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Abstract. Software behavior pattern mining has important significance since it can
provide help for software engineers to maintain the correctness of software and detect
exceptions as soon as possible. These high utility software behavior patterns shed light
on software behavior and capture unique characteristic of software traces. In this paper,
we propose a novel approach HUCP-Miner (high utility contiguous pattern mining) to
mine high utility contiguous patterns from the software executing traces. First of all, this
work presents a maximum utility measure which is used to simplify the utility calcula-
tion for contiguous patterns. Second, we propose a novel structure called UL-list (utility
and location list) to store utility and location information of patterns which contributes
to backward extension. Based on UL-list, a remaining utility upper bound model (ruub)
and extension strategy are put forward to prune the unpromising patterns early. Finally,
an extensive experimental study with different real-life datasets shows that the proposed
algorithm has impressive performance.
Keywords: High utility contiguous patterns, Maximum utility measure, Software exe-
cuting trace

1. Introduction. With the development of information age, software is becoming more
and more important in our life. Most of our activities depend on the correct working of
software systems. Bugs and anomalies in software can cause huge financial losses each
year in addition to privacy and security threats. Software behavior learning is one of the
most important tasks in many stages of software development lifecycle [1]. The pattern-
based software failure detection approach is a method in this area which helps software
engineers to find the failures quickly and accurately.

A large number of pattern mining algorithms have been applied to software failure de-
tection. Lo et al. [2] presented a novel method to classify software behaviors based on past
history or runs. They mined a set of discriminative features to capture repetitive series of
events from program execution traces. It was possible to generalize past known errors and
mistakes to capture failures and anomalies. Lo et al. [3] proposed the iterative pattern
mining algorithm based on the semantics of several software modeling languages. They
extracted frequent repetitive series of events from program executing traces as candidate
software specifications. On a related front, Li et al. [4] used the pattern position distribu-
tion as features to detect software failure occurring through misused software patterns. A
method based on relational association rule mining for detecting faulty entities in software
systems was put forward [5]. It was a common phenomenon that these methods took the
representative behavior patterns mining as the first step for software failure detection.
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Since a software executing trace can be viewed as a sequence with a specific order [6], this
question transforms into how to mine representative patterns from sequences.
An important limitation of frequent pattern mining is that it assumes that all items

have the same importance (weight, unit profit or value). So utility was introduced in-
to frequent pattern mining to mine for high utility patterns. Liu et al. [7] presented a
significant property (transaction-weighted downward closure) to maintain the downward
closure property of high utility patterns. Tseng et al. [8] employed a UP-Tree structure
in an efficient UP-Growth algorithm. However, these algorithms generated a very large
number of candidate itemsets. To solve these problems, some methods were proposed.
HUI-Miner [9] used a utility-list structure to mine high utility itemsets without candi-
date generation. It avoided the costly generation and utility computation of numerous
candidate itemsets. FHM [10] applied a novel strategy based on the analysis of item
co-occurrences. Compared to HUI-Miner, FHM was more efficient since it reduced the
number of join operations that needed to be performed. FOSHU [11] mined HUIs while
considering on-shelf time periods of items.
In fact, the software executing trace is a list of events with an especial order which

reflects the function calling relationship. High utility itemset mining was unsuitable, so
high utility sequential pattern mining was born at the right moment. According to Ahmed
et al.’s definitions [12], in addition, they designed three utility calculation ways to identify
the utility of a pattern in a sequence under corresponding conditions of the three ways.
However, the utilities of patterns are difficult to be calculated since a pattern in a sequence
has to firstly determine which condition the pattern belongs to. To avoid such case and
simplify the utility calculation of subsequences in sequences, Lan et al. [13] previously
proposed a simple utility measure which was called maximum utility measure to achieve
this goal. Since the main purpose of sequential pattern mining is to find most traces’
software behavior, rather than general software behavior, the proposed maximum utility
function may be more appropriately used to find high utility sequential patterns from
software executing traces. Yin et al. [14] also presented similar maximum utility concept
to handle the problem of mining sequential patterns with high-utility, and proposed a
tree-based mining approach named USpan, which adopted the Lexicographic Qsequence
Tree (LQS-Tree) to keep the utility information of items in quantitative sequences. The
LQS-Tree structure needs to keep the utilities of all items in sequences for determining
the maximum value among utilities of a pattern in a sequence. To get tighter upper
bound, PHUI [15] algorithm was proposed. It used an improved projection-based pruning
strategy for mining high utility sequential patterns and applied the maximum measure to
calculating the utilities. Due to the tighter upper bound, many unpromising patterns were
pruned. Most algorithms focus on mining high utility sequential patterns from sequence
databases. So it is necessary to mine high utility patterns from complex event sequences.
UBER-Mine [16] applied UR-Tree to mining complete set of high utility episode rules in
complex event sequences.
These items in software executing trace were not only ordered but also consecutive.

The general sequential pattern mining algorithms are not applicable. The contiguous
pattern has a characteristic that the items appearing in this pattern must be adjacent
with respect to the underlying order as defined in the pattern. Zhou et al. [17] established
a Two-Phase utility mining method to discover high utility path traversal patterns from
weblog databases. Ahmed et al. [18] designed an algorithm to mine utility-based web path
using a pattern growth sequential mining approach. However, long patterns may result
in very high utility value. And then, an efficient algorithm [19] to discover effective web
traversal patterns was proposed based on average utility model. However, these existing
algorithms cannot handle the software executing traces directly. Based on the above
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issues, some works about high utility contiguous pattern mining are done in the paper.
The contribution of the paper is the following.

• The maximum utility measure is proposed to simplify the utility evaluation for sub-
sequences in a set of software executing sequences.
• We create a utility-location list (UL-list) structure to store the patterns’ location
and utility information. The tighter upper-bound utility and extension strategy can
prune more unpromising patterns as early as possible. With the above structure and
strategy, a new efficient algorithm (HUCP-Miner) is proposed to mine high utility
contiguous patterns.
• We evaluate the performance of HUCP-Miner algorithm through a set of experi-
ments.

The rest of paper is organized as follows. Section 2 reviews the problem definitions. Sec-
tion 3 details the UL-list structure, strategy and the HUCP-Miner algorithm. Experimen-
tal results and evaluation are presented in Section 4. Section 5 concludes the work.

2. Definitions. A software behavior can be viewed as a series of events with special
order. In this paper, an event corresponds to the execution of a function. A set of the
relevant concepts is defined as follows.

Definition 2.1. Dynamic software executing sequence (DSES). DSES is a software ex-
ecuting trace. It is defined as S =< Sstart, Sstart+1, . . . , Send >, Si (start ≤ i ≤ end)
represents an event in a software executing sequence.

Definition 2.2. Software executing sequence database (SSD). A set of DSESs constitutes
an SSD.

We focus on the calling relationships between these events (functions). So we intend to
mine these contiguous patterns from SSD.

Definition 2.3. Contiguous pattern (CP). A contiguous pattern C =< e1, e2, . . . , en >
is considered as a subsequence of DSES S =< s1, s2, . . . , sm >, and it satisfies that these
events appearing in C must be adjacent in sequence S. This sequence S has integers 1 ≤
i1 ≤ i2 ≤ . . . ≤ in ≤ m where e1 = si1, e2 = si2, . . ., en = sin.

For convenience, we use pattern to replace contiguous pattern in following paper.

Definition 2.4. r-pattern. If |CP | = r, this contiguous pattern is called an r-pattern.

Definition 2.5. S/X and S/X+. Given a CP X and a DSEC S with X ⊆ S, the set of
all events after X in S is denoted as S/X; and S/X+ means the set of all events after X
in S, containing X.

Definition 2.6. The local utility of function in DSEC S. We denote the local utility of
an event ij in a DSEC as lu(ij , S) = eu(i) ∗ iu(ij , S).

The local remaining utility of function in DSEC S. It is denoted as lru(ij, S), is the
summation of the utilities of all events in S/ij+, where lru(ij , S) =

∑
e∈S/ij+

lu(e, S).

Remark 2.1. In a DSES, every event has a different utility which represents the impor-
tance of the software behavior. It should be noted that an event appears many times in
a DSES. The symbol ij that arises in Definition 2.6 is the j-th same event i in a DSEC.
eu(ij) which is defined in 2.6 represents the external utility of an event ij. In Figure 1(b),
it shows the external utility of each event. iu(ij , S) is the internal utility of an event ij in
sequence S which means the occurrence count of this event in a DSES.

Definition 2.7. The local utility of pattern in DSES S. The local utility of a contiguous
pattern Cj in a DSES is the summation of the events’ local utility which appears in Cj.
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Figure 1. Database

Definition 2.8. The utility of pattern in DSES S. The maximum valve among the utility
values of pattern c in a sequence is regarded as the utility of pattern c. We denote it as
u(c, S) = max(lu(c1, S), . . . , lu(cj, S)).
The remaining utility of pattern in DSES S. It is the maximum local remaining utility of

pattern c where S/c is not null. We denote it as ru(c, S) = max(lru(c1, S), . . . , lru(cj, S))
where S/cj 6= φ.

Example 2.1. In Figure 1(a), there are two patterns < AB > in the sequence S1, and the
two local utilities of < AB > are calculated as 21 (= 3 ∗ 5+2 ∗ 3) and 23 (= 4 ∗ 5+1 ∗ 3),
respectively. The value 23 (= max(21, 23)) is regarded as the utility of the 2-pattern
< AB > in S1 by the maximum utility measure. The local remaining utility of < AB >
in S1, lru(< AB >, S1), are 48 and 23, respectively. However, the second 2-pattern
< AB > is in the end of S1, so it cannot be calculated. ru(< AB >, S1) = 48.

Definition 2.9. Actual utility. The actual utility of a pattern X in SSD is the sum-
mation of the utility in all the sequences where X appears. It is denoted as au(X) =∑

X⊆Si∧Si∈SSD u(X,Si).
Remaining utility. The remaining utility of a pattern X in SSD is the summation of the

remaining utility in all the sequences where X appears and is not in the end. It is denoted
as ru(X) =

∑
X⊆Si∧Si∈SSD ru(X,Si).

Definition 2.10. Total sequence utility. The total sequence utility is the summation of the
local utility of events which appear in a DSES S. It is denoted as tsu(S) =

∑
x⊆S lu(x, S).

In Figure 1(a), the last column is the total utility of each sequence.

Definition 2.11. High utility contiguous pattern (HUCP). Let λ be a pre-defined mini-
mum utility threshold. A CP X is called a HUCP if au(X) is not less than λ.
However, the downward-closure property in traditional sequential pattern mining is not

applicable for utility sequential pattern mining. Suppose a pattern is a high utility pattern,
but its super-pattern may be not. To keep the downward-closure property, we use the
upper-bound of utility of any subsequence in that sequence. These definitions related to the
upper-bound model are described below.

Definition 2.12. The utility upper-bound (twu). The summation of the sequence utility
of all the sequences containing P in SSD is the utility upper-bound of a pattern P. twu =∑

P⊆Si∧Si∈SSD tsu(Si).

Example 2.2. The twus of distant 1-patterns are shown in Figure 1(c). For example,
consider the 1-pattern < B >, twu(B) = tsu(S1) + tsu(S3) = 48 + 18 = 66.

Lemma 2.1. The twu of a CP P is an upper bound utility of P, twu(P ) ≥ au(P ). If the
twu(P) is less than a pre-defined minimun utility threshold λ, for ∀Q, where P ⊆ Q, Q
cannot be HUCP.
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Proof: Suppose Sp is the set of sequences containing P in SSD and Sq is the set of
sequences containing Q in SSD.

∵ P ⊆ Q⇒ Sq ⊆ Sp

∴ au(Q) =
∑

Si∈Sq

u(Q, Si)

≤
∑

Si∈Sq

tsu(Si)

≤
∑

Si∈Sp

tsu(Si)

= twu(P ) < λ

Definition 2.13. The remaining utility upper-bound (ruub). The CP’s remaining utility
upper-bound is its remaining utility in SSD.

In this paper, we aim to mine these contiguous patterns with the backward extension
method. The calculation method of ruub is the same with remaining utility ru(X) which is
defined in 2.9. The value of ruub is smaller than the value of twu. Hence, the remaining
upper bound model reduces the number of candidates.

Lemma 2.2. The ruub of a CP P is a remaining upper bound utility with P as prefix,
twu(P ) ≥ ruub(P ) ≥ au(P ). If the ruub(P) is less than a pre-defined minimum utility
threshold λ, for ∀Q, where Q is the backward extension of P, Q cannot be HUCP.

Proof: Let an event X be a high remaining utility upper-bound pattern and Sx be
the set of sequences containing X in SSD. Suppose Y is a backward extension of X , so
X ⊂ Y . Sy is the set of sequences containing Y in SSD. Then Y cannot be presented in
any sequence where X is absent, so Sy ⊆ Sx. In addition, X ⊂ Y ⊆ S and S ∈ SSD.

∵ X ⊂ Y ⊆ S and S ∈ SSD ⇒ Sy ⊆ Sx

∴ au(Y ) =
∑

Si∈Sy

u(Y, Si)

=
∑

Si∈Sy

u(X,Si) + u(Y/X, Si)

≤
∑

Si∈Sy

u(X,Si) + u(S/X, Si)

≤
∑

Si∈Sx

u(X,Si) + u(S/X, Si)

= ru(X) = ruub(X) < λ

There the remaining utility upper-bound ruub value of X is ruub(X). If ruub(X) is less
than a pre-defined minimum utility threshold λ, so au(Y ) is also less than λ, then Y must
not be HUCP. Here Lemma 2.2 is given to prove that ruub has the downward-closure
property and it can be used for pruning unpromising patterns.

3. Mining High Utility Contiguous Patterns from Software Executing Traces.
In this section, we introduce our method in detail. We propose a new structure UL-list to
store position, next adjacent 1-pattern and utility information. Based on this structure,
the HUCP-Miner algorithm is designed to mine high utility contiguous patterns from
software executing traces. We construct UL-list structure in Section 3.1 and describe the
pruning strategy and extension strategy based on UL-list in Section 3.2. The algorithm
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Figure 2. The main framework of our work

HUCP-Miner is explained in Section 3.3. The main process of our method can be seen as
Figure 2.

3.1. Utility-location list (UL-list) structure. First, we require a structure for storing
the whole information efficiently in terms of storage space. Second, the structure should be
efficiently updatable when backward extend. We address all these challenges by improving
the utility-list structure which is used for mining high utility itemset. What is more, we
can get the value of actual utility and remaining utility upper-bound (ruub) from UL-list.
Each element in the UL-list of P contains five fields: sid, iutil, rutil, index, nitem.

• sequence sid indicates a sequence containing P
• the location utility of P in S, i.e., lu(P, S)
• the location remaining utility of P in S, i.e., lru(P, S)
• the location index of the last item of P
• the next-adjacent 1-pattern of the last item of P

Considering that a contiguous pattern < x > has a UL-list structure, < y > is a
remaining upper-bound 1-pattern and belongs to the next-adjacent 1-patterns of < x >.
Algorithm 1 introduces the process of constructing the UL-list of a new contiguous pattern
< xy >. For each element in x.UL-list, it chooses the corresponding element in y.UL-list.
That is, two elements should have same tid and the index of Ey should be equal to that
of Ex plus 1 (line 2). The utility and location information of Exy is calculated according
to the line 3. We construct these 1-patterns’ UL-lists firstly, and then obtain UL-lists of
all patterns by iterative growing without scanning the database.

Algorithm 1 : Construct

Inputs: the utility-location list of x: x.UL-list, the utility-location list of y: y.UL-list
Output: the utility-location list of xy: xy.UL-list
1.for each Ex ∈ x.UL-list do
2. if Ey ∈ y.UL-list, Ex.tid = Ey.tid and Ex.index = Ey.index-1 then
3. Exy =<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil, Ey.index, Ey.nitem>;
4. end if
5. append Exy to Exy.UL-list;
6.end for
7.return Exy.UL-list;

Example 3.1. As is shown in Figure 1(c), the 1-patterns set I = {A,B,C,D,E}. Sup-
pose the minimum utility threshold λ is 45, after the first scan, the 1-pattern < E > can
be pruned, because twu(E) = 18 < λ (by Lemma 2.1). The UL-list structures of all upper-
bound 1-patterns and partial contiguous 2-patterns are shown in Figure 3. Considering
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Figure 3. The UL-list structures of patterns

the 1-pattern < A >, it appears two times in S1, so the two elements < 1, 15, 48, 1, B >
and < 1, 20, 23, 4, B > can exist in the UL-list of < A >. Algorithm 1 can construct these
UL-lists of 2-patterns without scanning the database. For example, the UL-list of < AB >
has two elements < 1, 21, 48, 2, C > and < 1, 23, 23, 5, φ > by constructing the UL-list of
< A > and that of < B >. The rest of patterns can be constructed with the same process
as above.

3.2. Pruning strategy and extension strategy. We design the process of backward
extending contiguous k-patterns from contiguous (k − 1)-patterns. This process will pro-
duce a large number of candidates. The pruning strategy and extension strategy are also
proposed to ensure the efficiency of the backward extension.

Pruning Strategy. To reduce the search space, we can use the iutils and rutils in
the UL-list of a contiguous pattern. Given the UL-list of a pattern P , the sum of all
the maximum rutils in UL-list of P is its actual utility according to Definition 2.8 and
Definition 2.9. If the result value is not less than pre-defined minimum utility threshold,
this pattern P is a high utility contiguous pattern (by Definition 2.11).

In addition, the remaining utility upper-bound of P (ruub(P )) can be obtained by its
UL-list structure (Definition 2.13). This value decides whether this pattern should be
pruned or not. If the ruub(P ) is not less than minimum utility threshold, the P can be
backward extending. Otherwise, any backward extensions of P will not be high utility
contiguous patterns, so this pattern is no longer considered in the subsequent mining
process and can be pruned (by Lemma 2.2).

Extension Strategy. Based on the continuity of contiguous patterns, when a contigu-
ous pattern is backward extended, only its next-adjacent 1-patterns can be considered.
In the UL-list of contiguous pattern, we record its next-adjacent 1-pattern as nitem.
The contiguous pattern can be backward extended with 1-patterns which appears in the
nitem of its UL-list. This manner decreases the number of candidates generated during the
extension process. And if these next-adjacent 1-patterns are not remaining utility upper-
bound patterns, this contiguous pattern stops backward extending (by Lemma 2.2). The
extension strategy is used before constructing the UL-list of a new pattern. By applying
this strategy, we can not only get the contiguous patterns but also avoid producing some
unpromising contiguous patterns.
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Example 3.2. Figure 4 describes the whole process of backward extension. Suppose min-
imum utility threshold λ is 45. By scanning the UL-list of < B >, we can obtain that
au(B) = 12 < λ and ruub(B) = 51 > λ, so < B > is not a high utility contiguous pat-
tern but a remaining utility upper-bound pattern. The < D > cannot be extended due to
restrictions of remaining utility upper-bound (by pruning strategy). For 1-pattern < A >,
its next-adjacent 1-patterns have < B >, < C >, < D > in the original sequences,
but according to extension strategy, we cannot backward extend < A > with < D >. The
remaining utility upper-bound (ruub) of < D > is not less than minimum utility threshold.

root

A

< 1, 15, 48, 1, B>

< 1, 20, 23, 4, B>

< 2, 20, 57, 1, C>

< 2, 25, 33, 3, D>

au(A)=45

ruub(A)=105

B

< 1, 6, 33, 2, C>

< 1, 3, 3, 5, >

< 3, 3, 18, 1, D>

< 3, 6, 10 , 4, C>

au(B)=12

ruub(B)=51

C

< 1, 4, 27, 3, A>

< 2, 4, 37, 2, A>

< 3, 4, 4, 5, >

au(C)=12

ruub(C)=64

D

< 2, 8, 8, 5, >

< 3, 4, 15, 2, >

au(D)=12

ruub(D)=0

AB

<1,21,48,2,C >

<1,23,23,5, >

au(AB)=23

ruub(AB)=48

AC

<2,24,57,2,A >

au(AC)=24

ruub(AC)=57

BC

< 1,10,33,3,A>

<3,10,10,5, >

au(BC)=20

ruub(BC)=33

CA

<1,24,27, 4,B>

< 2,29,37,4,D>

au(CA)=53

ruub(CA)=64

CAB

<1,11,11,5, >

au(CAB)=11

rubb(CAB)=0

ABC

< 1,25,48,3,A>

au(ABC)=25

ruub(ABC)=48

ABCA

< 1,45,48,3,B>

au(ABCA)=45

ruub=48

ABCAB

< 1,48,48,3, >

au=48

ruub=48

ACA

< 2,49,57,3,D>

au(ACA)=49

ruub(ACA)=57

BCA

< 1,30,33,4,B>

au(BCA)=30

ruub(BCA)=33

BCAB

< 1,33,33,5, >

au=33

ruub(BCA)=0

Figure 4. The process of backward extension

3.3. The HUCP-Miner algorithm. The main principle of the HUCP-Miner approach
is purely extended from the HUI-Miner utility approach [9]. In Algorithm 2, it inputs
a software executing sequence database D and the minimum utility threshold λ. The
algorithm first scans the database to calculate the global twu of each 1-pattern i. Then,
these 1-patterns which twu(i) < λ should be ignored since they cannot be part of the high
utility contiguous patterns as well as their any extension (by Lemma 2.1). It is important
to note that the twu needs to be used here to prune 1-pattern before constructing the
utility-location utility-list (UL-list) structure. So the twu pruning strategy can reduce
the memory for UL-list structures of these unpromising 1-patterns. After that, starting
to second scan the database, we construct UL-lists of upper-bound 1-patterns. These
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unpromising 1-patterns which are pruned by twu strategy do not appear in UL-lists, they
are replaced by φ. For each upper-bound 1-patterns x, it calls the Procedure Extension
to output all HUCPs with x as prefix. Finally, the algorithm obtains the set of HUCPs.

For Procedure Extension, it inputs a prefix contiguous pattern x and generates all the
high utility contiguous patterns with x as prefix. It operates as follows. It scans the UL-list
of x to calculate the au(x) and the remaining utility upper-bound of x (ruub(x) = ru(x)).
If au(x) is not less than minimum utility threshold λ, x is a high utility contiguous
pattern and output. Then, if ruub(x) is not less than λ, it means that any backward
extensions of x should be pruned (pruning strategy). Before backward extending x with
y, we should make sure that the y is the next 1-pattern of y and apply the contiguous
patterns extension strategy to avoiding unnecessary extensions (line 12). Finally, until
all patterns’ ruub are less than λ or their next-adjacent 1-patterns are not remaining
utility upper-bound patterns, we stop mining contiguous patterns and can obtain the set
of HUCPs.

Algorithm 2 : HUCP-Miner

Inputs: software executing sequence database: D, a user-sepecified minimum utility
threshold: λ
Output: high utility contiguous patterns
1.Scan D to calculate the twu of 1-patterns;
2.I ← each 1-pattern i such that twu(i) ≥ λ;
3.Scan D again to construct UL-list structures for all upper-bound 1-patterns I;
4.for each pattern x ∈ I do
5. Extension(x,UL-list, I, λ);
6.end for

Procedure: Extension
Inputs: a prefix pattern: x, the UL-list set: exULs, all upper-bound 1-pattern: I,
minimum utility threshold: λ
Output: all the high utility contiguous patterns with x as prefix
7. if au(x) ≥ λ then
8. output x ;
9. end if
10. if ruub(x) ≥ λ then
11. exULs = NULL;
12. Next ← each x.nitem that x.nitem ∈ I;
13. for each y ∈ Next do
14. exULs = exULs+Call Construct(x, y);
15. end for
16. if exULs! = NULL then
17. Extension(x, exULs, I, λ);
18. end if
19.end if

4. Experiments and Analysis. In this section, to evaluate the performance of HUCP-
Miner, we conduct extensive experiments on various databases, two different real-life
datasets and compare HUCP-Miner with the state-of-the-art mining algorithm EUWPTM
[18]. Both of algorithms are mining high utility contiguous patterns. These algorithms are
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implemented in Java and the experiments are performed on 64 bits Windows 7 ultimate,
Core i5-4440 CPU@3.10GHz and 4G Memory.

4.1. Experimental datasets. Two real-life datasets are used in our experiments. The
datasets can be downloaded from FIMI Repository [20]. BMS WebView1 is click-stream
data from a web store used in KDD-Cup 2000, another is anonymous retail market basket
data from an anonymous Belgian retail store which is named Retail. The dataset BMS
WebView1 has 59602 sequences, 497 distinct items and the average length of sequence
is 2.5 items. The dataset Retail has 88162 sequences with 16470 distinct items and an
average sequence length of 10.3 items. These datasets do not provide item utility, so we
assign utility to each item ranging from 0.01 to 1 randomly.

4.2. Running time. We change the minimum utility threshold from 0.002 to 0.010 and
test the performance of the HUCP-Miner algorithm on two real-life dataset Retail and
BMS WebView1. We record the different running times on each dataset for different
algorithms. As is shown in Figure 5 and Figure 6, we can see that the running times
of two algorithms are reducing constantly by increasing the minimum utility threshold.
Both of algorithms get more and more high utility contiguous patterns by increasing the
minimum utility threshold. Compared with EUWPTM algorithm, HUCP-Miner algorith-
m’s running time is faster. That is because the HUCP-Miner algorithm only needs two
datasets scan by UL-list structure and applies the remaining utility upper bound prun-
ing strategy and extension strategy to prune more unpromising patterns which avoid the
costly generation and utility computation of unpromising patterns. On the other hand,
we record the number of candidates on datasets BMS WebView1 and Retail. These re-
sults are shown in Figure 7 and Figure 8. It is observed that the number of candidate
patterns is decreasing with the increasing minimum utility threshold. With the minimum
utility threshold increasing, more unpromising patterns are pruned. We can see from the
result that the number of candidates produced by HUCP-Miner with UL-list structure is
less than EUWPTM algorithm. What is more, the gap on Retail is bigger than that on
BMS WebView1. Retail has many distinct items, and it needs more running time with
EUWPTM due to projecting.

Figure 5. Running time on
BMS WebView1

Figure 6. Running time on Retail
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Figure 7. The number of
candidates on BMS WebView1

Figure 8. The number of
candidates on Retail

4.3. Scalability. We test the scalability of the HUCP-Miner algorithm on memory con-
sumption. As is shown in Figure 9 and Figure 10, we can find that the HUCP-Miner al-
gorithm’s memory consumption is always smaller than EUWPTM algorithm’s. It means
that our algorithm has better scalability than EUWPTM algorithm. The HUCP-Miner
algorithm uses the UL-list structure to store patterns’ information. By tighter upper
bound, our algorithm can prune more unpromising patterns, so more memory spaces are
saved.

From Figure 11 and Figure 12, we can see the different running times on various data-
base sizes. Running time is tested by varying the number of sequences in the dataset
Retail and BMS WebView1. No matter what number of sequences, the running time
of HUCP-Miner is always less than that of EUWPTM. The UL-list structure, pruning
strategy and extension strategy contribute to the efficiency of HUCP-Miner.

5. Conclusions and Future Work. In this paper, we mine these high utility contiguous
patterns from the software executing traces. Considering that a software executing trace
has many same events, we apply the maximum utility measure to calculate this utility of
contiguous patterns. After the critical first steps, we propose UL-list structure to record
these patterns’ utility and location information. At the same time, this structure takes

Figure 9. Memory consump-
tion on BMS WebView1

���

Figure 10. Memory con-
sumption on Retail
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Figure 11. Running time on
BNS WebView1 (λ = 0.008)

Figure 12. Running time on
Retail (λ = 0.008)

a tighter utility upper bound (ruub) and extension strategy for eliminating unpromising
patterns. We generate contiguous k-patterns from contiguous (k − 1)-pattern recursively
by backward extension without scanning the database. Based on the UL-list structure, we
present a new algorithm named HUCP-Miner for mining high utility contiguous patterns
from the software executing traces. An extensive experimental study on various databases
shows that HUCP-Miner has better efficiency in both running time and scalability.
In the future, we want to make this algorithm to handle the real software executing

traces. Software executing traces have many loops, so they have many contiguous repeti-
tive patterns which are not useful for us. We intend to eliminate this contiguous repetitive
patterns firstly, and then apply our algorithm to these treated software executing traces.
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