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Abstract. This paper is concerned with the problem of delay-dependent robust H∞ con-
trol for uncertain Takagi-Sugeno (T-S) fuzzy systems with time-delay. The methodology
is based on the direct Lyapunov method allied with a new Lyapunov fuctional choice. A
fuzzy time-delay feedback controller is used to ensure the required H∞ performance of the
system to be achieved. The proposed stability conditions are derived in terms of linear
matrix inequalities (LMIs). Finally, numerical examples are provided to illustrate the
effectiveness of the proposed method.
Keywords: Delay-dependent, H∞ control, Stability, Linear matrix inequality (LMI),
State time-delay, Parameter uncertainty

1. Introduction. Time-delay systems, also called systems with after-effect, have been a
popular and challenging research area for decades. These kinds of systems can be found
in many real life systems, such as electric power systems, neural networks, rolling mill
systems, economic systems, aerospace systems, different types of societal systems and
ecological systems. The uncertainties which include modeling error, parameter perturba-
tions, approximation errors and external disturbances may enter a nonlinear system in a
much more complex way. Both time delay and uncertainty are often a source of instabil-
ity and degradation in control performance in many control systems. Hence, the stability
analysis and the robust H∞ control problem of time-delay systems with uncertainties have
been studied in much literature (see for instance, [1, 2, 5, 6, 7, 9, 10, 11, 12, 15, 16, 18,
21, 22, 23, 24, 25, 26] and the references therein).

Depending on whether the existence condition of H∞ controller includes the information
of delay or not, stability criteria can be classified into two types: delay-dependent ones
[1, 9, 11, 17, 19, 21, 22, 24, 25] and delay-independent ones [2, 3, 5, 7, 8, 15, 18]. Both
of them have their own advantages. The delay-independent results are particularly good
to deal with the systems without any information on the time delays, or even time-
varying time delay. As the time delay is considered during the stability analysis, the
delay-dependent result is less conservative comparatively, especially when the value of time
delay is small. However, it can be seen that the delay-independent and delay-dependent
results cannot replace each other. For delay-dependent case, the stability conditions always
require the upper bound of derivative of the time-varying delay less than 1. In this paper,
our result can avoid this restriction.

Fuzzy system model and theory [13, 14] have attracted a great deal of interest for system
analysis and synthesis. It is a useful method to represent complex nonlinear systems by
some fuzzy sets and reasoning. When the nonlinear plant is represented by a so-called
Takagi-Sugeno (T-S) type fuzzy model, local dynamics in different state-space regions is
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represented by linear model. Then the system has a convenient dynamic structure so that
some well-established linear systems theory can be easily applied for theoretical analysis
of the overall closed-loop controlled system. For example, the direct Lyapunov method
is a powerful tool for studying the problems of stability and H∞ control for the systems
mentioned above.

In this paper, we will consider the problem of H∞ control for uncertain time-delay
systems. Based on Lyapunov functional approach, a delay-dependent condition for the
existence of a state time-delay feedback controller, which ensures asymptotic stability and
a prescribed H∞ performance level of these systems is obtained. The major contribution
of our work is as follows. First, when the states of systems are measurable, we present
a design method of state time-delay feedback controller for uncertain fuzzy systems with
time-delay. Second, the design method of H∞ controller is delay-dependent which can be
used to study the stabilization of systems and to determine the maximal allowed value of
time-delay. Third, the delay-dependent results can be used to determine the upper bound
of time-delay to guarantee the robust H∞ fuzzy stablizable of systems. These results are
less conservative than those for the delay-dependent cases mentioned before. Fourth, all
the results are given by LMIs, and they can be directly calculated by MATLAB LMI
Toolbox. Fifth, our results can also be used to analyze the stability conditions of fuzzy
time-delay systems without uncertainties.

The paper is organized as follows. In Section 2, a T-S fuzzy model is used to describe
a time-delay systems with parameter uncertainties. In Section 3, based on Lyapunov
functional approach, the existence conditions of a robust state time-delay feedback H∞
controller are obtained in LMI form. All the results are delay-dependent. In Section 4,
numerical examples are given to show the effectiveness of the obtained results. Section 5
concludes the paper.

Notation. For a symmetric matrix X, the notation X > 0 means that the matrix X
is positive definite. I is an identity matrix of appropriate dimension. XT denotes the
transpose of matrix X. For any nonsingular matrix X, X−1 denotes the inverse of matrix
X. Rn denotes the n-dimensional Euclidean space. Rm×n is the set of all m×n matrices.
∗ denotes the transposed element in the symmetric position of a matrix.

2. System Description. In this section, we will introduce some related concepts. Con-
sider the following parameter uncertain system with time-delay described by Takagi-
Sugeno fuzzy model [13]:

Plant Rule i: If z1(t) is λi1, z2(t) is λi2, · · · , zg(t) is λig, then
ẋ(t) = Ãi1x(t) + Ãi2x(t − d) + B̃iu(t) + Bωiω(t),

z̃(t) = C̃i1x(t) + C̃i2x(t − d) + D̃iu(t),

x(t) = φ(t), t ∈ [−d, 0],

(1)

where i = 1, 2, · · · , n, n is the number of rules; z1(t), z2(t), · · · , zg(t) are the premise
variables; λij (i = 1, 2, · · · , n, j = 1, 2, · · · , g) is the fuzzy set; x(t) ∈ Rq is the state
vector; u(t) ∈ Rm is the input vector; ω(t) is the disturbance which belongs to L2[0,∞);
z̃(t) ∈ Rl is the controlled output; d > 0 is the upper bound of time-delay; φ(t) is the initial
condition of system (1); Ãi1 = Ai1+∆Ai1(t), Ãi2 = Ai2+∆Ai2(t), B̃i = Bi+∆Bi(t), C̃i1 =
Ci1 + ∆Ci1(t), C̃i2 = Ci2 + ∆Ci2(t), D̃i = Di + ∆Di(t); Ai1, Ai2, Bi, Ci1, Ci2 and Di (i =
1, 2, · · · , n) are constant matrices of appropriate dimensions; ∆Ai1(t), ∆Ai2(t), ∆Bi(t),
∆Ci1(t), ∆Ci2(t), ∆Di(t) (i = 1, 2, · · · , n) are realvalued unknown matrices representing
time-varying parameter uncertainties of (1) and satisfying the following assumption.
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Assumption 2.1. [
∆Ai1(t), ∆Ai2(t), ∆Bi(t)

]
= UiFi(t)

[
Ei1, Ei2, Ei

]
, (2)[

∆Ci1(t), ∆Ci2(t), ∆Di(t)
]

= HiVi(t)
[
Gi1, Gi2, Gi

]
, (3)

where Ui, Ei1, Ei2, Ei, Hi, Gi1, Gi2 and Gi (i = 1, 2, · · · , n) are known real constant
matrices of appropriate dimensions. Fi(t) and Vi(t) (i = 1, 2, · · · , n) are unknown real
time-varying matrices with Lebesgue measurable elements satisfying

F T
i (t)Fi(t) ≤ I, V T

i (t)Vi(t) ≤ I, i = 1, 2, · · · , n. (4)

Let µi(z(t)) be the normalized membership function of the inferred fuzzy set ρi(z(t)),
i.e.,

µi(z(t)) =
ρi(z(t))∑n

i=1
ρi(z(t))

,

where z(t) = [z1(t), z2(t), · · · , zg(t)], ρi(z(t)) =
g∏

j=1

λij(zj(t)). λij(zj(t)) is the grade of

membership of zj(t) in λij. It is assumed that

ρi(z(t)) ≥ 0, i = 1, 2, · · · , n,
n∑

i=1

ρi(z(t)) > 0, ∀t ≥ 0.

Then, it can be seen that

µi(z(t)) ≥ 0, i = 1, 2, · · · , n,
n∑

i=1

µi(z(t)) = 1, ∀t ≥ 0.

By using the center-average defuzzifier, product inference and singleton fuzzifier, the
T-S fuzzy model (1) can be expressed by the following model:

ẋ(t) =
n∑

i=1

µi(z(t))
[
Ãi1x(t) + Ãi2x(t − d) + B̃iu(t) + Bωiω(t)

]
,

z̃(t) =
n∑

i=1

µi(z(t))
[
C̃i1x(t) + C̃i2x(t − d) + D̃iu(t)

]
,

x(t) = φ(t), t ∈ [−d, 0],

(5)

In this paper, state time-delay feedback T-S fuzzy-model-based H∞ controller will be
designed for the robust stabilization of system (5). The ith controller rule is

Plant Rule i: If z1(t) is λi1, z2(t) is λi2, · · · , zg(t) is λig, then

u(t) = Ki1x(t) + Ki2x(t − d), (6)

where Ki1 and Ki2 (i = 1, 2, · · · , n) are the controller gains of (6) to be determined. The
defuzzified output of the controller rules is given by

u(t) =
n∑

i=1

µi(z(t))
[
Ki1x(t) + Ki2x(t − d)

]
. (7)

Combining (5) and (7), the closed-loop fuzzy system can be obtained as
ẋ(t) =

n∑
i=1

n∑
j=1

µiµj

[ (
Ãi1 + B̃iKj1

)
x(t) +

(
Ãi2 + B̃iKj2

)
x(t − d) + Bωiω(t)

]
,

z̃(t) =
n∑

i=1

n∑
j=1

µiµj

[ (
C̃i1 + D̃iKj1

)
x(t) +

(
C̃i2 + D̃iKj2

)
x(t − d)

]
,

x(t) = φ(t), t ∈ [−d, 0],

(8)

where µi = µi(z(t)) for short.
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In order to study the design method of state time-delay feedback H∞ controller, we
always consider the following performance index.

Definition 2.1. For a prescribed scalar γ > 0, define the performance index as

J(ω) =

∫ ∞

0

[
z̃T (τ)z̃(τ) − γ2ωT (τ)ω(τ)

]
dτ. (9)

Remark 2.1. The purpose of this paper is to design a robust H∞ controller (7) for the
T-S fuzzy system (5) such that for all admissible uncertainties satisfying (2), (3), (4) and
for a prescribed scalar γ > 0,
[a] the closed-loop fuzzy system (8) is asymptotically stable when ω(t) = 0;
[b] for all nonzero ω(t) ∈ L2[0,∞) under the zero initial condition, the closed-loop fuzzy
system (8) satisfies ∥z̃(t)∥2 < γ∥ω(t)∥2.

In this paper, for simplicity, let

S̃ij = Ãi1 + B̃iKj1, T̃ij = Ãi2 + B̃iKj2, M̃ij = C̃i1 + D̃iKj1, Ñij = C̃i2 + D̃iKj2,

Sij = Ai1 + BiKj1, Tij = Ai2 + BiKj2, Mij = Ci1 + DiKj1, Nij = Ci2 + DiKj2,

W̃ij = Ãi1 + Ãi2 + B̃iKj1, Wij = Ai1 + Ai2 + BiKj1.

3. Main Results. In this section, based on the Lyapunov approach, we will present a
new method to design the robust H∞ controller for uncertain time delay systems. First,
three important lemmas are presented as follows because they are the key to proving the
main theorems.

Lemma 3.1 ([4]). For any two vectors x(t), y(t) ∈ Rn, we have

2xT (t)y(t) ≤ xT (t)G−1x(t) + yT (t)Gy(t),

where G ∈ Rn×n and G > 0.

Lemma 3.2 ([20]). Y , U and E are the matrices of appropriate dimensions, and Y = Y T ,
then for any matrix F satisfying F T F ≤ I, we have the following equivalent condition

Y + UFE + ET F T UT < 0

if and only if there exists a constant ε > 0 satisfying

Y + εUUT + ε−1ET E < 0.

Lemma 3.3 ([20]). (Schur complements) For a symmetric matrix S =

[
S11 S12

S21 S22

]
, the

following conditions are equivalent:
[i] S < 0;
[ii] S11 < 0, S22 − ST

12S
−1
11 S12 < 0;

[iii] S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Firstly, we consider the following closed-loop fuzzy system.

ẋ(t) =
n∑

i=1

n∑
j=1

µiµj

[
S̃ijx(t) + T̃ijx(t − d) + Bωiω(t)

]
. (10)

Using the Newton-Leibniz formula
∫ 0

−d
ẋ(t + θ)dθ = x(t) − x(t − d), we can have an

equivalent form of fuzzy systems (10) as follows:

ẋ(t) =
n∑

i=1

n∑
j=1

µiµj

[
W̃ijx(t) + B̃iKj2x(t − d) − Ãi2

∫ 0

−d

ẋ(t + θ)dθ + Bωiω(t)

]
. (11)
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When the states are measurable, based on the Lyapunov functional approach, the stabi-
lization results of system (10) while ω(t) = 0 are summarized in the following theorem.

Theorem 3.1. Suppose ω(t) = 0. For a given positive scalar dM such that d ∈ [0, dM ], if
there exist matrices P > 0, Q > 0 and R > 0 of appropriate dimensions such that

PW̃ii + W̃ T
ii P ∗ ∗ ∗ ∗

KT
i2B̃

T
i P −Q ∗ ∗ ∗

ÃT
i2P 0 −d−1

M R ∗ ∗
S̃ii T̃ii 0 −d−1

M R−1 ∗
I 0 0 0 −Q−1

 < 0, 1 ≤ i ≤ n (12)



P
(
W̃ij + W̃ji

)
+

(
W̃ij + W̃ji

)T

P ∗ ∗ ∗ ∗ ∗

KT
j2B̃

T
i P + KT

i2B̃
T
j P −2Q ∗ ∗ ∗ ∗

ÃT
i2P 0 −d−1

M R ∗ ∗ ∗
ÃT

j2P 0 0 −d−1
M R ∗ ∗

S̃ij + S̃ji T̃ij + T̃ji 0 0 −2d−1
M R−1 ∗

I 0 0 0 0 −0.5Q−1


< 0,

1 ≤ i < j ≤ n (13)

then system (10) is asymptotically stable.

Proof: Choose the Lyapunov function as

V (x(t)) = xT (t)Px(t) +

∫ t

t−d

xT (s)Qx(s)ds +

∫ 0

−d

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ,

by (11), then the derivative of V (x(t)) is

V̇ (x(t)) = 2xT (t)Pẋ(t) + xT (t)Qx(t) − xT (t − d)Qx(t − d) + dẋT (t)Rẋ(t)

−
∫ 0

−d

ẋT (t + θ)Qẋ(t + θ)dθ

=
n∑

i=1

n∑
j=1

µiµj

[
2xT (t)PW̃ijx(t) + xT (t)Qx(t) − xT (t − d)Qx(t − d)

+ dẋT (t)Rẋ(t) + 2xT (t)PB̃iKj2x(t − d) − 2xT (t)PÃi2

∫ 0

−d

ẋ(t + θ)dθ

−
∫ 0

−d

ẋT (t + θ)Rẋ(t + θ)dθ

]
. (14)

By (10), we have

dẋT (t)Rẋ(t) = d

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

µiµjµkµl

[
S̃ijx(t) + T̃ijx(t − d) + Bωiω(t)

]T

R
[
S̃klx(t)

+ T̃klx(t − d) + Bωiω(t)
]

≤ d
n∑

i=1

n∑
j=1

µiµj

[
S̃ijx(t) + T̃ijx(t − d) + Bωiω(t)

]T

R
[
S̃ijx(t) + T̃ijx(t − d)

+ Bωiω(t)
]
. (15)
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By Lemma 3.1, we can obtain

−
n∑

i=1

n∑
j=1

µiµj2x
T (t)PÃi2

∫ 0

−d

ẋ(t + θ)dθ

= −
n∑

i=1

n∑
j=1

µiµj

∫ 0

−d

2xT (t)PÃi2ẋ(t + θ)dθ

≤
n∑

i=1

n∑
j=1

µiµj

[
dxT (t)PÃi2R

−1ÃT
i2Px(t) +

∫ 0

−d

ẋT (t + θ)Rẋ(t + θ)dθ

]
. (16)

Substituting (15) and (16) into (14), we have

V̇ (x(t)) ≤
n∑

i=1

n∑
j=1

µiµjξ
T (t)Ω̃ijξ(t)

=
n∑

i=1

µ2
i ξ

T (t)Ω̃iiξ(t) +
n−1∑
i=1

n∑
j>i

µiµjξ
T (t)

(
Ω̃ij + Ω̃ji

)
ξ(t)

(17)

where ξT (t) =
[
xT (t) xT (t − d) ωT (t)

]
,

Ω̃ij =

PW̃ij + W̃ T
ij P + Q + dS̃T

ijRS̃ij + dPÃi2R
−1ÃT

i2P ∗ ∗
KT

j2B̃
T
i P + dT̃ T

ij RS̃ij −Q + dT̃ T
ij RT̃ij ∗

BT
ωiP + dBT

ωiRS̃ij dBT
ωiRT̃ij dBT

ωiRBωi

 .

By setting ω(t) = 0 and using Schur complements, we can easily obtain (18) and (19)
such that V̇ (x(t)) < 0.

PW̃ii + W̃ T
ii P ∗ ∗ ∗ ∗

KT
i2B̃

T
i P −Q ∗ ∗ ∗

ÃT
i2P 0 −d−1R ∗ ∗
S̃ii T̃ii 0 −d−1R−1 ∗
I 0 0 0 −Q−1

 < 0, 1 ≤ i ≤ n (18)



P
(
W̃ij + W̃ji

)
+

(
W̃ij + W̃ji

)T

P ∗ ∗ ∗ ∗ ∗

KT
j2B̃

T
i P + KT

i2B̃
T
j P −2Q ∗ ∗ ∗ ∗

ÃT
i2P 0 −d−1R ∗ ∗ ∗

ÃT
j2P 0 0 −d−1R ∗ ∗

S̃ij + S̃ji T̃ij + T̃ji 0 0 −2d−1R−1 ∗
I 0 0 0 0 −0.5Q−1


< 0,

1 ≤ i < j ≤ n. (19)

Note that the matrices in (18) and (19) are monotonic increasing with respect to d > 0.
If there exist a positive scalar dM such that d ∈ [0, dM ], then V̇ (x(t)) < 0 still holds when
‘−d−1’ in (18) and (19) are replaced by ‘−d−1

M ’. Then we can finish the proof.
Then we study the design method of state time-delay feedback H∞ controller of system

(1). For H∞ control, we always consider the performance index J(ω) (see Equation (9))
under zero initial condition.
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Theorem 3.2. For a prescribed constant γ > 0 and a positive scalar dM such that d ∈
[0, dM ], if there exist P > 0, Q > 0 and Q > 0 satisfying the following matrix inequalities,
then J(ω) < 0.

PW̃ii + W̃ T
ii P ∗ ∗ ∗ ∗ ∗ ∗

KT
i2B̃

T
i P −Q ∗ ∗ ∗ ∗ ∗

BT
ωiP 0 −γ2I ∗ ∗ ∗ ∗

ÃT
i2P 0 0 −d−1

M R ∗ ∗ ∗
S̃ii T̃ii Bωi 0 −d−1

M R−1 ∗ ∗
M̃ii Ñii 0 0 0 −I ∗
I 0 0 0 0 0 −Q−1


< 0, 1 ≤ i ≤ n (20)



P
(
W̃ij + W̃ji

)
+

(
W̃ij + W̃ji

)T

P ∗ ∗ ∗ ∗ ∗ ∗ ∗(
B̃iKj2 + B̃jKi2

)T

P −2Q ∗ ∗ ∗ ∗ ∗ ∗
(Bωi + Bωj)

T P 0 −2γ2I ∗ ∗ ∗ ∗ ∗
ÃT

i2P 0 0 −d−1
M R ∗ ∗ ∗ ∗

ÃT
j2P 0 0 0 −d−1

M R ∗ ∗ ∗
S̃ij + S̃ji T̃ij + T̃ji Bωi + Bωj 0 0 −2d−1

M R−1 ∗ ∗
M̃ij + M̃ji Ñij + Ñji 0 0 0 0 −2I ∗

I 0 0 0 0 0 0 −0.5Q−1


< 0,

1 ≤ i < j ≤ n (21)

Proof: By (8), we have

z̃T (t)z̃(t) − γ2ωT (t)ω(t)

≤
n∑

i=1

n∑
j=1

µiµj

[
xT (t)M̃T

ijM̃ijx(t) + 2xT (t)M̃T
ij Ñijx(t − d)

+ xT (t − d)ÑT
ij Ñijx(t − d) − γ2ωT (t)ω(t)

]
=

n∑
i=1

n∑
j=1

µiµj

ξT (t)

M̃T
ij

ÑT
ij

0

 [
M̃ij Ñij 0

]
ξ(t) − γ2ωT (t)ω(t)

 .

(22)

On the other hand, under zero initial condition, we can obtain that

J(ω) =

∫ ∞

0

[
z̃T (τ)z̃(τ) − γ2ωT (τ)ω(τ)

]
dτ

=

∫ ∞

0

[
z̃T (τ)z̃(τ) − γ2ωT (τ)ω(τ) + V̇ (x(τ))

]
dτ − V (x(∞))

≤
∫ ∞

0

[
z̃T (τ)z̃(τ) − γ2ωT (τ)ω(τ) + V̇ (x(τ))

]
dτ

(23)

Substituting (17), (22) into (23), by schur complements, we can complete the proof.

Remark 3.1. It is easy to see that (20) implies (12), and (21) implies (13).

Noting that the parameter uncertainties are contained in (20) and (21). So Theorem
3.2 cannot be directly used to determine whether J(ω) < 0. By combining Remark 2.1,
Remark 3.1 and Theorem 3.2, we propose a new design method of state time-delay robust
H∞ controller in the following theorem, and the results are delay-dependent.
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Theorem 3.3. For a prescribed scalar γ > 0 and a scalar dM > 0 such that d ∈ [0, dM ],
T-S fuzzy system (8) is stable and satisfies ∥z̃(t)∥2 < γ∥ω(t)∥2 for all nonzero ω(t) ∈
L2[0,∞) under the zero initial condition, if there exist matrices X > 0, Y > 0, Z > 0,
Lj1 and Lj2 (j = 1, 2, · · · , n) of appropriate dimensions and positive constants εij (i, j =
1, 2, · · · , n) such that the following LMIs simultaneously hold:Φii

11 ∗ ∗
Φii

21 Φii
22 ∗

Φii
31 0 Φii

33

 < 0, 1 ≤ i ≤ n, (24)

Ψij
11 ∗ ∗

Ψij
21 Ψij

22 ∗
Ψij

31 0 Ψij
33

 < 0, 1 ≤ i < j ≤ n, (25)

Φii
11 =


Ai1X + Ai2X + BiLi1 + (Ai1X + Ai2X + BiLi1)T + εiiUiU

T
i ∗ ∗ ∗

LT
i2B

T
i −Y ∗ ∗

BT
ωi 0 −γ2I ∗

ZAT
i2 0 0 −d−1

M Z

 ,

Φii
21 =

Ai1X + BiLi1 Ai2Y + BiLi2 Bωi 0

Ci1X + DiLi1 Ci2Y + DiLi2 0 0

X 0 0 0

 ,

Φii
22 =

−d−1
M Z + εiiUiU

T
i ∗ ∗

0 −I + εiiHiH
T
i ∗

0 0 −Y

 ,

Φii
31 =

Ei1X + Ei2X + EiLi1 EiLi2 0 Ei2Z

Ei1X + EiLi1 Ei2Y + EiLi2 0 0

Gi1X + GiLi1 Gi2Y + GiLi2 0 0

 ,

Φii
33 = diag

{
− εiiI,−εiiI,−εiiI

}
,

Ψij
11 =


Λij ∗ ∗ ∗ ∗

(BiLj2 + BjLi2)
T −2Y ∗ ∗ ∗

(Bωi + Bωj)
T 0 −2γ2I ∗ ∗

ZAT
i2 0 0 −d−1

M Z ∗
ZAT

j2 0 0 0 −d−1
M Z

 ,

Λij = (Ai1 + Aj1 + Ai2 + Aj2)X + BiLj1 + BjLi1 + ((Ai1 + Aj1 + Ai2 + Aj2)X

+ BiLj1 + BjLi1)
T + εijUiU

T
i + εjiUjU

T
j ,

Ψij
21 =

(Ai1 + Aj1)X + BiLj1 + BjLi1 (Ai2 + Aj2)Y + BiLj2 + BjLi2 Bωi + Bωj 0 0
(Ci1 + Cj1)X + DiLj1 + DjLi1 (Ci2 + Cj2)Y + DiLj2 + DjLi2 0 0 0

X 0 0 0 0

 ,

Ψij
22 =

−2d−1
M Z + εijUiU

T
i + εjiUjU

T
j ∗ ∗

0 −2I + εijHiH
T
i + εjiHjH

T
j ∗

0 0 −0.5Y

 ,
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Ψij
31 =



Ei1X + Ei2X + EiLj1 EiLj2 0 Ei2Z 0

Ei1X + EiLj1 Ei2Y + EiLj2 0 0 0

Gi1X + GiLj1 Gi2Y + GiLj2 0 0 0

Ej1X + Ej2X + EjLi1 EjLi2 0 0 Ej2Z

Ej1X + EjLi1 Ej2Y + EjLi2 0 0 0

Gj1X + GjLi1 Gj2Y + GjLi2 0 0 0


,

Ψij
33 = diag {−εijI,−εijI,−εijI,−εjiI,−εjiI,−εjiI} .

Moreover, the state time-delay feedback H∞ controller gains of (7) are given by

Kj1 = Lj1X
−1, Kj2 = Lj2Y

−1, j = 1, 2, · · · , n. (26)

Proof: Consider the parameter uncertainties satisfying (2), (3) and (4) in Assumption
2.1. Then replace Ãi1, Ãi2, B̃i, C̃i1, C̃i2 and D̃i with Ai1 + UiFi(t)Ei1, Ai2 + UiFi(t)Ei2,
Bi + UiFi(t)Ei, Ci1 + HiVi(t)Gi1, Ci2 + HiVi(t)Gi2 and Di + HiVi(t)Gi in (20) and (21),
respectively. By Lemma 3.1, we can obtain

(20) ⇔ Θii + Γi

Fi(t) ∗ ∗
0 Fi(t) ∗
0 0 Vi(t)

 Ξii + ΞT
ii

F T
i (t) ∗ ∗
0 F T

i (t) ∗
0 0 V T

i (t)

 ΓT
i < 0

⇔ Θii + εiiΓiΓ
T
i + ε−1

ii ΞT
iiΞii < 0,

(27)

where

Θii =



PWii + W T
ii P ∗ ∗ ∗ ∗ ∗ ∗

KT
i2B

T
i P −Q ∗ ∗ ∗ ∗ ∗

BT
ωiP 0 −γ2I ∗ ∗ ∗ ∗

AT
i2P 0 0 −d−1

M R ∗ ∗ ∗
Sii Tii Bωi 0 −d−1

M R−1 ∗ ∗
Mii Nii 0 0 0 −I ∗
I 0 0 0 0 0 −Q−1


,

Γi =



PUi 0 0
0 0 0
0 0 0
0 0 0
0 Ui 0
0 0 Hi

0 0 0


,

Ξii =

Ei1 + Ei2 + EiKi1 EiKi2 0 Ei2 0 0 0

Ei1 + EiKi1 Ei2 + EiKi2 0 0 0 0 0

Gi1 + GiKi1 Gi2 + GiKi2 0 0 0 0 0

 .

We can transfer (21) in the same way. By Remark 3.1, we know that when (20) and (21)
hold, system (8) satisfies condition [a] and [b] in Remark 2.1. Define X = P−1, Y = Q−1,
Z = R−1, Lj1 = Kj1X and Lj2 = Kj2Y . Using Schur complements in (27), then pre- and
post-multiplying both sides of the obtained matrix with diag{X,Y, I, Z, I, I, I, I, I, I}, we
can get (24). Analogously we can prove that (21) ⇔ (25).

4. Numerical Examples. In this section, two examples are presented to illustrate the
proposed methods.
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Example 4.1. In the following, we consider a time-delay T-S fuzzy system with uncer-
tainties:
Plant Rule 1: If x2(t) is small, then

ẋ(t) = (A11 + ∆A11(t)) x(t) + A12x(t − d) + B1u(t).

Plant Rule 2: If x2(t) is big, then

ẋ(t) = (A21 + ∆A21(t)) x(t) + A22x(t − d) + B2u(t).

The model parameters are given as follows:

A11 =

[
0 −0.9

−0.3 −1.5

]
, A12 =

[
0 0.01

−0.018 0.2

]
, B1 =

[
1
0

]
A21 =

[
0 −0.8

−0.4 −1.7

]
, A22 =

[
0 0.01

−0.012 0.19

]
, B2 =

[
1
0

]
U1 =

[
0.1
0.1

]
, E11 =

[
0.2 0.2

]
, F1(t) = sin(t),

U2 =

[
−0.1
0.1

]
, E21 =

[
−0.2 0.2

]
, F2(t) = − sin(t).

The membership functions for x2 are as follows:

small(x2) =


1, x2 ∈ (−∞,−1],

0.5(1 − x), x2 ∈ [−1, 1],

0, x2 ∈ [1, +∞),

, big(x2) =


0, x2 ∈ (−∞,−1],

0.5(1 + x), x2 ∈ [−1, 1],

1, x2 ∈ [1, +∞).

The system with u(t) = 0, d = 0.5 has unstable response as shown in Figure 1 for the
initial condition x(0) = [2 − 5]T .

0 1 2 3 4 5 6
−5

0

5

10

15

time(sec)

st
at

e

unforced state response

x1
x2

Figure 1. Unforced state response
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−5

−4

−3

−2

−1

0

1

2

time(sec)

st
at

e

Closed−loop state response

x1
x2

Figure 2. Closed-loop state response

Then we consider the simple state feedback controller as u(t) =
∑n

i=1 µiKix(t). Finally,
we can have the state feedback gain Ki as K1 = [−1.2665 0.6977], K2 = [−1.2445 0.7281],
and the simulation result is shown in Figure 2.

Example 4.2. Consider an uncertain nonlinear system with time-delay as follows:

ẋ1(t) = − (6 − cos2(x2(t))) + x2(t) − 0.1 sin2(x2(t))x1(t − d)

−
(
2 + sin2(x2(t))

)
x2(t − d) + c(t) sin2(x2(t)) [x2(t) + x1(t − d)]

+ c(t) cos2(x2(t)) [x1(t) + x2(t − d)] + c(t)u(t) +
(
1 + sin2(x2(t))

)
ω(t),

ẋ2(t) = − (0.2 − 0.3 cos2(x2(t))) x1(t) − x2(t) + (0.1 − 0.2 cos2(x2(t))) x1(t − d)

− 0.1x2(t − d) + u(t),

(28)

where c(t) is an uncertain parameter satisfying c(t) ∈ [−0.2, 0.2]. If we select the member-
ship function as M1(x2(t)) = sin2(x2(t)) and M2(x2(t)) = cos2(x2(t)), then the nonlinear
time-delay system (28) can be represented by the following time-delay T-S fuzzy model
with parameter uncertainties:
Plant Rule 1: If x2(t) is M1, then

ẋ(t) = (A11 + ∆A11(t)) x(t) + (A12 + ∆A12(t)) x(t − d) + (B1 + ∆B1(t)) u(t)

+ Bω1ω(t),

z̃(t) = (C11 + ∆C11(t)) x(t) + (C12 + ∆C12(t)) x(t − d) + D1u(t),

Plant Rule 2: If x2(t) is M2, then
ẋ(t) = (A21 + ∆A21(t)) x(t) + (A22 + ∆A22(t)) x(t − d) + (B2 + ∆B2(t)) u(t)

+ Bω2ω(t),

z̃(t) = (C21 + ∆C21(t)) x(t) + (C22 + ∆C22(t)) x(t − d) + D2u(t),
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where

A11 =

[
−6 1
−0.2 −1

]
, A12 =

[
−0.1 −3
0.1 −0.1

]
, A21 =

[
−5 1
0.1 −1

]
, A22 =

[
0 −2

−0.1 −0.1

]
,

B1 = B2 =

[
0
1

]
, Bω1 =

[
2
0

]
, Bω2 =

[
1
0

]
, C11 = C21 =

[
0.1 0
0 0.1

]
,

C12 = C22 =

[
0 0
0 0

]
, D1 = D2 =

[
1
1

]
, U1 = U2 =

[
1 0
0 0

]
, E11 = E22 =

[
0 0.2
0 0

]
,

E12 = E21 =

[
0.2 0
0 0

]
, E1 = E2 =

[
1
0

]
, H1 = H2 =

[
1 0
0 0

]
,

G11 = G22 =

[
0 0.2
0 0

]
, G12 = G21 =

[
0.2 0
0 0

]
, G1 = G2 =

[
1
0

]
.

Choosing the H∞ performance level γ = 1, designing the state time-delay feedback con-
troller as (7), then for d = 0.9, according to Theorem 3.3, by solving LMIs (24) and (25),
we can obtain

X =

[
1.5974 −0.0155
−0.0155 0.2703

]
, Y =

[
5.8110 −0.2732
−0.2732 0.5845

]
, Z =

[
15.5326 −0.5140
−0.5140 0.9229

]
,

L11 =
[
−0.1273 −0.1286

]
, L12 =

[
−0.1908 0.0186

]
,

L21 =
[
0.0173 −0.0806

]
, L22 =

[
0.0106 0.0085

]
.

Finally, by (26), the responding controller gains are calculated as follows:

K11 =
[
−0.0843 −0.4806

]
, K12 =

[
−0.0320 0.0169

]
,

K21 =
[
0.0079 −0.2979

]
, K22 =

[
0.0026 0.0157

]
,

and the maximal delay allowed is dMax = 1.2230.

5. Conclusions. In this paper, we considered a class of T-S fuzzy time-delay systems
with parameter uncertainties. Based on Lyapunov functional approach, we obtained some
new delay-dependent conditions of designing a stable state time-delay feedback controller.
All the results are given in terms of LMIs. Finally, we gave two numerical examples to
demonstrate the effectiveness of our methods.
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