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ABSTRACT. A chattering free terminal sliding mode controller combining second order
nonsingular terminal mode control with backstepping method is proposed for rendezvous
and docking with a tumbling target spacecraft, in which disturbances and coupled factors
are considered. Firstly, the relative position and relative attitude model are established
based on the orbit coordinate system and body coordinate system respectively. Secondly,
in order to solve the chattering problem in sliding mode control systems and singularity in
terminal sliding mode control systems, this paper proposes a chattering free nonsingular
terminal sliding mode control scheme by combining the second order nonsingular terminal
mode with backstepping method. The stability of system is proved based on the Lyaponov
stability theory. Numerical simulation demonstrates the efficiency of the proposed control
method.

Keywords: Relative motion, Rendezvous and docking, Sliding control, Backstepping
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1. Introduction. Many space missions such as rendezvous and docking with other space-
craft require a spacecraft to perform precise position and attitude maneuvers. In partic-
ular, with the continuous increase of orbit activities, there is a growing interest in au-
tonomously servicing satellites on orbit to perform tasks such as spacecraft salvage and
repair [1], refueling [2], and debris removal [3]. Several space programs have been proposed
as technology demonstration of these tasks. JAXA’s ETS-7 [4], NASA’s DART program,
DARPA’s Orbital Express Program [5], and SUMO program [6] are some missions that
have been completed or are being developed. Since a non-cooperative spacecraft is free-
floating and the relative motion information can only be obtained from measurement
instruments, high accuracy orbit and attitude control becomes an important research
trend and one of the challenges is the coupling problem between the orbit dynamics and
attitude dynamics; therefore, the orbit and attitude integrated control problem draws
wide attention of researchers.

Various nonlinear control techniques have been investigated in the past to address this
problem, such as sliding mode control [7,8], backstepping technique [9,10], and suboptimal
technique. Sliding mode (SM) control is a robust nonlinear control technique that has
been applied to the spacecraft. However, in the conventional sliding mode control, the
convergence of the states can only be achieved in infinite time. The terminal sliding mode
(TSM) control [11,12] is able to achieve fast convergence of the states without spending
a large control effort by using a nonlinear sliding surface. A nonsingular terminal sliding
mode (NTSM) control is proposed [13] to overcome the singularity problem in the TSM
by selection of a suitable fractional power in the discontinuous control law. However, one
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major disadvantage of the TSM controller is the chattering phenomenon which comprises
high frequency oscillations arising because of the discontinuous control signal. The higher
order sliding mode (HOSM) control is investigated in recent years, and is applied to robots
and aircraft control [14-16].

Recently, most of the research work is about the control for a tumbling target spacecraft.
The coupled control inputs have been considered in [17], and based on the feedback
linearization, an integrated coupling control algorithm is proposed. The 6 — D nonlinear
optimal control technique has been applied in the work of [18,19]. Unfortunately, the
robustness of these controllers is not good enough since the parameters of spacecraft are
not precisely known in reality. The traditional SM control [20-22] is an effective approach
to deal with uncertainties and inaccuracies of nonlinear systems. Compared with linear
hyperplane-based sliding modes, NTSM offers some superior properties such as fast, finite
time convergence. So based on the NTSM theory, a composite control law which consists of
a feedback control based on NTSM method and a feed-forward compensation term based
on finite-time disturbance observer is constructed [23,24], and the major merit of the
proposed method is that chattering is substantially reduced because the switching gain of
the discontinuous control law is only required to be greater than the bound of disturbance
estimation error rather than the disturbance. However, the chattering phenomenon in
these studies cannot be totally eliminated and the control signal is still discontinuous.

The HOSM control is an effective method for overcoming the chattering phenomenon
that exists in the traditional sliding mode [14-16]. Inspired by this observation, this paper
proposes a chattering free nonsingular terminal sliding mode control scheme by combining
second order nonsingular terminal mode with backstepping method in order to solve the
chattering problem in sliding mode control systems and singularity in terminal sliding
mode control systems.

Rest of the paper is organized as follows. Section 2 describes the dynamics of six degree-
of-freedom rigid body spacecraft motion. In Section 3, the chattering free terminal sliding
mode controller combining second order nonsingular terminal mode control with backstep-
ping method is proposed. Simulation results are presented in Section 4. Conclusions are
given in Section 5.

2. Problem Statement and Preliminaries. In this paper, the tumbling non-cooperat-
ive target is supposed to be on the Kepler orbit, so it is possible for the chaser spacecraft
to obtain the orbit parameters of the target. Furthermore, it is more reasonable to attach
the coordinate system to the mass center of target spacecraft, which is used to describe
the relative motion. In this section, the coordinate system used in this paper is defined.
Besides, the relative orbit dynamics and the relative attitude dynamics are obtained.
Then, the integrated model of relative orbit and relative attitude is established, which is
used for the control law design in the following sections.

2.1. Coordinate system. Figure 1 shows the definition of the coordinate system that
is used in this paper. Here, w,., w; stand for the angular velocity of the chaser and the
target spacecraft respectively. The coordinate system OXYZ stands for the earth inertia
coordinate system. In order to describe the relative position and relative attitude between
the chaser spacecraft and the target spacecraft, the orbit coordinate system is established
in the target spacecraft. The mass center of the target spacecraft is defined as the origin
of the coordinate system, the x axis is the direction of the target spacecraft velocity, the
z axis is along the opposite direction of the earth radius, and the y axis can be fixed by
the right hand law.
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A

FiGUurE 1. Coordinate system definition

2.2. Relative orbit dynamics.

Assumption 1 The orbit parameters of the target spacecraft can be known in advance.
Based on the above assumption, the following relative orbit dynamics equation seems more
reasonable, which includes some orbit parameters of target spacecraft in its equation
description. The relative orbit dynamics equation [25] is shown in Equation (1)

F = e+ hz + 205 — Sw o ffme+ Foufm,
r

c

y= _r_l;y+fdy/mc+Fcy/mc (1)
C
5= —paz+nls — 2ni — % - T—’;(Z — 1) + fa /e + Fopfm,
t c

where z, y, z stand for the relative position vector component between the chaser space-
craft and the target spacecraft; r., r, stand for the orbit radius of the chaser and the
target spacecraft respectively; n and n stand for the orbit angular velocity and angular
acceleration velocity; Fi,, Iy, Fe, are the control force vector component; fu,, fay, fa. are
the disturbance force vector component; p is the earth gravitation constant; m,. stands
for the mass of the chaser.

The nonlinear relative orbit dynamics mentioned above could be written as Equation

(2).

p=Mp+ Myp+ Ms+ F./m.+ fq/m. (2)
where
T T
P:[»"E Y Z]Ta Fc:[Fc:v Fcy Fcz] ) fd:[fdx fdy fdz]
0> 0 0 0 20 0 —pa/r?
My=| 0 00|, My=| -2 0 0|, M= —py/r?
-6 0 6 0 0 0 —pri—pu(z —r)/r?

2.3. Relative attitude dynamics. In this paper, both the chaser spacecraft and the
target spacecraft are considered as the rigid body, and the desired attitude of the chaser
spacecraft is the attitude of the target spacecraft. In this subsection, based on the law of
the rigid body moment of momentum, the dynamics and kinematics for both the chaser
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spacecraft and target spacecraft are established, and then the relative attitude dynamics
is obtained.

Firstly, based on the rigid body moment of momentum, the attitude dynamics of the
chaser spacecraft can be obtained as Equation (3)

ch’c + ‘:’cIcwc = T+ Tyc (3)

where I, is the moment of inertia of the chaser spacecraft, w, is its angular velocity, T,
T4 are the control torque and disturbance torque respectively. Furthermore, this paper

defines skew symmetric matrix for arbitrary vector a = [ a, a, a, |' as Equation (4)
0 —a, a
a, = Ay 0 —Qy (4)
—y Oy 0

And the kinematics of the chaser spacecraft could be described as the following equation
. 1[0 —w!
i3] o % ]e )
where q. is the attitude quaternion of the chaser spacecraft. For arbitrary attitude quater-
nion g, we define q = [ G q ]T. qo, q are the scalar part and the vector part of the
quaternion g, and they satisfy the following constraint condition
G%+4q =1 (6)

In a similar way, the dynamics and kinematics equations of the target spacecraft are
obtained as Equation (7) and Equation (8)

It‘-bt + (:)tItwt =0 (7)
. 10 —wf
q: = 2 [ W, —@ ] q: (8)

where I, is the moment of inertia of the target spacecraft, w; is its angular velocity. q; is
the attitude quaternion of the target spacecraft.
We define g, as the attitude error quaternion, which can be obtained as Equation (9)

AT
dio q;
_ | . 9

@ [ —q; qulzx —q, } e ( )
Furthermore, the attitude error quaternion satisfies the following kinematics equation

. 1[0 —w!
r— A . r 10
g =5 { v G }q (10)
where w, is the relative attitude angular velocity, and w, satisfies the following equation
W, = w, — Agw; (11)

In Equation (11), A, is the transform matrix from target spacecraft body coordinate
system to the chaser body coordinate system, and A.; could be described by the following
equation

Act = A(qe) - (qzo - quQe) I3><3 + 2quTqu - 2q80qe (12)

Then we can obtain the time derivative of w, as Equation (13)

(;J,« = d’c - Actwt + ‘:erc
=TI (10 + T4 + Tue — Oclow,) — Ay + Orw, (13)
=t.+ I (1. + 74)

where t. = —I '@ Jw, — A,w; + @,w..
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The time derivative of Equation (10) is given by

. 170 —wf 170 —w'].
qr = 7 2 q-+ < ~ qr

2 d’r —W, 2 Wy —Wr
14
170 —¢f 1T 0 —w'l. 1 gt 3 (14)
=5 T q- + 3 - q- + = pe Ic Tc
2| t, —t. 2| wp —w, 2 | ¢rol3x3 +q,
The compact form for Equation (14) can be written as the following equation
. 1 1 .. 1 B
qr = 5 19, + §N2qr + §N3Ic ch (15)
0 —tf —wT —gr
where N1 = L y N2 = 0 ujr y N3 = 9 = .
t. —t. Wy —Wr QTUI?)X?) +4q,

2.4. The orbit and attitude integrated dynamics. Define the system states ¢, =

[p q |F = = [ p q, ]T. Based on the relative orbit dynamics model shown in
Equation (2) and the relative attitude dynamics shown in Equation (14), we can obtain
the orbit and attitude integrated dynamics as the following equation

ilzwg
{:ir;2:f+Bu+d (16)

M1p+M2f)+M3(p) Fc LI3><3 03><3
h - . y - , B = Me _ R d =

where f [ iNig, + 5Nog, “ Te Osxs 5 N3I!

|: fd/mc :|

1 —1
INGI by,

3. Control Design. NTSM control is a new method developed in recent years, which
inherits the advantage of TSM control such as strong robustness and rapid convergence.
Besides, NTSM control overcomes the singularity that may occur in the TSM. However,
the chattering phenomenon still exists in the control output.

In order to overcome the chattering problem, this paper proposes a new controller by
combining second order nonsingular terminal mode control with backstepping method.
Using this design method proposed in this paper, a new control law that is chattering
free and strong robustness is obtained. In this section, the detailed design steps are
introduced.

Step 1 Virtual control design

In this step, the first subsystem closed-loop system (16) is considered:

T, = Ty (17)

The tracking error vectors are defined as the following equations
2] =T — Ty (18)
Z9 = Ty — Tog (19)

where x4, o, are the reference inputs.
Considering Equation (17), the time derivative of Equation (18) is given by

21 =Ty — L1g4 (20)
Based on the result of Equation (20), the virtual control function is designed as Equation
(21)
Tyg = —C121 + T14q (21)
where ¢, is the feedback gain matrix that is to be designed and ¢; > 0.
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In order to analyze the stability of subsystem (17), we construct a Lyaponuv function

as follows .
Vi = §z1Tz1 (22)
Supposing that the second subsystem of system (16) could achieve accurate tracking,

that means zo = 0, then we could obtain the following equation
Ty = Tog = —C121 + T1g (23)
The time derivative of V} can be obtained as Equation (24)
Vi=zl4=-2{c1z <0 (24)

Based on the Lyapunov stability theory, the subsystem (18) is asymptotically stable.

Step 2 Designing control law w that makes the tracking error z, converge to zero in
finite time

The second subsystem of closed-loop system (16) is considered

to=f+Bu-+d (25)

Based on Equation (19) and Equation (16), the tracking error dynamics could be ob-

tained as Equation (26)
z'2:f+Bu+d—:i32d (26)

If the SM control method is applying here, then only the asymptotic stability can be
guaranteed for the tracking error. Based on the second order nonsingular sliding mode
control method in this paper, the tracking error z, converges to zero in finite time. Besides,
this method proposed in this paper can void the singular phenomenon that may occur in
the TSM control method.

Define the second order nonsingular terminal sliding hyperplane as Equation (27)

S =z + B2 (27)

where 8 = diag[f,..., 07 and §; > 0 (i =1,...,7); p, q are the positive odds and satisfy
T
1<plg<?2; 327 = [zé’{qz%q] .

If the sliding hyperplane S arrives at s = 0 within time ¢,, then 2z, and 2, converge to
zero in finite time and Equation (28) gives the convergence time

ty=t, + Ig—q/pL |ZQ|(pr)/p (28)
p

By selecting suit parameters p, ¢ and 3, then the rate of regulation 2z, could be changed.
So the second order singular control law could be described from Equation (29) to

Equation (32)
U = Uy + Uy, (29)

Ueg = —B™ (f — @24) (30)

t
un:/ vdt (31)
0

v=-B" (ﬂ%i;p/q + 5sgn(S)> (32)

where B~ = (B"B) ™' BT,
Proof: Consider the Lyaponov function that is given as follows

1
Vo = 5STS (33)
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The time derivative of V5 can be obtained as Equation (34)
V, =SS
— 8T <2B1z~éPQ)/q <f + Bt — #og + gﬁzgp/Q>>
q b
gT <Eﬂ_lz'§pqwq(—6sgn(5))> (34)
q

p _1.s(p—
<A (B71271) |8
<0

IN

where Apin(®) stands for the smallest eigenvalue of vector e.

So based on the Lyapunov stability theory, the subsystem (25) could track the virtual
control x9y exactly. As soon as the tracking error z, = 0, the closed-loop system could
achieve the accurate tracking for the x4 under the action of xo,.

4. Simulation Result. The typical six orbital elements that establish the target satel-
lite’s orbit are a = 6900000m, e = 0.001, + = 100°, 2 = 70°, w = 30°, f = 125°. The
simulation parameters are given as Table 1.

TABLE 1. Simulation parameters

Description Value

initial relative position po=105 —10 0.2 ]™m
initial relative velocity po=[-01 05 0.1]"m/s
desired relative position pi=[0 —2 0]™'m

desired relative velocity pa=[0 0 0]Tm/s

mass of chaser satellite 45kg

mass of target satellite 6kg

moment of inertia matrix of chaser I. = diag( 8.0 6.0 11.5 )Tkg-m?
moment of inertia matrix of target I, = diag( 0.9 1.5 0.8 )Tkg:m?
initial attitude quaternion of chaser g-=[08 —0.5 03162 0.1]"
initial attitude quaternion of target ¢=[100 0]F

initial attitude angular velocity of chaser w,=[0 0 0 |Trad/s

initial attitude angular velocity of target w; =[0 0.05 0 |"rad/s

The controller parameters are ¢; =1 (1 = 1,...,7), ; =0.05 (i = 1,...,7), p; = 5,
q=3,m7=01(:=1,2,3),m=1(i=4,...,7). The disturbance force estimation £, and
disturbance torque My estimation are considered to be Gaussian distribution, and their
standard deviation are % and %

torque are given as follows:
fi=[—-15 25 1.0]"sin(0.03t) x 10~°m/s>

M;=[30 20 —2.5]"sin(0.05¢) x 107*N-m
Figure 2 and Figure 3 show the relative position versus time and relative velocity versus
time respectively. As can be seen in Figure 2, the relative position tracking is achieved in
40s, which implies that the chaser is driven to the desired position pg=[0 —2 0 ]Tm,
and Figure 3 shows the relative velocity goes to zero so that there is no relative transla-
tional motion. The results in Figure 2 and Figure 3 demonstrate a good relative position
tracking performance. Figure 4 shows the error quaternion versus time. As can be seen in

respectively. The disturbance force and disturbance
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Figure 4, attitude synchronization is achieved in 15 seconds, which indicates the chaser’s
attitude is synchronized with the target’s attitude. The results in Figure 2 demonstrate
a good attitude synchronization performance. Overall, the simulation results in Figures
2-4 demonstrate that the stability of the six degrees-of-freedom closed-loop system can
be guaranteed, and the proposed controller in this paper can achieve the relative position
tracking and attitude synchronization precisely in the presence of external disturbances.

Figure 5 and Figure 6 show the control input applied to the chaser through control force
and control torque, which indicates that the control force and torque are large for driving
the chaser to the desired position and attitude quickly, but they decrease rapidly after
the desired position and attitude are reached. Moreover, compared with the traditional
SM and TSM control method, the proposed control law in this paper can resolve the
chattering phenomenon very well, which can be demonstrated in Figure 5 and Figure 6.
Actually, there is discontinuous part in the proposed controller because of the presence
of the sign function. However, its integral, which is the actual control, is continuous and
hence chattering is eliminated.

------------------------------------------------------------------------------------

Control Force/N
=
3
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FIGURE 5. Control force versus time
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FIGURE 7. Relative position in the orbit coordinate system
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FiGURE 8. Euler angle of the relative attitude

Finally, the relative position in the orbit coordinate system and the relative Euler angle
are shown in Figure 7 and Figure 8, which show the motion trajectory of the relative
position and relative attitude respectively. Here, we transform attitude quaternion into
Euler angle form. The spacecraft relative position and relative attitude trajectories can be
seen in Figure 7 and Figure 8 more clearly. The simulation results in Figure 7 and Figure
8 also show that the proposed controller in this paper can achieve the relative position
tracking and attitude synchronization precisely in the presence of external disturbances.

5. Conclusions. In this paper, the relative orbit and attitude integrated model for ap-
proaching a tumbling non-cooperative spacecraft is established. Then, considering the
system uncertainty and disturbance, this paper proposes a controller design method by
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combining the second order nonsingular terminal sliding mode control with the back-
stepping method. Based on the Lyapunov stability theory, the system stability has been
proved. Numerical simulations demonstrate the efficiency of the controller that is pro-
posed.
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