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ABSTRACT. In this paper, we present a new approach for identification and recognition
of the perspective dynamic vision system via deterministic learning theory. The states
of the system are periodic or recurrent and only the outputs of the perspective system
are measurable. The approach consists of two phases: a training (learning) phase and a
test (recognition) phase. In the training phase, a Luenberger-type observer is first used
to estimate the unknown system states for the case that the motion parameters of the
system are constant, and the estimation error converges exponentially to zero. Then, a
radial basis function (RBF) neural network (NN) is used to approzimate the unknown
dynamics of the vision system when the inputs of the RBF NN are the system states,
which makes the RBF network satisfy the localized partial persistence of excitation (PE)
condition and the approximation error converges exponentially to a small neighborhood
around zero. The obtained knowledge of the approzimated vision system dynamics is
stored in the constant RBF network. A bank of RBF NN-based Luenberger-type non-
linear observers is constructed and served as dynamic representation for the training
patterns. In the test phase, when a test dynamical pattern is presented to the RBF NN-
based observers, a set of recognition errors is generated and the average L1 norms of the
errors will be taken as the similarity measure between the test and training dynamical
patterns. Therefore, the test dynamical patterns can be rapidly recognized from a set of
training dynamical patterns according to the smallest error principle. Finally, simulation
results are included to demonstrate the effectiveness of the proposed scheme.
Keywords: Dynamic vision, Luenberger-type observer, Deterministic learning, Similar-
ity definition, Dynamical pattern recognition

1. Introduction. Dynamic vision is an important and difficult problem for the reason
that the system states are dynamic rather than static. It includes determining the position
of a moving rigid body and/or any unknown parameters characterizing the motion and
shape of the body. The perspective dynamic system theory arises in dealing with such
a problem in the framework of dynamic system theory [1-13]. Consequently, the basic
problem of the perspective system theory refers to as the state estimation and parameter
estimation, and a specific class of algorithms for estimation problem can be formulated
as nonlinear observers design.

The observation problem has been studied at the aspects of perspective observability
condition and the observer design. A necessary and sufficient condition for the observabil-
ity has been given in [1] for which the motion parameters are constant. When the motion
parameters are time-varying, the observability condition has been mentioned in [14]. For
the observer design, some recently reported works are concerned with nonlinear observers
for estimating the unknown states of the perspective systems [2,6,15-21]. The problem
of estimating three-dimensional structure and motion from two-dimensional perspective
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observations can be solved with a nonlinear observer design. Dahl et al. [18] presented
structure estimation results by showing how a perspective system can be transformed into
two observer forms. These forms naturally lead to observers with simple error dynamics
systems. The simplicity of the error dynamics leads to a straightforward stability analysis.
Grave and Tang [21] presented a simple design of observers for the range identification
problem in perspective vision systems based on nonlinear contraction theory and syn-
chronization. In this methodology, intermediate variables, which may be not measurable,
are first introduced giving a simple observer. Analysis is then taken over to guarantee
exponential convergence of the observer states. In particular, a Luenberger-type observer
without transforming the perspective systems into implicit ones has been proposed in
[22] and the estimation error converges exponentially to zero under certain reasonable
assumptions. It is also possible to extend the nonlinear observer to the unknown param-
eters estimation, which can be used for simultaneous estimation of motion and structure
[14,23,24]. The parameter estimation algorithms provide insight into stability analysis
and into how the motion affects the estimation performance by using the persistence of
excitation (PE) condition [23,24]. However, in many cases, including the above mentioned
two references [23,24], the PE condition is hard to be satisfied and the convergency of the
parameter estimation error is difficult to be guaranteed. There still remains a problem
as how to identify the perspective vision system dynamics and utilize the various vision
system dynamics achieved before through state estimation and parameter estimation for
rapid recognition of new and similar patterns of the perspective dynamic vision system.
It can find a way to solve these problems in this paper. In vision problems, the dynamics
of an object moving in three dimensions are described via its image projected in a plane
by a perspective dynamical system. For applications such as robot control, surveillance
and medical imaging, the unknown depth of the three dimension object must be esti-
mated. For practical applications, such as image based visual servo, nonlinear observer
techniques can be used for depth and focal length observation. An autonomous under-
water vehicle can be implemented with a global exponential convergent reduced-order
observer design, which provides an estimate even if the observability condition is violated
for some time instance. The aforementioned observers assume the dynamics with all the
parameters known. The above mentioned cases together with those where the depth and
the structure are unknown can also be solved with the method proposed in this paper.
In this paper, we propose a new approach for identification and rapid recognition of
the perspective dynamic vision system undergoing periodic or recurrent motion based
on deterministic learning theory [25-27], which can be used to solve the problem of the
satisfaction of the PE condition. The states of the system are periodic or recurrent and
only the outputs of the perspective system are measurable. The approach consists of two
phases: a training (learning) phase and a test (recognition) phase. In the training phase,
a Luenberger-type observer is first used to estimate the states of the vision system for
the case that the motion parameters of the system are constant, and the estimation error
converges exponentially to zero. Then, a radial basis function (RBF) neural network (NN)
is used to approximate the unknown dynamics of the vision system when the inputs of
the NN are the system states, which makes the NN satisfy the localized PE condition and
the approximation error converges exponentially to a small neighborhood around zero.
The system dynamics will be learned and kept in constant RBF networks. A bank of
RBF NN-based Luenberger-type nonlinear observers is constructed and served as dynamic
representation of the training patterns. In the test phase, when a test dynamical pattern
is presented to the RBF NN-based observers, a set of recognition errors is generated and
the average L; norms of the errors will be taken as the similarity measure between the
test and training dynamical patterns. Therefore, the test dynamical patterns can be
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rapidly recognized from a set of training dynamical patterns according to the smallest
error principle.

The rest of the paper is organized as follows. In Section 2, some preliminary knowledge
about the dynamic vision system in time-invariant perspective type and its observation
is given. In Section 3, when the unknown system states are observed, the unknown vision
system dynamics can be approximated by RBF neural networks along the trajectories of
the estimated system states. The learned knowledge about the unknown dynamics of the
perspective vision system is stored in constant RBF networks. In Section 4, by using the
learned knowledge about the unknown dynamics of the perspective vision system which
is obtained in Section 3, the similarity definition and rapid recognition of the patterns of
the perspective dynamic vision system are presented. In Section 5, simulation study is
given to demonstrate the effectiveness of the proposed scheme. The conclusion is included
in Section 6.

2. Preliminaries. Consider a rigid object described by a set of feature points in the
three-dimentional vision system, and select [z, T2, z3]7 € R? to express the characteris-
tic point coordinate. The input and output model of the uniform rotation system [22]
(ignoring the mapping fault) can be described by:

(t) = Ax(t) +v(t), x(0)=xo

y(t) = h(Cx) (1)
O = [ ]

E=1[& - &némp) =Cz e R

where z(t) € R™ is the system state which is not measurable, z, is the initial state,
v(t) € R™ is the external input, y(t) € R™ is the perspective observation of the state
z(t), A € R™ C € RM™T)*" are matrices with m < n, h : R™*' — R™ is a nonlinear
function that produces the perspective observation with £ being the system state. The
vision system can be parameterized by the angular velocity vector w = [w; ws ws]”, and
the rotation part is

0 —Ws Wa
A= w3 0 — W1
— Wy w1 0

It is assumed that the system trajectory generated from the above dynamical vision
system, denoted as ¢.(t, o), is a periodic or recurrent trajectory. It is also assumed that
the camera is calibrated and the output y(#) can be measured, thus C' is known. To
simplify the system, we choose matrix C' = I3 (the identity matrix) and n = 3, m = 2,
and then the output can be turned into:

T
o(0) = 1(Cx) = ol = |2 2] )
T3 T3
Assumption 2.1. System (1) with assumptions as follows can be observed by a Luenberg-
er-type nonlinear observer [22].
(i) The system for observation is Lyapunov stable with periodic orbits.
(ii) The observation vector y(t) is a continuous and bounded function of t, that is

y() S C’m[o) OO) N Lg[ov OO)
(iii) Express the set o(A) of all eigenvalues of A as 0(A) = o0 (A)Uoy(A) where o_(A)
and oo(A) indicate the sets of eigenvalues with strictly negative real part and zero real
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part, respectively. Let W_, Wy C C™ denote the generalized eigenspace corresponding to
o (A) and o¢(A), respectively, and choose a basis matric Ey = [§ --- &] for Wy where
r:=dim(Wy). Then, there exist T > 0 and ¢ > 0 such that

T
/ EreA O B (y(t + 7)) x Bly(t +1))Ced Bydr > 11, Vb > 0 (3)
0

(iv) (C, A) is a detectable pair, the external input v(t) is never identical to zero.
(v) Select any positive-definite diagonal matriz P that can make the equation below
come into existence.
A*P+PA=0 (4)

Then a Luenberger-type nonlinear observer can be designed for the above system as
follows:

%f@(t) = Az(f) +v(t) + K(y(1), 2(t))[y(t) — M(CE())],

(0) =y € R" (5)
where Z(t) is the estimated state. Using System (1), one can easily obtain
y—h(Cz) = h(Cz) — h(Ck)

R ST T A
N Emt1 ngrl Em+1 ngrl
10 -+ 0 —y Ci(x — &)
1ol 0 -y Oy — &)
T Cnid | 2o :
00 -+ 1 —y, Crg1(x — )
~ & BC ©)
where B(y) is the matrix-valued function given by
B(y) :=[I,, —y] € R™m m =2 (7)

The estimation error of the system states p(t) := x(t) — Z(t) satisfies the differential

equation:
d 1 .
o) = {A - mmy(t),x(t)w(y(t)c)} < olt) ®)

where p(ty) = z(0) — £(0) € R™. To eliminate the singularity in (8), one can choose a
gain matrix K (y, z) of the form

K(y, &) = Cp1aP~'C*B’(y) (9)

The estimation error p has been proven to converge exponentially to zero in [22].

3. Learning from System Dynamics. When the system states are observed, it lacks
a universal way to learn the unknown system dynamics and reuse the learned knowledge
for another similar process. In this paper, we choose to learn the system dynamics by
using the RBF networks. When the above observation system satisfies the PE condition,
the learned knowledge will be kept in constant RBF networks.

The employed RBF network is with the following form:

fon =Y WiSi(Z) = WTS(Z)
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where Z € Q, C RY is the input vector, W = [IWy,---,Wx]" € R" is the weight vector,
S(Z) = [Si(|1Z = ), -+, Sn(|Z — un|])]" with S;(-) being the RBFs. The Gaussian
RBF is .
012 - ) = exp | TELLEZI G gp
(3
where p; is the center of the receptive field, n; is the width of the receptive field, and N
is the NN node number.

The objective is to identify the unknown vision system dynamics f(z) = Az along the
estimated system trajectory ¢.(t, %), which can be implemented in two steps. Firstly,
we employ the Luenberger-type observer (5) to obtain the unknown system states. After
observation, the observation error will satisfy ||2(t) — xz(¢)||< d, Vt > t', we denote it as
& — x which means that the estimate Z(t) converges to a sufficiently small neighborhood
of the state x(¢) in finite time. Secondly, we employ the following dynamical RBF network
for identification of the system dynamics f(z):

x = —a(x —2) + WTS(z) (10)

with x = [x1,. .., x3]T being the state vector of the dynamical RBF network, a = diag|a,
..., ay,] being a diagonal matrix with a; > 0 being design constants, Z = & being the esti-

R R . . T
mate of system states obtained from (5), and W''S(z) = [WITSH (z), Wy So(2), Wgsg(i)]

being localized RBF NNs used to identify (learn) the system dynamics. The NN weight
updating law is given by

W =-TI'S(2)t — ToW (11)
where I' =T7 > 0, 0 > 0 is a small value, and 7 := y — 7.
Thus the neural weights for each state can be expressed as follows:

Remark 3.1. Consider the adaptive system consisting of the nonlinear dynamical sys-
tem (1), the RBF network (10), and the NN weight updating law (11). For almost every
recurrent trajectory p(t, xo), with initial values W(0) = 0, we have: (i) all signals in the
adaptive system remain uniformly ultimately bounded; and (ii) locally accurate approxi-
mation for the unknown f(x) to the error level €* is obtained along the trajectory ¢¢(t, &)
when & — x. These results can be found in [28].

After learning, the entire RBF network W79 (%) can approximate the unknown system
dynamics along the estimated trajectory &(t) as:

f(@)=Ae =WTS(&) + ¢ (13)
where |€;| = |d + ¢| is small, and f(%) is the practical system dynamics. Moreover, choose
W = meanie, ;)W (t) (14)

where “mean” is the arithmetic mean, t, > t, > 0 represent a time segment after the
transient process, the system dynamics

f(@) =WTS(2) + e (15)
and )

(W'S(&) — f(z)| <€ (16)
In the following, we show that the knowledge obtained through deterministic learning

[25-27] can be reused in another state observation process and the estimation error can
still converge exponentially to zero.
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For state observation of the same nonlinear system (1), an RBF NN-based Luenberger-
type nonlinear observer is constructed as follows:

B(t) = WTS(z) + v(t) + K(y(t), #(t))[y(t) — h(C2(1))],
#(0) = & € R" (17)

where K (y(t),z(t)) is defined in (9). The vector of the estimation error for the system
states is defined as p(t) := x(t) — & (t). The following theorem indicates that identification
of the unknown f(z) can be achieved along the trajectory ¢.(t, o) when & — =.

SIS

Theorem 3.1. Consider the adaptive system consisting of the nonlinear dynamical system
(1), the Luenberger-type nonlinear observer (17), the gain matriz (9) and B(y) given by
(7). The following statements hold:

(1) The estimation error p(t) := x(t) — Z(t) satisfies the differential equation

d _
%p(t) = Ar —W'S(2) - P"'C*B*BCp
= —¢ — P7'C*B*BCp

p(0) € R" (18)

(i1) p(t) converges exponentially to zero, that is, there exist o« > 0, 8 > 0 such that
p(D)] = [l=(t) — 2(t)]|
< Be[|p(0)|I?, V>0 (19)

Proof: The statement (i) in Theorem 3.1 directly follows (1), (9), (16) and (17).
To prove statement (ii), first of all, we deduce several important facts from Assumption

2.1. Let m_ : C™ = W_, my : C™ — W, denote the matrix representations of the projection
operators along Wy, W_. Using the notation in Theorem 3.1, we define

p-(t) :==m_p(t), po(t) :=mop(t), V>0 (20)
Then since C™ = W_ & W, one has
p(t) = p-(t) + po(t) (21)

which leads to the inequality

/0 o))t = / o (t) + po(t)] Pt
<2 / ()Pt +2 / lolt) Pt (22)

Using (18) and (20), we can obtain

i(p*(t)Pp(t)) = =" P(p"(t) + p(t)) = 2p"(1)C* B"(y(1)) B(y (1)) Cp(?)

dt
< —2¢||Pp_(1)]] - 2 By(H)Co(t)]? (23)
Then, for any t > 0,
0 < " () Pp(t) < p*(0)Pp(0) — 2¢° / 1Po_(s)ds — 2 / 1B(y(s))Cpls)| Pds

Hence, one can get that

t
% / 1Pp_(s)llds < p*(0)Pp(0), ¥t >0
0
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2/: 1B(y(5))Cp(s)l|*ds < p"(0)Pp(0), V>0 (24)

Since P* = P > 0, then p*(0)Pp(0) < ||P|| ||p(0)||?>, one can obtain the inequality from
(24) that

[ o-tonar < L o [ o < O~ ooy o)

0 2¢* 4e*?

where v_ > 0 is a constant independent of p(0).
From [Lemma 3.2, [22]], one can obtain that

/OOO oo (®)I[*dt < %ol lp(0)]]* (26)

where vy > 0 is a constant independent of p(0).
It follows from (22), (25) and (26) that

/OOO o)) d < 2/0°° ||p_<t>||2dt+2/0°° oo )|

< 29 lp(0)[1* + 2%l p(0)

2 2
Yo "o
= 2v_ P+ --—] - 27
- (o1 + 52 ) = 32 (27)
where 21_0, > 0, 21—‘? > 0 are constants independent of p(0). This completes the proof of
Theorem 3.1. 0

4. Recognition Scheme of the Perspective Dynamic Vision System. In this sec-
tion, we consider the problem of representation, similarity definition and rapid recognition
of the patterns of the perspective dynamic vision system.

4.1. Representation using estimated states. Consider the dynamical pattern ¢, gen-
erated from the following dynamic vision system:

we(t) = Awc(t) +o(t),  2¢(0) = 20
ye(t) = h(Cuc) (28)

where z, € R" is the system state, and f¢(x;) = Az is a smooth but unknown function.
For representation of a dynamical pattern, complete information on both its estimated
pattern states and its underlying system dynamics is used. The pattern ¢ can be rep-
resented via deterministic learning by using the constant RBF network W7 S(Z), which
provides a locally accurate NN approximation of the underlying system dynamics f¢(z¢).
The knowledge represented in RBF network W7 S(Z) is valid in a local region €2, which
can be described as: for the pattern state trajectory ., there exist constants d¢, £* > 0
such that

dist(Z,p¢) < de = WS (i¢) — fe(we)| < € (29)

where Z¢(t) is the estimate of z¢(t), £* is the approximation error within €2, , which is of
small value.

Thus, a dynamical pattern is represented in a time-invariant and spatially distributed
manner by using information regarding both its estimated pattern states . and its un-
derlying system dynamics f¢(z.) along the estimated state trajectory z.(t).
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4.2. Similarity definition. Consider the dynamical pattern ¢ (as given by Equation
(28)), and another dynamical pattern o, generated from the following dynamical system:

#o(t) = Aze(t) +o(t), 2:(0) = zq
ys(t) = h(Cx) (30)

where x. € R™ is the system state, and f.(z.) = Az, is a smooth and unknown function.
Since the state variables are mostly unknown, we rely on the difference between corre-
sponding system dynamics within a local region {2.:

Qg = {z|dist(z, ;) < di}

where d. > 0 is a constant.
We have the following definitions for similarity of dynamical patterns.

Definition 4.1. Dynamical pattern ¢ is said to be similar to dynamical pattern ¢¢, if
the state of pattern ¢, stays within a neighborhood region of the state of pattern ¢, and
the difference between the corresponding system dynamics within a local region ), that is

Af =fc(x) = fe(@)lvoea, < € (31)

where €* > 0, which is the similarity measure, is small.

Definition 4.2. Dynamical pattern ¢ is said to be similar to dynamical pattern ¢¢, if
the state of pattern ¢, stays within a neighborhood region of the state of pattern ¢, and
the difference between the corresponding system dynamics within a local region ), that is

AfN = ‘WTS(i‘C) - fC(l‘)‘vmegc < e + g* (32)

where T.(t) is the estimate of x.(t), £* is the similarity measure and £ is the approzimation
error given in Equation (29), and is small.

4.3. Rapid recognition via Luenberger-type state observation. In this subsection,
we present how to achieve rapid recognition of dynamical patterns via Luenberger-type
state observation.

Consider a dynamical pattern o, (as given by Equation (30)) as a test dynamical
pattern. Consider again a set of training patterns gp’g, k=1,..., M, with the kth training

pattern cp’g generated from
#(1) = Axk() +o(t),  2k(0) =ty
yf(t) = h(Cx’Z) (33)

where x'g are the state variables of the kth training pattern cplg, ka (x’g) = Ax’g are unknown
smooth functions.

For rapid recognition of a test dynamical pattern ¢, from a set of training dynamical
patterns, a set of RBF NN-based Luenberger-type nonlinear observers is constructed as
follows:

d . — T ., . . N

() = WES(3e) + o(t) + K (ye(1), 2(#)) [y (1) = b (C2*(#)] (34)
where k = 1,..., M, the superscript (-)¥ denotes the component for the kth training
pattern, 2* is the state of the set of Luenberger-type nonlinear observers, Z. is the estimate

of x, the constant RBF network W' (%) is embedded to provide a locally accurate
approximation of system dynamics ka (x’g) = Ax’g of the training dynamical pattern
go’g. These observers are taken as dynamic representations of the corresponding training
dynamical patterns.
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When a test dynamical pattern ¢, is presented to one RBF network-based observer
(i.e., the dynamical model for training pattern ¢.), a state observation error system (i.e.,
recognition error system) is yielded as follows:

eF = Az, — WkTS(“%G) - Kk(yg(t)vj(t)) [yg(t) —h (Cik(t))]
= Az, — WF' S(i.) — P~'C*B*BC¢é (35)

where e* := z. — ¥ € R™ is the recognition error, and K*(y.(t),Z(t)) has the same
definition in (9). The following theorem describes how to achieve rapid recognition of a
test dynamical pattern.

k

Theorem 4.1. Consider the recognition error system (35) corresponding to the test pat-
tern o and the RBF NN-based Luenberger-type observer for the training pattern gp’g. If

the estimated state &% stays within a local region Q. along the orbit of the test pattern
©c, then the recognition error ||e*|| will be approzimately proportional to the difference
between system dynamics of test pattern ¢, and training pattern cplg.

Proof: From Equations (30) and (34), we have
¢F = Awg — Azk 4+ Axk — WH'S (#%) — PT'C*B*BCp (36)
Choose Lyapunov function V* = %ekTPek. Thus, its derivative satisfies:
VE = TP [Asg - WS (3) - PO B BCOE|
=~ "B BOe + TP [Ax — WH'S (i)

< —|IBIF [le*[* + "]l [|P1]

‘Axg — Ax’z + Ax'g —Wt's (2%) H

|PI[? (5 + €7)

1
< =S IIBIP [le"* +

- 2|| B
* *\ 2
|B]? iz IPIP (7 +€5)
< _7)\ma,x P
= T (P) (P)[[e"|]* + 2||B| |2
* *\ 2
IBI* e PP (e" +65) K
< 2L yky < —aVP+4 (37)
Amax (P) 2||B?
where
B
" Amax(P)
* %\ 2
PP )
2|| B||?
0 1P| (5 + )
N = — = Amax(P) ( I )
a 2[|B]]
Then, Equation (37) deduces
Amin(P)[[e*]|? < VE(E) < i+ (VF(0) — ) exp(—at) (38)

That is:
Ain(P)IEIIE < 11+ (VE(0) = ) exp(—at)
< n+ V¥(0)) exp(—at) (39)
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and

[1e¥]1* < [0+ V*(0) exp(—at)] /Awmin(P) (40)
Amax(P)IPNl(eR"+€47)
Amin(P) V2||B|]2
for all ¢ > T, the recognition error ||e|| will exponentially converge to a small neighbor-
hood around zero; that is, ||e¥|| < v, with the size of the neighborhood v approximately
proportional to ¢5* + ¢** and inversely proportional to ||B||. Thus, the recognition error
||e*|] will be approximately proportional to the difference between system dynamics of
test pattern ¢, and training pattern gp’g. We compute the average L; norm of the error

e*(t)

which implies that given v > , there exists a finite time 7', such that

1 t
||ek(t)||lzf/ ()| dr, k=1,...,n, t>T (41)
t—T

O

5. Simulation Study. In order to show the effectiveness of the Luenberger-type non-
linear observer for perspective linear system (1) and the scheme of the rapid dynamical
pattern recognition, some simulations are given in this section. Consider a simple vision
system described in a perspective linear form with the following data:

[ 0 1 —1 ] [ — sin(27t) ]
A= -1 0 0 |; V({t)=27| cos(2nt)
L1 0 0| Lo ]
The matrix C' = I3, A is Lyapunov stable. (C, A) is observable, hence it is detectable,

and all the assumptions in Assumption 2.1 are satisfied. We choose the form of the
observer as in [22] and the initial conditions are:

go=1[1 12", P!=diag(8.2,8.2,8.2) =823
where the free parameter P is an identity matrix with suitable gain, such that the Lya-
punov equation A*P + PA = 0 is satisfied.
In the training phase, we consider three training dynamical patterns generated from

system (1) which are denoted as @7, ¢7 and ¢}. They are started from initial states:
zp(0) = [112], 22(0) = [1 1 1] and 2}(0) = [1 1 3], respectively.

(a) system state x 1

o \
Ny 7 o I\ \
[~ - Wz N /
2 Ly LA V=N \\/ 2 I\ .
ARTEERVERN
/

Time(s)
(b) estimation error of system state x
T

P
—
— = P,

Time(s)

FIGURE 1. System state x = [x1, 29, 23]7 and its observation error p = [p1, p2, p3]7
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To identify the unknown dynamics f(x) = Az of the three training patterns, the
dynamical RBF network is employed. The RBF network W7S(z) is constructed in a
regular lattice, with nodes N = 240, the center y; evenly spaced on [—0.61 2] x [0.18 2.9] x
[0.8 3], and the width 7; = 0.5. The design parameters for Equations (10) and (11) are
a=1[10210;21010;2 2 10], T' = 10, 0 = 0.001. The initial weights W(O) =0.

Figure 1 shows the estimation of the system state x = [z x9 xg]T and its estimation
error using Luenberger-type nonlinear observer. Figure 2 shows the three-dimensional
trajectory tracking of system states between (z1, x5, x3) and the estimated (&1, 2o, £3). As
can be seen from Figure 3, the RBF network has learned the unknown system dynamics
along the estimated state trajectory z with a good effect. It can be seen from Figure 4 that

i) o -2 (@)

FIGURE 2. The three-dimensional trajectory tracking of system states be-
tween (z1, 9, x3) (“0”) and the estimated (Z1, &9, Z3)(“ — =)

0 20 40 60 80 100 120 140 160 180 200
Time(s)

2 T T T T

1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
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Time(s)

FIGURE 3. Learning of system dynamics: A# (“—), WTS(2)(“+”)
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function approximation errors are small. The convergence of the neural weights is shown
in Figures 5 to 8. Especially, Figures 6 to 8 demonstrate partial parameter convergence
of the neural weights. It is seen from these figures that weights of the neurons of RBF
networks whose centers are closed to the state & converge to constant values, while some
other weights (of whose neurons centered far away from the orbit) remain almost zero.
Then, the learned knowledge is kept in the constant RBF networks for the following rapid
recognition of system dynamical patterns.

In the test phase, consider a test pattern generated from (30) which is denoted as ¢,
with initial state: x.(0) = [1 1 2]. For rapid recognition of a test dynamical pattern from
training dynamical patterns, we construct a set of RBF network-based nonlinear observers
with suitably designed gain matrix. By taking the test pattern as input to the set of RBF
network-based observers, we choose the suitable gain matrix to find out which observer
yields the smallest recognition error. The corresponding training dynamical pattern is
considered to be most similar to the test pattern.

The recognition errors ||e¥(#)|| (k = 1,2, 3) are shown in Figures 9 to 11. The average
Ly norms of the recognition errors are shown in Figure 12. Hence the result of the rapid

“o 20 40 60 80 100
Time(s)

FIGURE 4. Function approximation errors Az — W7 S(&)

0.5 F

. . . .
0 20 40 60 80 100
Time(s)

FIGURE 5. Parameter convergence: ||[Wy|| (“—7), |[Wal| (), |[Ws]] (4 —

— )
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recognition can easily be achieved. It is obvious from Figure 12 that only training pattern
goé is similar to the test pattern ..

Remark 5.1. In comparison with other methods mentioned in [10,18,21-23], the proposed
scheme can not only estimate the unknown states of the perspective vision system, but
also identify and approrimate the unknown dynamics of the vision system by using RBF
networks. The obtained knowledge of the various vision system dynamics can be used for
rapid recognition of new and similar patterns of the perspective dynamic vision system,
which cannot be achieved in other methods. Moreover, in other methods the persistence of
excitation (PE) condition was adopted for the parameter estimation and stability analysis.
However, in many cases the PE condition is hard to be satisfied and the convergency of the
parameter estimation error is difficult to be guaranteed. By using the proposed scheme,
the PE condition can be satisfied and the approximation error converges exponentially to
a small neighborhood around zero.

6. Conclusion. This paper shows that the deterministic learning theory can be used to
learn the vision system dynamics, and has an excellent effect. For the perspective dynamic
vision systems with constant parameters and unknown system states, a Luenberger-type

T T T T
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F1GURE 9. Recognition error corresponding to training pattern goé
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FiGURE 10. Recognition error corresponding to training pattern gpg
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observer can be used to estimate the states. Through learning the underlying system dy-
namics from observation, we can keep the learned knowledge in the form of constant RBF
network to construct a set of RBF NN-based nonlinear observers as dynamic representa-
tion for the training patterns. When a test dynamical pattern is presented to the RBF
NN-based observers, a set of recognition errors are generated and taken as the similarity
measure between the test and training dynamical patterns. Then, rapid recognition of
the test patterns from corresponding training patterns can be achieved.
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