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ABSTRACT. This paper presents a mathematical model for mechanical elements of rect-
angular members with straight haunches for the general case (symmetrical and/or non-
symmetrical) subjected to a uniformly distributed load considering the bending and shear
deformations to obtain the fized-end moments, carry-over factors and stiffness factors,
which is novelty of this research. The properties of rectangular cross section the member
are: the width “b” is constant and the height “h” wvaries along beam, this variation is
linear type. The superposition method is used to obtain the solution of such problems,
and the deformations anywhere of beam are found by the conjugate beam method through
ezxact integrations using the software “Derive” to obtain some results. The traditional
model takes into account only bending deformations. Also a comparison is made between
proposed model (bending and shear deformations are considered), and traditional model
(bending deformations are taken into account) to show the differences. Besides the ef-
fectiveness and accuracy of the developed model, a significant advantage is that fized-end
moments, carry-over factors and stiffness factors are obtained for any rectangular cross
section of beam using the mathematical equations.

Keywords: Straight haunches for the general case (symmetrical and/or nonsymmetri-
cal), Bending and shear deformations, Uniformly distributed load, Fixed-end moments,
Carry-over factors, Stiffness factors, Superposition method, Conjugate beam method

1. Introduction. The members with haunches of reinforced concrete are distinguished
from prismatic ones because the beam height has a gradual variation in all or part of
its length, its application in buildings of moderate elevation, as well as on bridges and
viaducts of various functions. In buildings, the beams with haunches of reinforced concrete
offer the following advantages over prismatic beams: 1) The lateral stiffness of buildings is
increased substantially; 2) These beams types lead to a more efficient use of concrete and
steel reinforcement; 3) The weight of the structure is reduced to optimize the strength
and stability or to meet architectural requirements and specific functions of service; 4)
The use of beams with haunches eases the placement of the electrical installation, air
conditioning, water and sewage equipment, etc.

During the last century, between 1950 and 1960 were developed several design aids, as
those presented by Guldan [1], and the most popular tables published by the Portland
Cement Association (PCA) in 1958 “Handbook” [2].

Traditional methods used for the variable cross section members, the deflections by
Simpson’s rule are obtained or some other techniques to perform numerical integration
and the tables presenting some books are limited to certain relationships [3-5].
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The most relevant papers addressing the issue of structural members with haunches are:
Stiffness Formulation for Nonprismatic Beam Elements, which paper presents a method
to define two-dimensional (2D) and three-dimensional (3D) elastic-stiffness matrices for
nonprismatic elements (tapered or haunched), based on traditional beam theory and the
flexibility method [6]; Plane Frameworks of Tapering Box and I-Section, which is based
on the classical theory of beams of Bernoulli-Euler for two-dimensional member without
including axial deformations [7]; Elementary Theory for Linearly Tapered Beams, which
proposed a more rigorous theory of beams for members varying linearly, in which the
hypothesis generalized by Kirchhoff were introduced to take account the shear deforma-
tions [8]; Nonprismatic Shear Beams, which shows a solution of the problem of bending of
nonprismatic beams, including the effect of shear deformations [9]; Approzimate Stiffness
Matriz for Tapered Beams, which proposed a method for finding a modified bending stiff-
ness matrix for a member of varying section [10]; An Efficient Procedure to Find Shape
Functions and Stiffness Matrices of Nonprismatic Fuler-Bernoulli and Timoshenko Beam
Elements [11]; A Mathematical Model for Rectangular Beams of Variable Cross Section of
Symmetrical Parabolic Shape for Uniformly Distributed Load [12], Mathematical Model for
Rectangular Beams of Variable Cross Section of Symmetrical Linear Shape for Uniformly
Distributed Load [13], Mathematical Model for Rectangular Beams of Variable Cross Sec-
tion of Symmetrical Linear Shape for Concentrated Load [14], A Mathematical Model for
Fized-End Moments for Two Types of Loads for Variable Rectangular Cross Section of
parabolic shape [15], which are shown for the cases of symmetrical haunches and shear
deformations are neglected; Modeling for Beams of Cross Section “I” Subjected to a Uni-
formly Distributed Load with Straight Haunches [16].

This paper presents a mathematical model for mechanical elements of rectangular mem-
bers with straight haunches for the general case (symmetrical and/or nonsymmetrical)
subjected to a uniformly distributed load considering the bending and shear deforma-
tions to obtain the fixed-end moments, carry-over factors and stiffness factors, and the
deformations anywhere of beam are found by the conjugate beam method through exact
integrations using the software “Derive” to obtain some results, which is novelty of this
research. The properties of the rectangular cross section of beam vary along its axis “x”,
i.e., the width “b” is constant and the height “A” varies along the beam, and this variation
is straight type. Also a comparison is made between proposed model (bending and shear
deformations are considered), and traditional model (bending deformations are taken into
account) to show the differences.

The paper is organized as follows. Section 2 shows the formulation of the mathematical
model. Section 2.1 shows the derivation of the equations for fixed-end moments. Section
2.2 presents the derivation of the equations for carry-over factors and stiffness factors.
Section 3 is dedicated to the results through the comparison of the two models, the
proposed model (PM), and the traditional model (TM). Section 4 presents the conclusions.

2. Formulation of the Mathematical Model. Figure 1 shows a beam in elevation
and also presents its rectangular cross-section taking into account that the width “b” is
constant and height “h,” varying of straight shape in three different parts.

Table 1 shows the equations of the heights “h,”, shear areas “Ag,” to a distance “z”,

and the moment of inertia “I,” around the axis “z” for each interval.

2.1. Derivation of the equations for fixed-end moments. Figure 2(a) presents the
beam AB subjected to a uniformly distributed load and fixed-ends. The fixed-end mo-
ments are found by the sum of the effects. The moments are considered positive in coun-
terclockwise and the moments are considered negative in clockwise. Figure 2(b) shows the
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FIGURE 1. Rectangular section with straight haunches

TABLE 1. Properties of the rectangular section
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FIGURE 2. Beam fixed at its ends

same simply supported beam at their ends and its load applied to find the rotations “f4;”
and “Op1”. Now, the rotations “f4,” and “Opy”are caused by the moment “M 45" applied
in the support A, according to Figure 2(c), and in terms of “043” and “Op3” are caused
by the moment “Mp4”applied in the support B, seen in Figure 2(d) [12-22].
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By superposition method the conditions of geometry are obtained [12-22]:
Oa1 —0a2 — 043 =0 (1)

0p1 —O0p2 — O3 =0 (2)

By the conjugate beam method the rotations of “f4;” and “fg;” for non-prismatic
members are obtained [23]:

LMz
0,4 = - - T 3
4 0 /GAsx L Elzx ()

1 v, 1 M,x
B L/O GA,, +L/0 EI, (4)

where ¢ takes the values of 1, 2 and 3, F is the modulus of elasticity, G is shear modulus,
V, and M, are shear forces and moments to a distance “z”.

Table 2 shows the equations of the shear forces and moments anywhere of the beam to
a distance “z” [24].

TABLE 2. Shear forces and moments

Equations
Concept
Figure 2(b) Figure 2(c¢) | Figure 2(d)
Shear forces | V, = M(LZ’ZI) V, = —% V, = %
Moments | M, = W(;_””) M, = W M, = Maas

The values of “041”, “Op1”, “O42”, “Op2", “043” and “Op3” by Equations (3) and (4)
are obtained:
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Equations (5), (7) and (9) corresponding to the support A are substituted into Equation
(1), and Equations (6), (8) and (10) corresponding to the support B are substituted into
Equation (2). Subsequently, generated equations are solved and the values of “M4p5” and

“Mg4” are obtained:

MAB = mABwL2 (11)
MBA = mBAwL2 (12)

) )

Equations for fixed-end moments factors of “myp” and “mp,” are:
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2.2. Derivation of the equations for carry-over factors and stiffness factors. In
order to develop the method to obtain the carry-over factors and stiffness factors, it will
be helpful to consider the following problem: If a clockwise moment of “M,p” is applied
at the simple support of a straight member of variable cross section simply supported
at one end and fixed at the other, find the rotation “f#,” at the simple support and the
moment “Mp,” at the fixed end, as shown in Figure 3.
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I
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+
/4 """""" Ef\
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FiGURE 3. A simply supported beam at one end and fixed at the other

B ()

The additional end moments, “M 45" and “Mpg4” should be such as to cause rotations of
“D,” and “Op”, respectively. If “04,” and “Op,” are the end rotations caused by “Myp”,
according to Figure 3(b), and “043” and “Op3” by “Mp4”, these are observed in Figure

3(c).

The conditions of required geometry are [25]:
QA — QAQ - 9,43 (15)
0 - 932 - 933 (16)
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Substitute Equations (8) and (10) into Equation (16), and “Mp,” is presented in
function of “M4p”. The carry-over factor of “A” to “B” is the ratio of moment induced
at support “B” due to a moment applied at support “A”; the same above procedure is
used to find the carry-over factor of “B” to “A”. Equations are presented as follows:

Mpas = CapMap (17)

Map = CpaMpa (18)

7 ”

Equations for the carry-over factors “C'4g” and “Cg4” are shown:
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Substitute Equations (7) and (9) into Equation (15), and subsequently Equation (17) is
substituted in this same equation to find “M4p” in function of “0,”. The stiffness “K 5"
is the moment applied at support “A” to cause a rotation of 1 radian at support “A”; the
same above procedure is used to find the stiffness “Kp,” at support “B”. Equations are

(19)

presented:
kapEIl
Map = Kapa = ABL A (21)
kpaET
Mps = Kpap = B% B (22)

where: I is the moment of inertia of the minimum section.
Equations for the stiffness factors “ksp” 7

and “kp4” are:
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3. Results. Tables 3, 4 and 5 show the comparison of the two models; the proposed
model (PM) is the mathematical model presented in this paper taking into account the
bending and shear deformations, and the traditional model (TM) considering the bending
deformations only. Table 3 shows the fixed-end moments factors (map and mp4) sub-
jected to a uniformly distributed load, and Table 4 presents the carry-over factors (Cap
and Cp,), and Table 5 exhibits the stiffness factors (k4p and kg4). Such comparisons
were realized for v = 0.20 of concrete; ¢ = 0.1L, 0.2L, 0.3L, 0.4L, 0.5L; z = 0.4h, 0.6h,
h, 1.5h, 2h; a = 0.3L and v = h; a = 0.2L and u = 1.5h; and h = 0.1L, because these
values are presented in the tables on page 619 [3]. Results shown in the tables mentioned
above are identical to the traditional model.

Also an other way to validate the proposed model is as follows: substituting “a = 0L
and ¢ = 0L” or “u = 0 and z = 0” into Equations (11) and (12) to obtain the fixed-end

(23)
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TABLE 3. Fixed-end moments factors

maB ‘ mpa MmaB ‘ mpa

c z/h a = 0.3L; u/h =1; h =0.1L| a = 0.2L; u/h =1.5; h = 0.1L
PM TM PM ™™ PM ™™ PM ™
0.4 10.1232|0.1237 | 0.0732 | 0.0728 | 0.1201 | 0.1205 | 0.0740 0.0736
0.6 1 0.1209 | 0.1213 | 0.0763 | 0.0759 | 0.1180 | 0.1184 | 0.0770 0.0767
0.1 | 1.0 | 0.1177 | 0.1181 | 0.0806 | 0.0803 |0.1151 | 0.1154 | 0.0813 0.0810
1.5 | 0.1153 | 0.1157 | 0.0839 | 0.0836 |0.1129|0.1132 | 0.0845 0.0843
2.0 1 0.1138 | 0.1141 | 0.0860 | 0.0857 | 0.1115|0.1118| 0.0866 0.0863
0.4 10.1190 | 0.1194 | 0.0795| 0.0791 | 0.1162 | 0.1166 | 0.0802 0.0799
0.6 1 0.1149 | 0.1152 | 0.0854 | 0.0851 | 0.1124|0.1127 | 0.0860 0.0858
0.2 | 1.0 | 0.1088 | 0.1089 | 0.0943 | 0.0942 | 0.1068 | 0.1069 | 0.0948 0.0947
1.5 10.1037 ] 0.1037 | 0.1018 | 0.1018 | 0.1021 | 0.1021 | 0.1021 0.1021
2.0 {0.1004 | 0.1002 { 0.1068 | 0.1069 | 0.0991 | 0.0990 | 0.1070 0.1071
0.4 [ 0.1170 | 0.1175 ] 0.0825 | 0.0822 |0.1144 | 0.1148 | 0.0832 0.0829
0.6 | 0.1118 | 0.1120 | 0.0904 | 0.0902 | 0.1095 | 0.1098 | 0.0910 0.0907
0.3 | 1.0 1 0.1034 | 0.1034 | 0.1034 | 0.1034 |0.1018 | 0.1018 | 0.1037 0.1037
1.5 1 0.0959 | 0.0956 | 0.1154 | 0.1157 |0.0949 | 0.0947 | 0.1154 0.1156
2.0 {0.0906 | 0.0901 | 0.1240 | 0.1246 | 0.0900 | 0.0897 | 0.1238 0.1242
0.4 ]0.1162 | 0.1167 | 0.0832 | 0.0826 | 0.1136 | 0.1141 | 0.0838 0.0833
0.6 | 0.1104 | 0.1109 | 0.0919 | 0.0915 | 0.1083 | 0.1087 | 0.0924 0.0920
0.4 | 1.0 1 0.1008 | 0.1010 | 0.1074 | 0.1071 | 0.0995 | 0.0996 | 0.1075 0.1073
1.5 10.0916 | 0.0914 | 0.1230 | 0.1232 | 0.0910 | 0.0908 | 0.1227 0.1229
2.0 1 0.0847 1 0.0841 | 0.1353 | 0.1360 | 0.0846 | 0.0842 | 0.1347 0.1353
0.4 | 0.1155| 0.1161 | 0.0824 | 0.0818 | 0.1130 | 0.1137 | 0.0829 0.0823
0.6 | 0.1095|0.1101 | 0.0911 | 0.0905 | 0.1076 | 0.1081 | 0.0914 0.0908
051 1.0 10.0995|0.0999 | 0.1071 | 0.1066 | 0.0984 | 0.0989 | 0.1070 0.1065
1.5 | 0.0897 | 0.0896 | 0.1245 | 0.1246 | 0.0894 | 0.0895 | 0.1239 0.1237
2.0 1 0.0819]0.0814 | 0.1393 | 0.1401 | 0.0822 | 0.0820 | 0.1382 0.1385

moments “Msp = wL2/12” and “Mp4 = wL2/12”; substituting “a = 0L and ¢ = 0L” or
“u = 0and z = 0” into Equations (19) and (20), and the shear deformations are neglected
to find the carry-over factor “Cyp = Cpa = 0.5”; substituting “e = 0L and ¢ = OL” or
“u=0and z = 0" into Equations (21) and (22), and the shear deformations are neglected
to obtain the stiffness “Ka p = Kps = 4EI/L”. The values presented above correspond
to a constant cross section.

Therefore, the proposed model in this paper is valid and is not limited to certain di-
mensions or proportions as shown in some books, and the bending and shear deformations
are considered.

According to the results, if the fixed-end moment of a member in a support is greater
than the other support, in a support the traditional model is greater, and in the other
support, the proposed model is greater, where the biggest difference is of 0.62%. The
traditional model is greater in all cases for the carry-over factors and the stiffness factors,
where the biggest difference is of 3.89% for the carry-over factors, and for the stiffness
factors is of 11.45%.

Table 3 shows that when the loads and the haunches are symmetrical the fixed-end
moments for the two models are not affected, and also these are the same for the traditional
model and the proposed model.
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TABLE 4. Carry-over factors

CaB \ CBa CaB \ CBa

¢ |z/h|a=03L u/h=1;h =0.1L|a =0.2L; u/h = 1.5; h = 0.1L
PM ™ PM ™ PM ™ PM ™
0.4 | 0.488510.4994 | 0.7639 | 0.7841 |0.5116 | 0.5227 | 0.7126 0.7301
0.6 | 0.5035|0.5148 | 0.7619 | 0.7819 | 0.5272 | 0.5387 | 0.7108 0.7282
0.1 | 1.0 ]0.5236 | 0.5354 | 0.7591 | 0.7789 | 0.5482 | 0.5603 | 0.7084 0.7256
1.5 1 0.5388 | 0.5510 | 0.7570 | 0.7766 | 0.5640 | 0.5765 | 0.7064 0.7235
2.0 10.5484 | 0.5608 | 0.7556 | 0.7750 | 0.5740 | 0.5867 | 0.7052 0.7221
0.4 | 0.5313|0.5435 | 0.7465 | 0.7662 | 0.5566 | 0.5691 | 0.6971 0.7142
0.6 |0.5627 | 0.5759 | 0.7392 | 0.7585 | 0.5895 | 0.6030 | 0.6905 0.7074
0.2 | 1.0 | 0.6078 | 0.6225 | 0.7291 | 0.7480 | 0.6367 | 0.6517 | 0.6816 0.6981
1.5 10.6440 | 0.6597 | 0.7212 | 0.7397 | 0.6746 | 0.6907 | 0.6746 0.6907
2.0 10.6676 | 0.6840 | 0.7161 | 0.7342 |0.6992 | 0.7161 | 0.6700 0.6858
0.4 10.5653 | 0.5789 | 0.7221 | 0.7413 | 0.5930 | 0.6070 | 0.6752 0.6920
0.6 |0.6133 | 0.6286 | 0.7074 | 0.7261 | 0.6435 | 0.6592 | 0.6621 0.6784
0.3 | 1.0 | 0.6872 ] 0.7052 | 0.6872 | 0.7052 |0.7212|0.7397 | 0.6440 0.6597
1.5 1 0.7508 | 0.7713 | 0.6714 | 0.6888 | 0.7881 | 0.8091 | 0.6299 0.6451
2.0 1 0.7946 | 0.8166 | 0.6611 | 0.6781 | 0.8340 | 0.8566 | 0.6207 0.6356
0.4 | 0.5887]0.6036 | 0.6945 | 0.7133 | 0.6188 | 0.6341 | 0.6502 0.6666
0.6 | 0.6511 | 0.6686 | 0.6712 | 0.6895 | 0.6851 | 0.7031 | 0.6294 0.6453
0.4 | 1.0 |0.7545 | 0.7765 | 0.6392 | 0.6566 | 0.7947 | 0.8173 | 0.6008 0.6159
1.5 | 0.8513 | 0.8778 | 0.6143 | 0.6309 | 0.8972 | 0.9243 | 0.5785 0.5930
2.0 10.9222 1 0.9521 | 0.5981 | 0.6141 |0.9721 | 1.0026 | 0.5641 0.5780
0.4 |1 0.5999 | 0.6160 | 0.6669 | 0.6856 | 0.6326 | 0.6491 | 0.6250 0.6413
0.6 | 0.6724 | 0.6919 | 0.6349 | 0.6529 | 0.7105 | 0.7305 | 0.5963 0.6119
0.5 | 1.0 | 0.8008 | 0.8269 | 0.5904 | 0.6074 | 0.8482 | 0.8751 | 0.5565 0.5713
1.5 10.9319 | 0.9657 | 0.5556 | 0.5717 | 0.9887 | 1.0233 | 0.5254 0.5394
2.0 | 1.0357 | 1.0760 | 0.5328 | 0.5483 | 1.0995 | 1.1407 | 0.5052 0.5186

4. Conclusions. Traditional methods used for the variable cross section members are by
the Simpson’s rule to obtain the rotations or some other technique to perform numerical
integration [3-5], and other authors present some tables considering the bending defor-
mations and shear, but are limited to certain relationships and also the heights of the
haunches are the same at both ends [23].

This paper presents a mathematical model for mechanical elements of rectangular mem-
bers with straight haunches for the general case (symmetrical and/or nonsymmetrical)
subjected to a uniformly distributed load considering the bending and shear deformations
to obtain the fixed-end moments, carry-over factors and stiffness factors, which is novelty
of this research. The traditional model takes into account bending deformations.

The mathematical technique presented in this research is very adequate for the fixed-end
moments, rotations, carry-over factors and stiffness for beams of variable rectangular cross
section subjected to a uniformly distributed load, because it presents the mathematical
expression, and with the support of some software, we obtain the values exactly.

The significant application of fixed-end moments is in the matrix methods of structural
analysis to obtain the moments acting and the stiffness of a member. The carry-over
factor is used in the moment distribution method or Hardy Cross method.
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TABLE 5. Stiffness factors

kap | kpa kap | kpa

¢ |z/h[@a=03L; u/h =1; h = 0.1L |a = 0.2L; u/h = 1.5; h = 0.1L
PM T™M PM TM PM TM PM TM
0.4 | 8.4360 | 8.7903 | 5.3953 | 5.5988 | 7.3519 | 7.6329 | 5.2785 | 5.4644
0.6 | 8.5804 | 8.9525 | 5.6704 | 5.8936 | 7.4730 | 7.7678 | 5.5427 | 5.7462
0.1 | 1.0 | 8.7814 | 9.1784 | 6.0574 | 6.3092 | 7.6413 | 7.9555 | 5.9137 | 6.1429
1.5 | 89376 | 9.3537 | 6.3620 | 6.6369 | 7.7719 | 8.1010 | 6.2053 | 6.4550
2.0 | 9.0376 | 9.4657 | 6.5591 | 6.8490 | 7.8554 | 8.1938 | 6.3938 | 6.6569
0.4 | 8.7895 | 9.1910 | 6.2554 | 6.5200 | 7.6537 | 7.9722 | 6.1113 | 6.3527
0.6 | 9.0919 | 9.5349 | 6.9211 | 7.2391 | 7.9089 | 8.2600 | 6.7513 | 7.0407
0.2 | 1.0 | 9.5547 [10.0644 | 7.9655 | 8.3752 | 8.2986 | 8.7020 | 7.7524 | 8.1240
1.5 1 9.9508 [10.5198 | 8.8854 | 9.3828 | 8.6315 | 9.0812 | 8.6315 | 9.0812
2.0 [10.2213]10.8315| 9.5293 | 10.0910 | 8.8586 | 9.3404 | 9.2455 | 9.7524
0.4 | 9.0334 | 9.4700 | 7.0718 | 7.3957 | 7.8672 | 8.2144 | 6.9094 | 7.2055
0.6 | 9.4796 | 9.9826 | 8.2184 | 8.6418 | 8.2473 | 8.6474 | 8.0161 | &8.4027
0.3 | 1.0 [10.2292 | 10.8547 | 10.2292 | 10.8547 | 8.8854 | 9.3828 | 9.9508 | 10.5198
1.5 110.943211.6970 | 12.2382 | 13.0973 | 9.4925 [10.0914 | 11.8767| 12.6558
2.0 [11.4731]12.3282|13.7885|14.8468 | 9.9427 [10.6219|13.3591 | 14.3167
0.4 | 9.1820 | 9.6390 | 7.7830 | 8.1565 | 8.0004 | 8.3653 | 7.6141 | 7.9575
0.6 | 9.7335 |10.2767 | 9.4425 | 9.9662 | 8.4758 | 8.9104 | 9.2263 | 9.7078
0.4 | 1.0 |10.7344 | 11.4568 | 12.6706 | 13.5492 | 9.3405 | 9.9204 | 12.3556 | 13.1628
1.5 111.7918|12.7343 | 16.3417 | 17.7180|10.2564 | 11.0151 | 15.9056 | 17.1688
2.0 112.6531|13.7971(19.5101|21.3900|11.0042 | 11.9271 | 18.9640 | 20.6882
0.4 | 9.2847 | 9.7501 | 8.3520 | 8.7608 | 8.0890 | 8.4618 | 8.1871 | &8.5654
0.6 | 9.9007 [10.4633|10.4864|11.0895 | 8.6244 | 9.0770 |10.2767| 10.8363
05| 1.0 [11.0707 | 11.8525 | 15.0141 | 16.1356 | 9.6507 | 10.2853|14.7094 | 15.7551
1.5 112.4063|13.4948 | 20.8106 | 22.7964 | 10.8348 | 11.7276 | 20.3877 | 22.2476
2.0 [13.5908 | 15.0024 | 26.4186 | 29.4427 | 11.8950 | 13.0629 | 25.8874 | 28.7307

Also, a significant advantage is with the support of some software can be generated a
large number of tables for different values or relationships of “a”, “¢”, “u” and “z”.

The proposed model passes to be the more appropriate model for structural analysis,
and also is adjusted to the real conditions, since the shear forces and bending moments
act in any structures, and therefore the bending and shear deformations are presented.

The mathematical model developed in this paper applies only for rectangular beams
subjected to a uniformly distributed load of variable cross section with straight haunches
for the general case (symmetrical and/or nonsymmetrical) considering the bending and
shear deformations. The suggestions for future research are: 1) when the member pre-
sented another type of cross section; 2) when the member is subjected to another type of

load.
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