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ABSTRACT. Machine vision is a popular technology used in Traffic Monitoring System
(TMS) to detect vehicles in the traffic scene. Recently, thermal vision provides an alter-
native machine vision for the TMS since it demonstrates good vehicle detection accuracy,
especially under night condition. Under the thermal vision, the vehicles appear almost
similar in the daytime and nighttime, even though the illuminations of the traffic scene
are significantly different. This vision effect motivates the development of a single vehicle
detection algorithm that works in both of the illumination conditions. It is a challenge
that has existed for decades. In this paper, a framework for thermal-vision-based TMS is
proposed. Histogram of Oriented Gradients (HoG) is a feature descriptor used to recog-
nize the vehicles on the road. The similar appearance of the vehicles under the thermal
vision allows the use of single adaptive reference descriptor in vehicle detection for each
lane of the road, in which the reference descriptor is generated and optimized with Prin-
cipal Component Analysis (PCA). In both the daytime and nighttime, the proposed TMS
framework has demonstrated high vehicle detection accuracies under the thermal vision.
Keywords: Vehicle detection, Traffic monitoring, Thermal vision, Principal Component
Analysis, Histogram of Oriented Gradients

1. Introduction. Vehicular traffic monitoring is the task to watch over the activities and
incidents happening on the road, which can be perceived as an important infrastructure
in demand for urbanization. Today, 54% of world’s population lives in cities and the
number is estimated to rise to 67% in 2050 [1]. Due to the urbanization process, the
road networks are growing and the corresponding traffic patterns are expected to change
from time to time. Instead of manually monitoring the ever-growing and massive road
infrastructure over 24/7, an automated Traffic Monitoring System (TMS) is practically
more convenient with minimal human intervention in its operation.

Road activities are recorded for many applications: transportation planning [2], auto-
matic traffic control [3], traffic route planning [4], road safety analysis [5], etc. In general,
the activities are recorded to study and understand the traffic demand in different regions
of the road network. Vehicle count (or known as traffic volume) is a common traffic pa-
rameter generated by every TMS to basically reflect the traffic demand [6]. Considered
as the derived traffic parameters from vehicle count, some TMSs are able to output the
parameters such as queue length (difference between the count for vehicle entering and
the count for vehicle leaving a queue) [7], and traffic flow (count for pass-by vehicle per
unit time) [8]. Regardless of the traffic parameters being generated, the TMS must be
able to perceive the presence of vehicles on the road in order to count them. Thus, vehicle
detection can be considered as a preliminary task performed by the TMS.
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Machine vision is a popular technology applied for vehicle detection in recent decades
and there are large experiences in various vision-based monitoring systems whether they
are indoor or outdoor. Many works have been developed for vision-based TMS to ac-
curately detect vehicles in various environments, although the traffic scene is generally
time-varying and complex [9]. Due to significantly different illumination conditions, early
works pointed out the challenge to develop a single image analysis algorithm for vehicle
detection that can operate both in the daytime and at night [10]. Vehicle can be detected
by identifying and locating the common features appearing on every vehicle. However,
the appearance of the common features is normally changing from time to time due to
the varying outdoor traffic scene. In years of development, it has been generally agreed
that different detection methods should be used under different illumination conditions
[11]. Some of the common features that can be used to recognize a vehicle in the scene
are: color [12], edge [13-15] and headlight-pair [16-18]. In recent years, image feature
extraction methods such as Histogram of Oriented Gradients (HoG) [19-22], Haar-like
features [23-25], Scale-invariant feature transform (SIFT) [26] and Speeded Up Robust
Features (SURF) [27] have caught much attention from many researchers as the methods
provide robustness in vehicle detection.

Extracted features, normally grouped in the form of single-column vector called feature
vector, are assumed to contain relevant and significant information that represents an
image data. Since there are many feature extraction methods, feature vector can be
extended by grouping multiple extracted features as one vector or reduced by discarding
the features that are less significant to represent the data [28]. Thus, a feature-based
vehicle detection system is generally scalable in its feature vector formation. Machine
learning has played an important role as a fast and economical method to implement the
feature-based vehicle detection system to distinguish the vehicles from many dissimilar
non-vehicle objects (such as trees, human, road-signs and light poles) in the traffic scene.
The system can be developed and updated by respectively training and retraining a
computing system whenever the datasets are available [20]. Each data in the datasets
can be formed with a feature vector as the input and the label of the corresponding image
(which the feature is extracted) as the output of the system.

Machine learning task that aims to infer a function mapping between the given input
features and the output labels is known as supervised learning. Neural network is a
popular computing system trainable in this manner for vehicle detection [28,29]. Since a
vehicle detection normally operates to recognize two classes of objects (vehicle and non-
vehicle), Support Vector Machine (SVM) can also be used in vehicle detection [19,24,30]
SVM is a binary classifier with optimum margin separating the two classes of data that
are transformed onto a hyper-plane. Generally, the larger the margin is, the more robust
the classifier is. Optimization is not only important in classifying the data, but also
important in selecting the features for classification. Often, the features extracted from
images are dependent between one another without the knowledge of the developer. In
this case, Principal Component Analysis (PCA) is an approach used for vehicle detection
mainly to reduce the dimensionality of the data so that only the significant features are
selected for classification [32].

Labeling a dataset is usually a manual task, which is generally tedious and error-prone.
Unsupervised learning is another feasible method to implement the vehicle detection sys-
tem, in which the system is designed to infer the hidden structure of the input feature
vector without any label. In this way, man-made error in labeling tasks can be avoided.
Besides, unsupervised learning also allows the vehicle detection system to retrain itself
from time to time during its operation. This capability is essential for an outdoor mon-
itoring system that needs to adapt itself to operate in the varying scene. Elimination of
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manual labeling task can be achieved with the inclusion of auto-labeling mechanism into
the system. For example, [22] uses an offline-trained SVM as a binary classifier to label
the collected samples during its operations to form the new dataset from time to time.
The dataset is then used to retrain the same SVM to become a more accurate classifier.
Instead of retraining the offline-trained classifier, [26] uses the offline classifiers to label
the new collected data to train a set of separate online classifiers during its operation.

Lately, thermal vision (which is an infrared imaging technology) has emerged as a
surveillance technology for road traffic monitoring [33]. In this paper, we introduce an
unsupervised-learning framework for thermal-vision-based vehicle detection using PCA.
The proposed framework eliminates the need for manual data labeling in machine learn-
ing. In addition, the use of PCA allows the TMS to generate reference features, which are
optimized for the vehicle detection process. The following section highlights the perspec-
tive effect of the traffic scene and vehicles under the thermal vision that motivates the
approach. In Section 3, the proposed framework for traffic monitoring system is discussed
in detail. Section 4 presents the results and discussions of the topic. Lastly, Section 5
concludes our findings.

2. Perspective Effect of Thermal Vision. Performance of vehicle detection depends
not only on the choice of the algorithms, but also on the choice of the artificial sensors
used for the TMS to perceive the scene environment. A conventional vision-based vehicle
detection system generally relies on the use of visual camera as the sensor to perceive
the outdoor scene environment. Since the camera operates in visible spectrum, many
works have pointed out the problems encountered by the system to operate under varying
lighting condition. During the day, shadow cast by a vehicle on the road has the tendency
to be detected by the system as a part of the vehicle [34,35]. In the nighttime, low
illumination of the environment, however, tends to blind the system from detecting some
parts of the vehicle. In this case, the headlight-pair is often considered as an important
cue for vehicle detection [11]. The upper row of Figure 1 shows the appearance of the
vehicles under the normal vision in the daytime and nighttime. Vehicles in the daytime
can be clearly seen, compared to the nighttime condition. In the nighttime, only the
headlights are the common parts of the vehicles that can be clearly seen. The dissimilar
appearances of the vehicles under different lighting conditions have become the major

Nighttime

Normal Vision

Thermal Vision

FIGURE 1. Comparison between normal vision and thermal vision in the
daytime and nighttime
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reason for the need to incorporate multiple detection algorithm into a vehicle detection
system.

As an imaging technology that perceives thermal distribution (or infrared radiation) of
objects, thermal vision does not only allow a surveillance system to ‘see’ in dim-lighting
environment, but also in complete darkness. In the early days, line scan sensor was the
choice of infrared sensor used for vehicle detection [36]. Due to the continual development
of the sensor technology, thermal camera that works like a normal camera is available to-
day to capture images and record videos of the radiations. For vehicle detection, thermal
vision has been demonstrated for providing good detection accuracy under different light-
ing and weather conditions [32,36,37]. The lower row of Figure 1 shows the appearance
of the vehicles under the thermal vision in the daytime and nighttime. It is observed that
the vehicles can be apparently differentiated from the background road, regardless of the
colors of the vehicles and the illumination of the scene. In addition, the appearances of
the vehicles are similar in both environments. This vision effect allows a single detection
algorithm to be developed to operate in both the conditions.

3. Framework for Traffic Monitoring System. Although the vehicles appear almost
similar in different lighting conditions, there are still some differences that are consistent
with the changes of the illumination. In the daytime, the thermal distribution of the
engine parts of the vehicles is more evenly distributed, such that the pixel intensities
around the engine parts are close to each other. In the nighttime, the front bumpers are,
however, significantly brighter (or hotter) than the bonnets. Normally, the changes of the
appearance under the thermal vision take hours of time since it is unlikely to have an
object that changes its temperature rapidly in the traffic scene. Thus, an adaptive TMS
that has the capability to learn the appearance (or technically known as the extracted
features) from time to time is proposed as shown in Figure 2.
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. Inverse Wlnglow Projection to A Vehlple
Traffic Perspective | Sliding Principal |- Vehicle Locations
Video Mapping Feature Feature Detection on Every
Extraction Lane
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+
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Formation and Update

FIGURE 2. Framework for traffic monitoring system under thermal vision

Briefly, the proposed TMS analyzes the traffic video to count the vehicles on each lane.
Inverse Perspective Mapping (IPM) is a preliminary process aiming to transform the per-
spective view of the traffic scene into the bird’s-eye view. The process is essential to
assure invariant vehicle’s size in the captured images when the vehicle is moving on the
road. The size-invariant characteristic also allows the feature extraction to be performed
throughout the entire transformed image with a fixed window size. This approach gen-
erally provides benefits in terms of the computing time requirement. A reference feature
will be used to detect the vehicles in the scene. From time to time, the reference feature
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is updated to keep track on the changes of the appearance of the vehicles. The following
subsections separately discuss the processes in detail.

3.1. Inverse perspective mapping. Vision-based TMS normally requires the overhead
installation for the cameras. The cameras are directed to capture the traffic videos similar
to the example frames presented in Figure 1. Vehicles enter from the top and leave at the
bottom of the frames. Moving from top to the bottom, perspective view of the cameras
causes the size of every moving vehicle to change in the traffic video. The perspective
effect can be illustrated with Figure 3, in which a lane of the road laid on the zy-plane is
projected onto the image represented by the uv-plane. Respectively, h and f denote the
height of the camera from the ground and the focal length. In the figure, the 4 points p, ¢,
r, and s on the xy-plane are respectively projected to p’, ¢/, v, and s’ on the uv-plane. It
is observed that farther lane section appears smaller than the nearer section in the image
plane.
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FIGURE 3. Relation between image coordinate system and the world coor-
dinate system

To remove the scaling effect, [39] suggests that an IPM algorithm can be used to map
the image from wv-plane to the zy-plane according to Equation (1). (z;,1;) denotes a
coordinate on the xy-plane that is mapped from (u;, v;), which denotes a coordinate on
the uv-plane. The transformation matrix A is a 3-by-3 homography matrix. Since there
are 9 unknown entries, the transformation matrix A can be determined by specifying 4 sets
of (z;,v;,u;,v;). In this paper, a two-lane straight road is studied. (z;,y;) is considered
to represent the 4 vertices of a rectangle image showing the bird’s-eye view of a lane.
The image is hereafter called as homography image. Meanwhile, (u;,v;) is considered to
represent the 4 vertices of a quadrilateral enclosing the target lane or Region of Interest
(ROI) on the wv-plane. Figure 4 demonstrates the example homography images with
different target lanes selected with quadrilaterals. It is observed that the homography
images provide the bird’s-eye view of the lanes. In the same homography image, the
vehicles look similar to each other. However, the vehicles from different homography
images consistently show slight difference in the appearances. The main reason is due to
the two lanes in the scene that have different azimuths of the camera viewpoint. Vehicles
in Lane 1 show more symmetry quality than the vehicles in Lane 2. The explained effect
indicates that there is a need to use different features for vehicle detection in different
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FIGURE 4. Inverse perspective mapping for different lanes

3.2. Window sliding feature extraction. HoG is a feature descriptor introduced by
[40] for robust object detection and recognition. Recognizing objects based on the edges
or gradients, HoG is thus not sensitive to the changes of the image luminance, which often
results in inaccurate detection [41]. Generally, HoG descriptor is a set of numbers indi-
cating the histogram of the local gradient orientation distribution. A homography image
I(z,y) can be considered as a function of a 2D surface, and the gradient G(z, y) of the sur-
face will have two perpendicular components forming a vector as shown in Equation (2).
For every discrete pixel (x,y) of the homography image I(z,y), the horizontal gradient
G (z,y) and vertical gradient G (z, y) can be determined according to Equations (3) and
(4) respectively. k, and k, are the commonly used 1D centered point derivative masks for
the two directions. The magnitude gradient |G(x,y)| and the gradient orientation 6(z,y)
are defined with Equations (5) and (6) respectively.

Glr.y) = [ Go(7,y) ] 2)

Gy(z,y)
where
Gz, y) =1(x,y) *ky; ky=[-1 0 1] (3)
1
Gylz,y) =1(x,y) xky; ky, = { (1) } (4)
G(a,y)| = \/Gale,9)? + Gy (a,y)? (5)
0(z,y) = arctan <%> (6)

In this paper, a standard 9-bin histogram is used to form the HoG descriptor since
it provides the best object detection performance as demonstrated in [40]. The 9 bins
are evenly spaced over 0°-360° to include the entire regions of the gradient orientation
O(z,y). The histogram is generated for every selected image region on the homography
image I(x,y), using a fixed-size block or window as shown in Figure 5. The length of
the window is 1.5 times the width of the homography image to allow the window to
be large enough to cover the entire vehicle. Each pixel in the window casts a vote for
an orientation bin according to the magnitude weighting method [42]. The method is
selected because the magnitude gradient around the road region is normally significantly
smaller than the magnitude gradient around the vehicle region in the homography image
I(x,y). The method also assures the generated descriptor of the vehicles to be apparently
different from the one of the road.
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FiGURE 5. HoG of vehicle and road on homography image

3.3. Principal feature formation, update and projection. HoG descriptors of two
similar objects will have similar values, which make the HoG suitable for object detection
and recognition. Let H(z) denote a vector representing an HoG descriptor as shown in
Equation (7), in which h;(x) denotes the value of each bin of the histogram. Since 9-bin
HoG is considered in this paper, n = 9. Meanwhile, x denotes the position of the center
of the window sliding horizontally on the homography image. The voting mechanism to
the bins can be considered to naively measure the intensity of the gradient orientation at
the 9 directions individually along the z-axis. And, the use of magnitude-weight-voting
presumes that the vehicles are located at the position X with high value of h,(x = X).
Most importantly, H(x = X) for a vehicle can be considered as a vector having different
bin values as shown in Figure 5. Sliding the window away from the vehicle region will
provide the vectors pointing to different directions.

H(z) = [h(x) ha(z) - ha(a)]" (7)

Figure 6 shows the density plots of the bivariate histograms generated by studying
779,015 HoG descriptors being extracted from a thermal traffic video with the frames
similar to the example frames in Figure 4. For each plot, 2 bins of the descriptors are
paired to vote on a 10-by-10 grid of equally spaced containers. For consistency, Bin 1
is selected for all histograms. According to the data distributions shown in the density
plots, every histogram has high value near to the origin because the road background is
frequently captured by the sliding window in the video. In a sufficient length of video being
considered, the road region is often exposed to the camera when the vehicles are moving.
Thus, the centroid (or known as the mean) of the sample descriptors can be represented
as a vector B pointing to a point that is close to the origin of an n-dimensional space.
Borrowing the idea from background subtraction [43], the mean vector B can be assumed
as the background component representing the road region. Meanwhile, the foreground
component, which shows the presence of the vehicles, can be represented with a vector
F(z) as shown in Equation (8).

F(z)=H(x) = B; B =[bi(z) baz) -+ ba(2)]" (8)

From Figure 6, it is also observed that there are linear dependencies between all the
9 bins. Thus, it can be assumed that the vector H(z) will generally change at a unique
direction when the window slides on the homography image that contains the vehicles.
Let @ denote the unique direction (which is also known as principal feature). The vector
projection p(x) of H(z) to @ shown in Equation (9) can be used to indicate the vehicle
location. Vehicles are likely to presence at the x values with high p(x). Since vector
B is considered as the background component, vehicles are only expected to appear at
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FIGURE 6. Density plot of bivariate histograms for different pairs of HoG’s bins
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the location with p(z) greater than a threshold ¢h. The threshold th is a projection of

the vector B to the direction w. To locate the vehicles with zero threshold value, an
alternative vector projection pr(z) shown in Equation (10) can be used instead.

plx) =w-H(z); w=[w wy- - wy 9)

prp(z) =w-H(z) —th=w-F(x); th=w-B (10)

The vector w can also be viewed as a direction, in which the sample descriptors show
the greatest variance, compared to all other possible directions that are orthonormal to
w. For an n-bin HoG, there are n — 1 vectors that are orthonormal to w. Determining the
direction w is a problem to be solved with PCA [44]. Consider a dataset Sp containing m
number of n-bin HoG descriptors extracted from a traffic video for certain time duration.
The dataset Sp can be organized into an n X m matrix. Each column of S is a single HoG
descriptor. Meanwhile, the number of the columns of Sp is determined by m number of the
descriptors being horizontally concatenated together. For example, if all the descriptors
in the earlier linear dependency study are used to form the matrix Sp, the values of n
and m will be 9 and 779,015 respectively. Since only the foreground component F(z) of
a descriptor H(x) is useful to locate the vehicles, it is important to center the matrix Sp
by subtracting every column of the matrix with the mean of the dataset. The mean of
the dataset is also recognized as the background B.

Let Sy denote the centered dataset of Sp. PCA suggests that there is an n-by-n matrix
@ transforming the dataset Sy to a new dataset Sy as shown in Equation (11). The
matrix () houses n rows of orthonormal basis vectors ¢,, in which one of the basis vectors
is . The matrix @ is also known as orthogonal matrix, in which Q' = Q7. Defined
in Equation (12) and Equation (13), let Cy and Cp denote the covariance matrices for
Sy and Sy respectively. Substituting Equation (11) into Equation (13), it is found that
Q" is a matrix diagonalizing the covariance matrix Cy- as shown in Equation (14), where
the matrix Cyy becomes a diagonal covariance matrix related to Cy. The orthonormal
basis vectors ¢; in the matrix () can be now considered as the principal components or
the eigenvectors. The diagonal values ); in the covariance matrix Cy are corresponding
to the variances of the dataset Sy distributing along the direction ¢;. In this context,
direction w is equal to the eigenvector ¢; with the corresponding variance \; = Apax as
shown in Equation (15). Since w is generated according to the samples extracted from
traffic videos, it can be updated or replaced from time to time during its operation to
keep track on the changes of the traffic scene.

q1
q2
Su=Q5; Q=| . (11)
dn
Cy,11 Cp12 " Cyin
1 Cy Cy 0 Cyon
Cy = =—SpSh=| "% ™= . (12)
n
Coml Con2 **° Cynn
N O - 0
Cp==8Sr=| . "2 (13)
n . . . :

Cu = QS STQT = QOvQ" (1)
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w = qi; )\max = mlax{)\z} (15)

3.4. Vehicle detection. The unit vector w can be considered as the reference descriptor
that best represents to the vehicle on a homography image. Consequently, the vector
projection pr(z) measures the similarity between the image region framed by the sliding
window and a vehicle image. The higher the value of pr(z) is, the greater the similarity is.
Meanwhile, lower pg(x) can be expected while sliding the window away from the vehicle
region. Thus, vehicles on the homography image can be located by searching the local
maximum points of pr(x). Assuming the length of a vehicle to be equal to the window
length, only the local maximum points with the minimum separations equivalent to the
window length are considered. To avoid getting the noisy local maximum points, pr(z)
can be smoothened with a simple mean filter.

4. Results for the Performance Tests. In this paper, there are 2 traffic videos recorded
at different hours of the day being studied. The first traffic video was captured with a
thermal camera in a sunny afternoon, when the environment is hot. Figure 7 shows the
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FIGURE 7. Vehicle detection in daytime
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vehicles being detected in one of the video frames. The locations of the detected vehicles
are marked with the marker @ in the video frame, homography images of the two lanes,
and the projection pr(z). It is observed that pr(z) is negative at the road region and a
hill appears at every vehicle region. In Lane 1, the detected vehicle at the back is a truck,
and the front of the truck is captured. The truck is detected due to the similar front
appearance with the common vehicles like the sedan car at the front of the lane. This
result demonstrates the importance of using vehicle front as the cue for vehicle detection.
Even though many types of vehicles can move on the road, their front appearances are
generally similar.

The direction w and background B in Figure 7 are generated according to all HoG
descriptors extracted in the video. Optimized with PCA, it is observed that the vehicle
detection process searches the vehicle at different direction w for different lanes. Bin 2
and Bin 7 are the two dominant bins of w for Lane 1. However, Bin 3 and Bin 7 dominate
the direction w for Lane 2. For each of the lanes, the background B points to a direction
similar to the direction w. It can be observed by considering their dominant bins. It is
mainly due to the linear dependencies between the bins as explained in Section 3.3 and
the background B is a vector pointing to the centroid of the distribution.

The second video was captured with the same thermal camera in the nighttime under a
dim-lighting scene at the same location. Figure 8 shows one of the video frames, where the
vehicles are detected at direction w. For each lane, similar directions of w are determined
with PCA for vehicle detection in both the daytime and nighttime. Similar to the daytime
vehicle detection, directions of w for nighttime vehicle detection are not the same for
different lanes.

Accuracy is often considered as a criterion to evaluate the performance of a vehicle
detection system. The accuracies for the daytime and nighttime operations are presented
in Table 1. In the first videos (recorded in daytime), there are 4999 vehicles recorded.
Among them, 4755 vehicles are detected, giving an accuracy of 95.12%. In the second
video (recorded in nighttime), 3809 vehicles are detected among 3993 recorded vehicles, in
which the accuracy is 95.39%. Thus, the PCA-optimized vehicle detection system can be
used in the outdoor environment, even if the illumination of the scene changes drastically.

TABLE 1. Vehicle detection accuracy in daytime and nighttime

. Number of
Total Vehicles Detected Vehicles Accuracy
Daytime 4999 4755 95.12%
Nighttime 3993 3809 95.39%

5. Conclusions. Thermal vision provides an alternative machine vision for Traffic Moni-
toring System (TMS) as it demonstrates good vehicle detection accuracy, especially under
night condition. In this paper, an unsupervised-learning-based vehicle detection algorithm
for traffic monitoring system under thermal vision is developed. Histogram of Oriented
Gradients (HoG) is a feature descriptor used to recognize the vehicles on the road. The
appearances of vehicles in the same lane are almost similar to each other under the ther-
mal vision, regardless of the colors of the vehicles and the illumination of the traffic scene.
The thermal vision effect results in similar HoG extracted for all the vehicles. Also, the
HoG extracted along the lane shows the existence of linear dependencies between all the
bins of the HoG descriptor. In this context, a single adaptive reference descriptor can be
used for vehicle detection for each lane, in which the reference descriptor is generated and
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FIGURE 8. Vehicle detection in nighttime

optimized with Principal Component Analysis (PCA). In both the daytime and night-
time, when the illuminations of the traffic scene are significantly different, the proposed
TMS framework has demonstrated more than 95% accuracy for vehicle detection under
the thermal vision.

At the moment, only the daytime and nighttime environments are being studied with
the proposed framework. Future works may focus on studying the proposed framework
for more weather conditions like raining and fog. In addition, the IPM module of the
framework may also be revised in the future with a different camera setup to enable wider
viewing scope for the TMS and make the TMS more economical.
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