describe the physical approach for a
production process [1, 2]. From Figure 3, we refer to the network ability (i.e., a statically
acceptable amount of production) in an interprocess network (a production field) as R.
An interprocess network indicates a sequential flow from one process to the other after the
completion of the current process. Here assuming that the production density function
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Figure 1. Business structure
of company of research target

Figure 2. Production flow process

for the i-th equipment is Si(x, t), Si(x, t) is expressed by

[J(x, t)dt − J(x + dx, t)dt]R = [Si(x, t + dt) − Si(x, t)]Rdx (1)

where J is the production flow [1].
Next, we define the production flow as the displacement of a production density function

in the unit production direction. In other words, the production density function is
proportional to the cost necessary for production, and thus, it can be considered as the
production cost per unit production. Furthermore, because production leads to a return,
the production density function can be considered as a return density function

∂Si(x, t)

∂t
= D

∂2Si(x, t)

∂x2
(2)

where D is the diffusion coefficient, t is the time variable, and x is the spatial variable.
This equation is equivalent to the diffusion equation derived from the minimization

condition of free energy in a production field, indicating that the connections between
processes can be treated as a diffusive propagation of products (refer to Figure 3) [1].

A model of the production process, which is connected in one dimension, is described
in Figure 3. The process of production is indicated by the movement of production units
from one process (node) to another. This production flow is equivalent to transmission
rate, which is defined as the rate of data flow between connected nodes in communication
engineering. Accordingly, we formulate the production model in a manner similar to heat
propagation in physics. Thus, the production process is modeled mathematically using
a continuous diffusion type of partial differential equation consisting of time and spatial
variables [1].
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Figure 3. Network inter-
process division of the worker

Figure 4. Conceptual model
of the process cycle period and
duration

3. Spectral Values Considering Stochastic Resonance.

3.1. Spectrum analysis of throughput deviations within a process. In our pre-
vious study, we confirmed that the throughput deviations for manufacturing equipment
are properly predicted by a dynamic model based on a Langevin equation [5, 14, 21].
The spectrum analysis is detailed in our previous study with respect to the throughput
deviation within a process [6].

Regarding the periodic cycle, we define a cycle of period i as Tsi
(t) and Tρ(t) as the

cycle until the end of the company’s fiscal year. In Figure 4, Tsi
(t) indicates a cycle of

period i and Tρ(t) represents a company’s fiscal year. Then, the relationship between
Tsi

(t) and Tρ(t) is expressed as follows.

Tsi
(t) =

1

hn(t)
(3)

When Tρ(t) ≡ freq, we refer to freq as the company’s period frequency.
Then, from the Wiener-Khinchin theorem, a power spectrum Shn(freq) of hn(t) to freq

is expressed by the following [23].

Shn(freq) ∼=
∫ ∞

0

cos(2πfρ · t)ϕhn(t)dt (4)

ϕτ (t) ∼=
∫ ∞

0

cos(2πfreq · t)Shn(freq)dfreq (5)

Then we obtain as follows:

Shn(fτ ) ≈ Df < |hn|2 > (6)

Here if a time constant exists in the time correlation function of fluctuation, we can derive
the following [23].

ϕhn(t) = Df < |hi|2 > · exp
(
− t

τn

)
(7)

Then, we substitute Equation (7) into Equation (4) for Shn(freq). Thus, we can obtain
the following after calculating Equation (4). Please see a more detailed analysis in our
previous study [6].

Shn(freq) =< |hn|2 > · Dfτn

(2πfreqτn)2 + 1
(8)
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From Equation (8), we observe that Equation (6) represents the spectral correlation func-
tion of throughput deviation, whose Lorentz spectrum lies near the fluctuation frequency.
Therefore, the spectrum is calculated from the defined throughput.

3.2. Theoretical equation of SNR. We assume that noise is added to the operator;
that is, we assume volatility in the data of the production flow system, which are applied
as the input signal. The SNR is computed from the power spectral density of the noise
intensity and the throughput deviation. The result confirms the presence of stochastic
resonance in the production process. Here the noise intensity represents the volatility in
the worker ability.

Definition 3.1. Theoretical equation of SNR

SNR ≡
[
Ts· < Shn(freq) >

SN

]2

· exp
(
− Ts

SN

)
(9)

where freq ≈ 1/Ts and Ts is a cycle time, and SN is a power spectral density of noise and
SN is proportional to a volatility.

The SNR of the production flow process is

SNR ≡ < Shn(freq) >

SN

(10)

4. Numerical Simulation.

4.1. Calculation of SNR. The evaluation of theoretical equation (Equation (9)) and
approximation equation (Equation (10)) are represented as follows.

(1) According to the time constant (τ) of autocorrelation function increases, the spectral
peak value is shifted to the left (see Figures 5-8, Figures 9-12, Table 1 and Table
2). There are so many situations that are over the standard working time; it is
corresponding to Figure 5/Figure 6, Figure 9/Figure 10, Figure 13/Figure 14 and
Table 4 that is an asynchronous process (test run 1). A synchronous process (test
run 2, 3) indicates Figure 7/Figure 8, Figure 11/Figure 12, Figure 15/Figure 16 and
Table 6/Table 8. In other word, the stochastic resonance occurs in Figure 7/Figure
8, Figure 11/Figure 12, Figure 15/Figure 16 and Table 6/Table 8.

(2) The value of SNR is the larger at near Ts ≈ 17 or 20 from our theory and makes
greater at Ts ≤ 20.

We confirmed stochastic resonance in a test run of a production flow system. The
threshold was set to Ts ≈ 20.

Stochastic resonance can occur by the following mechanism. First, if the threshold is
varied, the noise intensity amplifies in response to the large uncertainties in the overall
system and in human factors. Consequently, the thresholds are always exceeded and
stochastic resonance is not observed. However, stochastic resonance emerges when each
process is assigned the same threshold Ts ≈ 20. The threshold response pulses that

Table 1. Transition of noise intensity peak value on stochastic resonance
(Equation (9))

Figure number Time constant value τ SNR value Noise intensity
Figure 5 τ = 0.5 9 8.85
Figure 6 τ = 1.0 27 8.8
Figure 7 τ = 2.0 57 7.85
Figure 8 τ = 3.0 63 7.8
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Table 2. Transition of noise intensity peak value on stochastic resonance
of the production flow process (Equation (10))

Figure number Time constant value τ SNR value Noise intensity
Figure 9 τ = 0.5 0.08 28.6
Figure 10 τ = 1.0 0.08 21.4
Figure 11 τ = 2.0 0.08 8.3
Figure 12 τ = 3.0 0.08 5.7

!"

#"

$"

%"

&"

'!"

#(&" )(&" $(&" *(&" %(&" +(&" &(&" ,(&"'!(&"''(&"

-
.
/
"

012345267463278"

Figure 5. Stochastic reso-
nance (Equation (9)), Dρ = 1,
τ = 0.5, Ts = 12.2
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Figure 6. Stochastic reso-
nance (Equation (9)), Dρ = 1,
τ = 1, Ts = 14
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Figure 7. Stochastic reso-
nance (Equation (9)), Dρ = 1,
τ = 2, Ts = 17.0
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Figure 8. Stochastic reso-
nance (Equation (9)), Dρ = 1,
τ = 3, Ts = 20
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Figure 9. Stochastic reso-
nance (Equation (10)), Dρ =
1, τ = 0.5
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Figure 10. Stochastic reso-
nance (Equation (10)), Dρ =
1, τ = 1
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Figure 11. Stochastic reso-
nance (Equation (10)), Dρ =
1, τ = 2
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Figure 12. Stochastic reso-
nance (Equation (10)), Dρ =
1, τ = 3

generate stochastic resonance are enclosed in the round-cornered boxes in Tables 4, 6,
and 8. Thus, the more volatility is large, it is added a number circle. Test run 1 is larger
than test run 2 and test run 3 in actual data. Please see the reference with respect to the
actual data. [11, 17].

4.2. Numerical simulation of spectral density Equation (8). Frequency represents
lead time; it is important to determine frequency. For example, Figures 13-16 show nu-
merical examples of power spectral density versus frequency and represent the magnitude
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Figure 13. Spectral density
of throughput deviation, Dρ =
1, τ = 0.5
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Figure 14. Spectral density
of throughput deviation, Dρ =
1, τ = 1
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Figure 15. Spectral density
of throughput deviation, Dρ =
1, τ = 2
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Figure 16. Spectral density
of throughput deviation, Dρ =
1, τ = 3

of throughput deviations within a process at a certain range of frequencies. The similarity
of the graph shapes, which show power spectral densities at a certain frequency ranges,
also indicates self-similarity in the processes. Please see the reference [16].

By setting a certain range of frequencies, i.e., setting a target lead time, spectral density
is maintained as low as possible. In other words, throughput deviations within a process
are maintained as low as possible.

By maintaining high-throughput deviations within a process in the production system,
a company produces high benefits.
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Table 3. Correspondence between the test – run number

Production process Working time Volatility

test run 1 Asynchronous process 627(min) 0.29

test run 2 Synchronous process 500(min) 0.06

test run 3
�� ��“Synchronization with preprocess” method

�� ��470(min)
�� ��0.03

4.3. Calculation of potential function. The phase difference |θ| is modulated by the
fundamental period T0, mostly likely because the internal system and worker abilities are
stochastically disturbed (see Figure 17). Therefore, the basic process potential is acted
upon by external forces, as indicated in the following equation.

V (θ) = σ · θ + B(−4C cos θ + cos 2θ) (11)

where σ is a volatility having an internal cause and disturbance. The σ is also the volatility
of a stochastic throughput C(x, t)(C(t)).

Then, σ ≈ Kσ, and Kσ is a real number. Therefore, Equation (11) is deformed as

V (θ) = Kσ · θ + B(−4C cos θ + cos 2θ) (12)

For example, we determined Kσ ≈ 0.29 in test run 1, Kσ ≈ 0.06 in test run 2 and
Kσ ≈ 0.03 in test run 3.

As clarified in the above calculations, the basic potential displaces by an amount that
depends on Kσ. Moreover, the direction of the deviation depends upon the sign of Kσ.
In the test run of the production flow system, importing the volatility as an uncertainty
also affected the worker lead time. Thus, the coefficient of the external force partially
represents the running capability of a process.

In future work, we will investigate the practical meaning of the parameters {B, C}. If
these parameters are defined, we can specify the deviation (phase) of the potential function
from its set value, and thereby describe a fluctuating process in detail. Consequently, we
could mathematically model a production process and determine the threshold of the lead
time (throughput) in stochastic resonance.

Using the potential function, we now evaluate the variation statuses of workers at
different stages. In the numerical equations we adopt Equation (13), which includes a

!"! #"!

$%&'! $!
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&()/0(*12.!

&%&'.!."! &%&'.#."!

34$+51.0$5)$!
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Figure 17. Stochastic resonance phenomenon
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constant term F . Figures 18-25 plot the potential functions for different values of F ,
B, and C. Please see the references with respect to the graphs [16]. We find that if
|F | ≥ 3

√
3B, the process cannot be synchronized [22]. As shown in Figures 18-25, setting

F = 0.01 does not affect the shape of the potential function, but setting F = 0.2 distorts
the potential function and destroys its symmetry. In other words, when B is large, the
production process cannot maintain synchronicity. In contrast, the potential function is
insensitive to the parameters B and C, although reducing, i.e., C to 0.01 shortens the
stabilization period.

VF = F × D + B × (−4 × C cos(D) + cos(2D)) (13)
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Figure 18. Value of poten-
tial function (F = 0.01, B = 1,
C = 1.5)
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Figure 19. Value of poten-
tial function (F = 0.2, B = 1,
C = 1.5)
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Figure 20. Value of poten-
tial function (F = 1, B = 1,
C = 1.5)
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Figure 21. Value of poten-
tial function (F = 1.5, B = 1,
C = 1.5)
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Figure 22. Value of poten-
tial function (F = 5.5, B = 1,
C = 1.5)
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Figure 23. Value of poten-
tial function (F = 0.01, B =
10, C = 1.5)
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Figure 24. Value of poten-
tial function (F = 0.01, B = 1,
C = 0.01)
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Figure 25. Value of poten-
tial function (F = 0.01, B = 1,
C = 1.5)

5. Conclusion. Assuming self-similarity of the production system, we presented a the-
oretical analysis that is extendible to other production systems. The effectiveness of our
model was validated using data from a real production flow, using suitable values of the
parameters. In particular, we found a correlation between the magnitude of volatility in
the distribution of worker abilities (noise intensity) and the threshold of the throughput
decision (step throughput). We also found an optimal combination of these factors that
was accompanied by stochastic resonance.

The developed equation models the throughput between mutual processes. The self-
similarity of the model implies that downstream processes will follow the upstream model.
We confirmed the presence of stochastic resonance from the SNR, obtained by relating
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the background noise to the power spectral density. In future studies, we will increase the
number of processes, and investigate their dynamics in a mutual-process model.

REFERENCES

[1] K. Shirai and Y. Amano, Prduction density diffusion equation and production, IEEJ Trans. Elec-
tronics, Information and Systems, vol.132-C, no.6, pp.983-990, 2012.

[2] K. Shirai and Y. Amano, A study on mathematical analysis of manufacturing lead time – Application
for deadline scheduling in manufacturing system, IEEJ Trans. Electronics, Information and Systems,
vol.132-C, no.12, pp.1973-1981, 2012.

[3] K. Shirai and Y. Amano, Model of production system with time delay using stochastic bilinear
equation, Asian Journal of Management Science and Applications, vol.1, no.1, pp.83-103, 2015.

[4] K. Shirai, Y. Amano and S. Omatu, Process throughput analysis for manufacturing process under
incomplete information based on physical approach, International Journal of Innovative Computing,
Information and Control, vol.9, no.11, pp.4431-4445, 2013.

[5] K. Shirai, Y. Amano, S. Omatu and E. Chikayama, Power-law distribution of rate-of-return deviation
and evaluation of cash flow in a control equipment manufacturing company, International Journal
of Innovative Computing, Information and Control, vol.9, no.3, pp.1095-1112, 2013.

[6] K. Shirai and Y. Amano, Self-similarity of fluctuations for throughput deviations within a produc-
tion process, International Journal of Innovative Computing, Information and Control, vol.10, no.3,
pp.1001-1016, 2014.

[7] K. Shirai, Y. Amano and S. Omatu, Consideration of phase transition mechanisms during produc-
tion in manufacturing processes, International Journal of Innovative Computing, Information and
Control, vol.9, no.9, pp.3611-3626, 2013.

[8] K. Shirai and Y. Amano, Calculating phase transition widths in production flow processes using an
average regression model, International Journal of Innovative Computing, Information and Control,
vol.11, no.3, pp.1075-1091, 2015.

[9] K. Shirai and Y. Amano, On-off intermittency management for production process improvement,
International Journal of Innovative Computing, Information and Control, vol.11, no.3, pp.1075-1092,
2015.

[10] S. J. Baderstone and V. J. Mabin, A review Goldratt’s theory of constraints (TOC) – Lessons from
the international literature, Operations Research Society of New Zealand the 33rd Annual Conference,
University of Auckland, New Zealand, 1998.

[11] K. Shirai, Y. Amano and S. Omatu, Improving throughput by considering the production process,
International Journal of Innovative Computing, Information and Control, vol.9, no.12, pp.4917-4930,
2013.

[12] K. Shirai and Y. Amano, Production throughput evaluation using the vasicek model, International
Journal of Innovative Computing, Information and Control, vol.11, no.1, pp.1-17, 2015.

[13] K. Shirai, Y. Amano and S. Omatu, Propagation of working-time delay in production, International
Journal of Innovative Computing, Information and Control, vol.10, no.1, pp.169-182, 2014.

[14] K. Shirai and Y. Amano, Application of an autonomous distributed system to the production process,
International Journal of Innovative Computing, Information and Control, vol.10, no.4, pp.1247-1265,
2014.

[15] K. Shirai and Y. Amano, Throughput improvement strategy for nonlinear characteristics in the
production processes, International Journal of Innovative Computing, Information and Control,
vol.10, no.6, pp.1983-1997, 2014.

[16] K. Shirai and Y. Amano, Validity of production flow determined by the phase difference in the gradi-
ent system of an autonomous decentralized system, International Journal of Innovative Computing,
Information and Control, vol.10, no.5, pp.1727-1745, 2014.

[17] K. Shirai and Y. Amano, Analysis of production processes using a lead-time function, International
Journal of Innovative Computing, Information and Control, vol.12, no.1, pp.125-138, 2016.

[18] R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance, Journal of Physics A:
Mathematical and General, vol.14, no.11, pp.453-457, 1981.

[19] S. Ishiwata and K. Koizumi, Weak signal detection and its applications by stochastic resonance, Phe-
nomena and Mathematical Theory of Nonlinear Waves and Nonlinear Dynamical Systems, Reports
of RIAM Symposium No. 17ME-S2, 2005.

[20] H. Fujisaka, T. Kamio and K. Ikuiwa, Stochastic resonance in coupled sychronization loops, IEICE,
vol.J90-A, no.11, pp.806-816, 2007.



912 K. SHIRAI AND Y. AMANO

[21] A. A. Stanislavsky, Fractional dynamics from the ordinary Langevin equation, Physical Review, E
67, pp.021111-1-021111-6, 2003.

[22] M. Sugi, H. Yuasa and T. Arai, Autonomous decentralized control of traffic signal network by
reaction-diffusion equations on a graph, Journal of SICE, vol.39, no.1, pp.51-58, 2003.

[23] K. Kitahara, Nonequilibrium Statistical Mechanics, Iwanami Co., LTD, 2000.

Appendix A. Analysis of Actual Data in the Production Flow System. Figure
2 represents a manufacturing process called a flow production system, which is a manu-
facturing method employed in the production of control equipment. The flow production
system, which in this case has six stages, is commercialized by the production of material
in steps S1-S6 of the manufacturing process.

The direction of the arrow represents the direction of the production flow. In this
system, production materials are supplied from the inlet and the end product will be
shipped from the outlet.

Assumption A.1. The production structure is nonlinear.

Assumption A.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

Assumption A.1 indicates that the determination of the production structure is consid-
ered as a major factor, which includes the generation value of production or the through-
put generation structure in a stochastic manufacturing process (hereafter called the man-
ufacturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.

Because the value of such a product depends on the throughput, its production structure
is nonlinear. Therefore, Assumption A.1 reflects the realistic production structure and is
somewhat valid. Assumption A.2 is completed in each step and flows from the next step
until stage S6 is completed. Assumption A.2 is reasonable because new production starts
from S1.

Based on the control equipment, the product can be manufactured in one cycle. The
production throughput required to maintain 6 pieces of equipment/day is as follows:

(60 × 8 − 28)

3
× 1

6
≃ 25 (min) (14)

where the throughput of the previous process is set as 20 (min). In Equation (14), “28”
represents the throughput of the previous process plus the idle time for synchronization.
“8” is the number of processes and the total number of all processes is “8” plus the
previous process. “60” is given by 20 (min) × 3 (cycles).

One process throughput (20 min) in full synchronization is

Ts = 3 × 120 + 40 = 400 (min) (15)

Therefore, a throughput reduction of about 10% can be achieved. However, the time
between processes involves some asynchronous idle time.

As a result, the above test run is as follows.

• (test run 1): Each throughput in every process (S1-S6) is asynchronous, and its
process throughput is asynchronous. Table 4 represents the manufacturing time
(min) in each process. Table 5 represents the variance in each process performed by
workers. Table 4 represents the target time, and the theoretical throughput is given
by 3 × 199 + 2 × 15 = 627 (min).

In addition, the total working time in stage S3 is 199 (min), which causes a
bottleneck. Figure 26 is a graph illustrating the measurement data in Table 4,
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and it represents the total working time for each worker (K1-K9). The graph in
Figure 27 represents the variance data for each working time in Table 4.

• (test run 2): Set to synchronously process the throughput.
The target time in Table 6 is 500 (min), and the theoretical throughput (not

including the synchronized idle time) is 400 (min). Table 7 represents the variance
data of each working process (S1-S6) for each worker (K1-K9).

• (test run 3): The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 8.

Table 9 represents the variance data of Table 8. “WS” in the measurement tables
represents the standard working time. This is an empirical value obtained from
long-term experiments.

Table 4. Total manufactur-
ing time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6

K1 15
�� ��20

�� ��20
�� ��25

�� ��20
�� ��20

�� ��20

K2 20
�� ��22

�� ��21
�� ��22

�� ��21
�� ��19

�� ��20

K3 10
�� ��20

�� ��26
�� ��25

�� ��22
�� ��22

�� ��26

K4 20 17 15 19 18 16 18

K5 15 15
�� ��20

�� ��18
�� ��16 15 15

K6 15 15 15 15 15 15 15

K7 15
�� ��20

�� ��20
�� ��30

�� ��20
�� ��21

�� ��20

K8 20
�� ��29

�� ��33
�� ��30

�� ��29
�� ��32

�� ��33

K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 5. Volatility of Table 4

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Figure 26. Total work time for
each stage (S1-S6) in Table 4

Figure 27. Volatility data for
each stage (S1-S6) in Table 4
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Table 6. Total manufactur-
ing time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6

K1 20 20
�� ��24 20 20 20 20

K2 20 20 20 20 20 22 20

K3 20 20 20 20 20 20 20

K4 20
�� ��25

�� ��25 20 20 20 20

K5 20 20 20 20 20 20 20

K6 20 20 20 20 20 20 20

K7 20 20 20 20 20 20 20

K8 20
�� ��27

�� ��27
�� ��22

�� ��23 20 20

K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 7. Volatility of Table 6

K1 0 1.33 0 0 0 0

K2 0 0 0 0 0.67 0

K3 0 0 0 0 0 0

K4 1.67 1.67 0 0 0 0

K5 0 0 0 0 0 0

K6 0 0 0 0 0 0

K7 0 0 0 0 0 0

K8 2.33 2.33 0.67 1 0 0

K9 0 0 0 0 0 0

Table 8. Total manufactur-
ing time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6

K1 20 18 19 18 20 20 20

K2 20 18 18 18 20 20 20

K3 20
�� ��21

�� ��21
�� ��21 20 20 20

K4 20 13 11 11 20 20 20

K5 20 16 16 17 20 20 20

K6 20 18 18 18 20 20 20

K7 20 14 14 13 20 20 20

K8 20
�� ��22

�� ��22 20 20 20 20

K9 20
�� ��25

�� ��25
�� ��25 20 20 20

Total 180 165 164 161 180 180 180

Table 9. Variance of Table 8

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0


