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Abstract. This paper focuses on multi-ary α-semantic resolution automated reason-
ing method based on multi-ary α-resolution principle for lattice-valued propositional logic
LP(X) with truth-value in lattice implication algebras. The definitions of the multi-ary
α-semantic resolution and multi-ary α-semantic resolution deduction in lattice-valued
propositional logic LP(X) are given, respectively, and the soundness and completeness
are gotten. An algorithm of multi-ary α-semantic resolution method is constructed; the
soundness and completeness of multi-ary α-semantic resolution algorithm are also ob-
tained. This work will provide a theoretical foundation for the more efficient resolution
based automated reasoning in lattice-valued logic.
Keywords: Lattice implication algebra, Lattice-valued propositional logic, Automated
reasoning, Multi-ary α-semantic resolution

1. Introduction. Resolution principle was introduced by Robinson [4] in 1965, and it
revolutionized the field of automated reasonings as mechanizable method for detecting
the unsatisfiability of a given set of formulae in classical first-order logic. Since then,
many refinements of resolution methods have been proposed by researchers to cut down
the search space and increase efficiency. Semantic resolution [5], introduced by Slagle in
1967, is one of the most important refinements of resolution principle in classical logic.
Semantic resolution method can improve the efficiency of reasoning by reducing the re-
dundant clauses with restraining the type of clauses and the order of literals participated
in resolution procedure. Subsequently, many scholars give various kinds of improved se-
mantic resolution methods [1], which can effectively improve the efficiency of automated
reasoning.

Non-classical logics have been widely used in computer science, AI and logic program-
ming. Automated theorem proving (or automated reasoning) based on non-classical logic
is also an active field of non-classic logic. Lattice-valued logic with truth-value in a lattice
implication algebra, an important non-classical logic, is also widely investigated due to the
fact that it can process effectively the incomparability. There have also been investigations
of resolution-based automated reasoning in lattice-valued logic with truth-value in lattice
implication algebras (LIAs) (e.g., among others, [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20]). Correspondingly, the resolution methods based on lattice-valued logic have some
new features, for example, (a) resolution is proceeded at a different truth-valued level α
chosen from the truth-valued field – LIA, in each resolution of α-resolution deduction,
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choosing 2 generalized literals, which contain constants and implicative connectives, to
take part in the resolution; so, the α-resolution is also called 2-ary α-resolution; (b) Com-
paring with the resolution based on classical logic, owing to the fact that the structure of
generalized literal in lattice-valued logic is very complex, it is not easy to directly judge
if two generalized literals are α-resolvent. Therefore, a 2-ary α-resolution principle for
a lattice-valued propositional logic LP(X) has been proposed in [7], which can be used
to prove whether a lattice-valued logical formula in LP(X) is false at a truth-value level
α (i.e., α-false) or not, and the theorems of soundness and completeness for the 2-ary
α-resolution principle were also proved. In addition, [8] extends the 2-ary α-resolution
principle for LP(X) to the corresponding lattice-valued first-order logic LF(X). With the
development of research, it has shown that 2-ary α-resolution automated reasoning based
on lattice-valued logic aiming at processing uncertain information with incomparability
is scientific and effective. However, there are some limitations in 2-ary α-resolution au-
tomated reasoning, for example, (1) 2-ary α-resolution can only process the resolution
of 2-ary generalized literals; (2) the number of resolution generalized literals is fixed at
2 in each resolution. The limitations of these two aspects make the 2-ary α-resolution
automated reasoning theory and applications are limited, and also directly affect the effi-
ciency of 2-ary α-resolution automated reasoning. To resolve these limitations, Xu et al.
[12] extend the 2-ary α-resolution in this lattice-valued logic into multi-ary α-resolution,
and the multi-ary α-resolution principle is introduced in lattice-valued propositional logic
LP(X). Multi-ary α-resolution principle provides a new framework for automated reason-
ing based on lattice-valued logic with truth-value in a LIA. However, it is only a principle
not a kind of method. There is no new automated reasoning method under the multi-ary
α-resolution principle. Therefore, it is necessary to develop the multi-ary α-resolution
methods under the framework of the multi-ary α-resolution principle in order to improve
the efficiency of multi-ary α-resolution automated reasoning.

The current paper focuses on a new refinement of multi-ary α-resolution, that is, multi-
ary α-semantic resolution, which is a new automated reasoning method based on multi-
ary α-resolution principle for lattice-valued logics with truth-value in lattice implication
algebras. In Section 2, we mainly list some basic concepts and some properties of lattice
implication algebras, lattice-valued propositional logic and lattice valued first order logic,
and they will be used in other sections. In Section 3, we mainly investigate the multi-
ary α-semantic resolution automated reasoning method based on LP(X) with truth-value
in a lattice implication algebra, study the soundness and completeness theorems on this
resolution method. In Section 4, we mainly investigate the multi-ary α-semantic resolution
automated reasoning algorithm based on LP(X), study the soundness and completeness
theorems on this algorithm. In Section 5, conclusions are given. This work will provide
a theoretical foundation for the more efficient resolution based automated reasoning in
lattice-valued logic.

2. Preliminaries. In the following, we will introduce some elementary concepts and
conclusions of a lattice-valued logic with truth-value in a lattice implication algebra. We
refer the readers to [13] for more details.

2.1. Lattice implication algebras.

Definition 2.1. [6] Let (L,∨,∧, O, I) be a bounded lattice with an order-reversing invo-
lution ′, the greatest element I and the smallest element O, and

→: L × L −→ L
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be a mapping. L = (L,∨,∧,′ ,→, O, I) is called a lattice implication algebra if the following
conditions hold for any x, y, z ∈ L:

(I1) x → (y → z) = y → (x → z);
(I2) x → x = I;
(I3) x → y = y′ → x′;
(I4) x → y = y → x = I implies x = y;
(I5) (x → y) → y = (y → x) → x;
(l1) (x ∨ y) → z = (x → z) ∧ (y → z);
(l2) (x ∧ y) → z = (x → z) ∨ (y → z).

In this paper, we denote L as a lattice implication algebra (L,∨,∧,′ ,→, O, I).
We list some basic properties of lattice implication algebras. It is useful to develop

these topics in other sections.

Example 2.1. Let L = {O, a, b, c, d, I}, the Hasse diagram of L be defined as Figure 1
and its implication operator → be defined as Table 1 and operator ′ be defined as Table 2.
Then L = (L,∨,∧,′ ,→, O, I) is a lattice implication algebra.
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Figure 1. Hasse diagram of L

Table 1. → of L

→ 0 a b c d 1

0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

Table 2. ′ of L

′

O I
a c
b d
c a
d b
I O

Example 2.2. (Lukasiewicz implication algebra on finite chain) Let Ln ={ai|i = 1, 2, · · · ,
n}, a1 ≤ a2 ≤ · · · ≤ an. For any 1 ≤ j, k ≤ n, define

aj ∨ ak = amax{j,k}, aj ∧ ak = amin{j,k},

(aj)
′ = an−j+1, aj → ak = amin{n−j+k,n}.

Then (Ln,∨,∧,′ ,→, a1, an) is a lattice implication algebra.

Theorem 2.1. [9] Let L be a lattice implication algebra. Then for any x, y, z ∈ L, the
following conclusions hold:

(1) if I → x = I, then x = I;
(2) I → x = x and x → O = x′;
(3) O → x = I and x → I = I;
(4) (x → y) → ((y → z) → (x → z)) = I;
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(5) (x → y) ∨ (y → x) = I;
(6) if x ≤ y, then x → z ≥ y → z and z → x ≤ z → y;
(7) x ≤ y if and only if x → y = I;
(8) (z → x) → (z → y) = (x ∧ z) → y = (x → z) → (x → y);
(9) x → (y ∨ z) = (y → z) → (x → z);
(10) x → (y → z) = (x ∨ y) → z if and only if x → (y → z) = x → z = y → z;
(11) z ≤ y → x if and only if y ≤ z → x.

2.2. Multi-ary α-resolution principle based on lattice-valued propositional logic
LP(X). In this section, we will list multi-ary α-resolution principle for lattice-valued log-
ics with truth-value in lattice implication algebras, and it will be used on Section 3.

Definition 2.2. [2] Let X be a set of propositional variables, T = L ∪ {′,→} be a type
with ar( ′) = 1, ar(→) = 2 and ar(α) = 0 for any α ∈ L. The propositional algebra of
the lattice-valued propositional calculus on the set X of propositional variables is the free
T -algebra on X denoted by LP(X).

Theorem 2.2. [3] LP(X) is the minimal set Y which satisfies:
(1) X ∪ L ⊆ Y ;
(2) if p, q ∈ Y , then p′, p → q ∈ Y.

Remark 2.1. In a lattice implication algebra L, for any α, β ∈ L,

α ∨ β = (α → β) → β,

α ∧ β = (α′ ∨ β′)′.

Hence, L and LP(X) can be looked at algebras with the same type T = L∪{′,→} and for
any p, q ∈ F ,

p ∨ q = (p → q) → q,

p ∧ q = (p′ ∨ q′)′.

Definition 2.3. [2] A valuation of LP(X) is a propositional algebra homomorphism v :
LP (X) → L.

Definition 2.4. [6] Let p ∈ LP (X), α ∈ L. If there exists a valuation v of LP(X) such
that v(p) � α, p is satisfiable by a truth-value level α, in short, α-satisfiable; if v(p) � α
for every valuation v, p is valid by the truth-value level α, in short, α-valid. If α = I,
then p is valid simply.

Definition 2.5. [9] Let p ∈ LP (X). If v(p) ≤ α for any valuation v of LP(X), p is
always false by the truth-valued level α, in short, α-false. If α = O, then p is false.

Definition 2.6. [12] (Multi-ary α-Resolution Principle) Let Ci = pi1 ∨ · · · ∨ pimi

be generalized clauses of LP(X), Hi = {pi1, · · · , pimi
} the set of all disjuncts occurring in

Ci, i = 1, 2, · · · ,m, α ∈ L. For any i ∈ {1, 2, · · · ,m}, if there exist generalized literals
xi ∈ Hi such that x1 ∧ x2 ∧ · · · ∧ xm ≤ α, then

C1(x1 = α) ∨ C2(x2 = α) ∨ · · · ∨ Cm(xm = α)

is called an m-ary α-resolvent of C1, C2, · · · , Cm, denoted by

Rp(m−α)(C1(x1), C2(x2), · · · , Cm(xm)),

x1, x2, · · · , xm are called an m-ary α-resolution group. The m-ary α-resolution group
x1, x2, · · · , xm, is denoted by (x1, x2, · · · , xm) − α.

Remark 2.2. In Definition 2.6, the symbol Ci(xi = α) is obtained by replacing xi with α
in the generalized clause Ci, i = 1, 2, · · · , m.
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Definition 2.7. [12] Let S = C1 ∧ C2 ∧ · · · ∧ Cm, where C1, C2, · · · , Cm are generalized
clauses in lattice-valued propositional logic LP(X) and α ∈ L. A sequence:

Φ1, Φ2, · · · , Φt

is called a multi-ary α-resolution deduction from S to Φt, if it satisfies the following
conditions:

(1) Φi ∈ {C1, C2, · · · , Cm} (i = 1, 2, · · · , t) or
(2) Φi is a multi-ary α-resolvent.

Theorem 2.3. [12] (Soundness) Suppose S = C1 ∧C2 ∧ · · · ∧Cm, where C1, C2, · · · , Cm

are generalized clauses in LP(X). {Φ1, Φ2, · · · , Φt} is a multi-ary α-resolution deduction
from S to Φt. If Φt ≤ α, then S ≤ α.

Theorem 2.4. [12] (Completeness) Suppose S = C1∧C2∧· · ·∧Cm, where C1, C2, · · ·, Cm

are generalized clauses in LP(X). If S ≤ α, then there exists a multi-ary α-resolution
deduction from S to α-empty clause.

In this paper, α is assumed to be always less than I.

3. Multi-Ary α-Semantic Resolution Method Based on LP(X). In this section,
the multi-ary α-semantic resolution method in lattice-valued propositional logic LP(X)
will be investigated based on the multi-ary α-resolution principle which has been listed in
Section 2. The soundness and completeness of this method are also given in this section.

Definition 3.1. Let v be a valuation in lattice-valued propositional logic LP(X), α ∈ L.
N,E1, · · · , Eq are generalized clauses sets in LP(X), and G is an order of generalized
literals occurring in these clauses. The finite sequence (N, E1, E2, · · · , Eq)(∗) is called a
multi-ary α-semantic clash w.r.t. v and G, if (∗) satisfy the following conditions:

(1) For any generalized clause C ∈ Ei, v(C) ≤ α, i = 1, 2, · · · , q;
(2) Let R0 = ∨Gj∈N(Gj), for any i = 1, 2, · · · , q, there exists a multi-ary α-resolution

formula Ri of Ni and Ei, where ϕ ̸= N1 ⊆ N , Ni = {R1} ∪ N∗
2 , N∗

2 ⊂ N . For any
i = 3, 4, · · · , q,

Ni = {Ri−1} ∪ N∗
i ,

N∗
i ⊂ N ∪ {R1, R2, · · · , Ri−2};

(3) For any generalized clause C ∈ Ei, the α-resolution generalized literals in C is the
leftmost generalized literals in C;

(4) v(Rq) ≤ α.
Rq is called multi-ary α-sematic resolvent of this clash w.r.c. v and G, N is called the

core and

E1, E2, · · · , Eq

are called α-electrons group.

Remark 3.1. (1) In this definition, for any generalized clause C, if the same disjunctive
terms of C occur in different places in C, then the leftmost disjunction should be reserved
and others should be deleted.

(2) In this definition, there exists G ∈ N such that G must be α-true, that is, v(G) � α.
In fact, if v(G) ≤ α for any G ∈ N , then v(R0) ≤ α, i.e., there is not a multi-ary α-
semantic clash. If the R0 is regarded as the multi-ary α-resolvent w.r.t. v and G, then the
multi-ary α-semantic resolvent w.r.t. v and G will be redundancy.

(3) For any disjunctive term g in Ei (i = 1, 2, · · · , q), v(g) ≤ α.
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(4) In a multi-ary α-semantic clash, for the ith multi-ary α-semantic clash, the resolvent
Ri−1 must occur in the Ni−1. However, the generalized clauses that resolve with Ri−1 may
appear in N, R1, · · · , Ri−2 besides Ei. Therefore,

Ni = {Ri−1} ∪ N∗
i ,

N∗
i ⊂ N ∪ {R1, R2, · · · , Ri−2}.

Example 3.1. In lattice-valued propositional logic L9P (X), let α = a6, generalized clause
set S = {C1, C2, C3, C4}, where

C1 = (x → y),

C2 = (x → z)′ ∨ (s → t),

C3 = (y → z)′ ∨ (y → a2),

C4 = (s → t)′ ∨ (s → q)

where a2 ∈ L9, x, y, z, s, t are propositional variables. Define a valuation v of L9P (X)
as follows:

v(x) = I, v(y) = a7, v(z) = a3, v(s) = v(t) = a5,

then v(C1) > α, v(C2) > α, v(C3) < α, v(C4) < α.
Let G : (s → t)′, (y → z)′, (x → z)′, x → y, y → a2, s → t be an order of generalized

literal in C1, C2, C2, C4.
As

N1 = {C2} ⊆ N = {C1, C2}, E1 = {C4},

we have R1 = (x → z)′ ∨ α.

N2 = {R1} ∪ N∗
2 = {R1, C1}, E2 = {C3},

we have

R2 = (y → a2) ∨ α,

where N∗
2 = {C1} ⊆ N = {C1, C2}.

As v(R2) ≤ α, (E, R1, R2) is a multi-ary α-semantic clash w.r.t v and G. (E1 = {C3},
E2 = {C4}) is α-electrons group and N = {C1, C2} is the α-core of this clash.

Remark 3.2. In Example 3.1, for the generalized literals y → z, there does not exist 2-
ary α-resolute group, so there is not a 2-ary α-semantic resolvent. However, there exists
3-ary α-semantic resolute group x → y, y → z, (x → z)′.

Example 3.2. Let L6P (X) be a lattice-valued propositional logic, whose truth in a lat-
tice implication algebra listed in Example 2.1. Let α = b, generalized clause set S =
{C1, C2, C3}, where

C1 = (x → y) ∨ (s → t),

C2 = (y → z) ∨ (w → t) ∨ (p → q),

C3 = (x → z)′ ∨ (s → q).

Define a valuation v of L6P (X) as follows:

v(x) = v(y) = v(s) = v(w) = v(p) = I,

v(z) = v(t) = v(q) = d,

then v(C1) > α, v(C2) = d ≤ α, v(C3) = b ≤ α.
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Let G : y → z, (x → z)′, x → y, s → t, w → t, p → q, s → q be an order of generalized
literal in C1, C2, C3 and R0 = {C1}. Since the leftmost generalized literals are y →
z, (x → z)′ in E1, E2, respectively, and

(x → y) ∧ (y → z) ∧ (x → z)′ ≤ α,

we have

R1(C1, C2, C3) = α ∨ (s → t) ∨ (w → t) ∨ (p → q) ∨ (s → q)

and

v(R1(N, E1, E2)) = v(α ∨ (s → t) ∨ (w → t) ∨ (p → q) ∨ (s → q)) = a6 ≤ α.

Therefore, ({C1}, {C2, C3}) is a multi-ary α-semantic semantic clash w.r.t. v and G,
{C2, C3} is an α-electron group and N = {C1} is an α-core of this clash, R1 is a multi-ary
α-semantic resolvent w.r.t. v and G.

Remark 3.3. We change the order of generalized literals in the generalized clause set
S, give another order G1 : y → z, w → t, s → q, (x → z)′, x → y, s → t, p → q, then
there will not exist a multi-ary α-semantic clash with respect to v and G1. This shows
that determination of the order on generalized literals is very important in the multi-ary
α-semantic clash.

Theorem 3.1. Let S = C1 ∧ C2 ∧ · · · ∧ Cm, where

C1, C2, · · · , Cm

are generalized clauses in lattice-valued propositional logic LP(X), v be a valuation in
LP(X) and α ∈ L, G is an order of generalized literals occurring in these clauses. If there
exists a multi-ary α-semantic clash w.r.t. v and G, Rs is a multi-ary α-semantic resolvent
of this clash, then

C1 ∧ C2 ∧ · · · ∧ Cm ≤ Rs.

Proof: The proof is straightforward from [12].

Definition 3.2. Let S = C1∧C2∧· · ·∧Cm, where C1, C2, · · · , Cm are generalized clauses
in lattice-valued propositional logic LP(X), v be a valuation in LP(X) and α ∈ L, G is an
order of generalized literals occurring in these clauses. A sequence:

Φ1, Φ2, · · · , Φt

is called a multi-ary α-semantic resolution deduction from S to Φt, if it satisfies the
following conditions:

(1) Φi ∈ {C1, C2, · · · , Cm} (i = 1, 2, · · · , t) or
(2) Φi is a multi-ary α-semantic resolvent w.r.t. v and G, where the core and electrons

of Φi are composed of Φj (j < i) or generalized clauses occurring in S.

Theorem 3.2. Let S = C1 ∧C2 ∧ · · · ∧Cm, where C1, C2, · · · , Cm are generalized clauses
in lattice-valued propositional logic LP(X), v be a valuation in LP(X) and α ∈ L, G is an
order of generalized literals occurring in these clauses. There exists an α-Gv resolution
deduction from S to Φt:

Φ1, Φ2, · · · , Φt,

and Φt is α-empty clause, then S ≤ α.

Proof: According to the soundness of the general form of α-resolution principle in
lattice-valued propositional logic LP(X), we can obtain the result easily.
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Theorem 3.3. (Condition Completeness) Let S = C1 ∧C2 ∧ · · · ∧Cm, where C1, C2,
· · · , Cm are generalized clauses in lattice-valued propositional logic LP(X), v be a valuation
in LP(X) and α ∈ L, G is an order of generalized literals occurring in these clauses. If
the following conditions hold:

(1) S ≤ α;
(2) S1 = {Ci|v(Ci) ≤ α} ≠ ∅ and S2 = {Cj|v(Cj) � α, i ∈ {1, 2, · · · ,m}} ̸= ∅;

then there exists a multi-ary α-semantic resolution deduction from S to α-empty clause.

Proof: The proof of this theorem includes the following two cases:
1). There exists α-false generalized clause Cp in S.
Assume Cp = g1 ∨ g2 ∨ · · · ∨ gu ≤ α, then

gt ≤ α, t = 1, 2, · · · , u, p ∈ {1, 2, · · · ,m}.
Since S2 ̸= ∅, then there exist j ∈ {1, 2, · · · ,m},

Cj = h1 ∨ h2 ∨ · · · ∨ hw

such that v(Cj) � α, then there exists at least one hy such that v(hy) � α for y ∈
{1, 2, · · · , w}. Since gt ∧ hy ≤ α for any t = 1, 2, · · · , u, y ∈ {1, 2, · · · , w}, then there
exists a multi-ary α-semantic clash

(N ′, E ′
1, · · · , E ′

w),

where N ′ = {Cj}, E ′
1 = · · · = E ′

w = {Cp}, the multi-ary α-resolvent R1
w of this clash

is obtained by replacing leftmost generalized literal of Cp occurring in G with α, then
R1

w ≤ α. At the same time, there exists the second multi-ary α-semantic clash(
N2, R1

w, · · · , R1
w

)
,

where N2 = {Cj}. In this clash, the multi-ary α-resolvent R2
w of this clash is obtained

by replacing leftmost generalized literal of R1
w occurring in G with α, then R2

w ≤ α.
According to this way, we have Ru

w ≤ α for the number of disjunctive term of Cp is finite.
Therefore, theorem holds under this situation.

2). There is no α-false generalized clause in S.
Let Hi be the set composed of all generalized literals occurring in Ci and |Hi| = wi,

where i = 1, 2, · · · ,m. Suppose K(S) is equal to the difference of the number of gener-
alized literals from that of generalized clauses occurring in S, i.e., K(S) =

∑m
i wi − m.

Two cases need to be discussed.
1◦ If K(S) = 0, S is composed of unit generalized clauses, i.e., each generalized clause

only containing one generalized literal. By condition (1), we have S ≤ α; therefore,
all generalized literal is a multi-ary α-resolution group, and so there is a multi-ary α-
semantic clash, the nuclear of this clash is {C1, C2, · · · , Cm} \ S1 and the electronic is S1,
and obviously, the multi-ary α-semantic resolvent is α-false. So Theorem 3.3 holds under
the situation K(S) = 0.

2◦ Suppose that the result holds for K(S) < n (n > 0). Now we need to prove the
result also holds for K(S) = n.

Let K(S) = n (n > 0), then S has at least one non-unit generalized clause in S. Let Ci

be a non-unit generalized clause in S and H be a set of all generalized literals occurring
in all non-unit generalized clauses.

(A) If there exists g ∈ H such that v(g) ≤ α, assume that Ci = C∗
i ∨ g, where Ci is a

nonempty generalized clause. We define the following generalized clause set as follows:

S3 = {S − Ci} ∪ {C∗
1}.

As S ≤ α, S3 ≤ α and K(S3) < n. By the induction hypothesis, there exists a multi-ary
α-semantic resolution deduction D2 from S3 to α-empty clause.
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For any multi-ary α-semantic clash(
N2, E2

1 , · · · , E2
s

)
in D2. Let R2

s be a multi-ary α-semantic resolvent of this clash. Three cases need to be
discussed.

(Case I:) If C∗
i is an element occurring in the core of each multi-ary α-senmatic clash(

N2, E2
1 , · · · , E2

s

)
of D2, then D2 can be amended as (

N2∗, E2
1 , · · · , E2

s

)
and its multi-ary α-semantic resolvent is equal to R2

s ∨ g, where N2∗ is obtained by
replacing C∗

i occurring in N2 with C∗
i ∨ g, and R2

s is the multi-ary α-semantic resolvent
of clash (N2, E2

1 , · · · , E2
s ).

(Case II:) If C∗
i is an element of electrons in the multi-ary α-senmatic clash (N2, E2

1 ,
· · · , E2

s ), then there exist j ∈ {1, 2, · · · , s} such that C∗
i ∈ E2

j , we replace C∗
i with Ci in

this clash. Let E2∗
j be the set obtained by replacing C∗

i occurring in E2
j with Ci, then we

obtain a new sequence (
N2, E2

1 , E
2
2 , · · · , E2

j−1, E
2∗
j , E2

j+1, · · · , E2
s

)
.

And the sequence is also a multi-ary α-semantic clash and the multi-ary α-semantic
resolvent is R2

s ∨ g.
(Case III:) The electronics of (N2, E2

1 , · · · , E2
s ) contains a multi-ary α-semantic re-

solvent R0, where R0 is generated by a multi-ary α-semantic clash containing C∗
i as an

element of electronic. Without loss of generality, we can assume R0 ∈ E2
j is a multi-ary

α-semantic resolvent, C∗
i is an element of electronic in the multi-ary α-semantic clash gen-

erating R0, where j ∈ {1, 2, · · · , s}. As the disjunctions, in multi-ary α-semantic resolvent
which composed of some disjunctions of non-α-resoluted generalized literals in non-unit
generated clauses of α-electronic group, are α-false under the valuation v in α-core of this
multi-ary α-semantic clash. The sequence(

N2, E2
1 , E

2
2 , · · · , E2

j−1, E
2∗
j , E2

j+1, · · · , E2
s

)
is also a multi-ary α-semantic clash and its multi-ary α-semantic resolvent is equal to
R2

s ∨ g, where E2∗
j is the set obtained by replacing R0 occurring in E2

j with R2
s ∨ g, and

R2
s is the multi-ary α-semantic resolvent of clash (N2, E2

1 , · · · , E2
s ).

Therefore, we can replace C∗
i occurring in any multi-ary α-semantic clash of D2 with

Ci and modifying the corresponding multi-ary α-semantic resolvent, we can obtain a
resolution deduction D21 from S to α-empty clause or g.

If D21 is a multi-ary α-semantic resolution deduction from S to α-empty clause, then
the conclusion holds.

If D21 is a multi-ary α-semantic resolution deduction from S to g, then we consider
clause set S5 = S ∪ {g}, S5 ≤ α and {g} is a unit α-false generalized clause. By Case I,
we can get a multi-ary α-semantic resolution deduction D22 from S5 to α-empty clause,
and connecting D21 and D22, we can get a multi-ary α-semantic resolution deduction D
from S to α-empty clause.

(B) For any g ∈ H such that v(g) � α. We have v(C) � α for any non-unit generalized
clause of S. As S1 ̸= ∅ and any generalized clause of S1 are all α-false under valuation v,
all generalized clauses in S1 are all unit generalized clauses. So

g1 ∧ g2 ∧ · · · ∧ gm ≤ α
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for any gi ∈ Hi, where i = 1, 2, · · · ,m. Then there exists a muti-ary α-semantic clash
whose α-cores are composed of the generalized clause in S\S1 and the α-electronics are
composed of the generalized clause in S1, the multi-ary α-semantic resolvent of this clash
is α-empty clause. Therefore, Theorem 3.3 is valid.

Theorem 3.4. Let S = C1 ∧C2 ∧ · · · ∧Cm, where C1, C2, · · · , Cm are generalized clauses
in lattice-valued propositional logic LnP (X), v be a valuation in LnP (X) and α ∈ L, G
is an order of generalized literals occurring in these clauses. If the following conditions
hold:

(1) S ≤ α;
(2) There exists a generalized clause Cj such that for any disjunctive term g in Cj,

v(g) > α, where j ∈ {1, 2, · · · ,m};
then there exists a multi-ary α-semantic resolution deduction from S to α-empty clause.

Proof: From condition (2), we have S2 ̸= ∅. Since S ≤ α and α ∈ Ln, then there exist

Cj ∈ {C1, C2, · · · , Cm}
such that v(Cj) ≤ α. Hence S1 ̸= ∅. It follows from Theorem 3.3 that Theorem 3.4 holds.

Example 3.3. Let

C1 = x → y,

C2 = (x → z)′ ∨ (s → t),

C3 = (y → z) ∨ (y → a2) ∨ (a5 → q),

C4 = (s → t)′,

C5 = (p → q)′

be five generalized clauses in lattice-valued propositional logic L9P (X) and S = C1 ∧C2 ∧
· · · ∧ C5, where a2, a5 ∈ L9, x, y, z, s, t, p, q are propositional variables. Let α = a6 and
v be a valuation in L9P (X) such that

v(x) = I, v(y) = a7, v(z) = a3,

v(s) = v(t) = v(p) = a5, v(q) = I,

then

v(C1) > α, v(C2) > α, v(C3) > α, v(C4) < α, v(C5) < α.

Let G be an order of generalized literals, where

G : (s → t)′, (p → q)′, y → z, (x → z)′, x → y, y → a2, s → t, a5 → q.

Then there exists the following multi-ary α-semantic resolution deduction ω from S to
α-empty clause:

(1) x → y

(2) (x → z)′ ∨ (s → t)

(3) (y → z) ∨ (y → a2) ∨ (a5 → q)

(4) (s → t)′

(5) (p → q)′

(6) (y → z) ∨ (y → a2) ∨ α by (3) (5)

(7) (y → a2) ∨ α by (1) (2) (4) (6)

(8) α-empty clause by (1) (2) (4) (7)

In fact, there are three multi-ary α-semantic clashes in ω:
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(1) N1
1 = {C3}, E1

1 = {C5}, the resolvent R1
1 of clash (N2

1 , E2
1) is

(y → z) ∨ (y → a2) ∨ α;

(2) N2
1 = {C1, C2}, E2

1 = {R1
1}, E2

2 = {C4}, the resolvent R2
2 of clash (N3

1 , E2
1 , E

2
2) is

(y → a2) ∨ α, where
R1

2 = (x → z)′ ∨ α,N1
1 =

{
R1

1

}
;

(3) N3
1 = {C1, C2}, E3

1 = {C4}, E3
2 = {R2

2}, the resolvent of clash (N3
1 , E3

1 , E
3
2) is

α-empty clause.

Remark 3.4. According to the 2-ary α-resolution principle, the generalized clause (8)
occurring in deduction ω does not have a 2-ary α-resolution pair. So there does not exist
a 2-ary α-semantic resolution deduction from S to α-empty clause.

Remark 3.5. From Example 3.3, the number of generalized literals taking part in α-
resolute in each muti-ary α-semantic clash is not fixed, and this reflects the multi-ary
α-semantic resolution deduction is dynamic. The dynamic of resolution deduction demon-
strates the high efficiency of multi-ary α-semantic resolution automated reasoning.

4. Realization for Multi-Ary α-Semantic Resolution Method Based on LP(X).
In this section, we will construct the algorithm for multi-ary α-semantic resolution meth-
ods. Without loss of generality, we assume that S = C1 ∧ C2 ∧ · · · ∧ Cm is a generalized
clause set in a lattice propositional logical system LP(X), where C1, C2, · · · , Cm are gen-
eralized clauses of LP(X). In this section, let α ∈ L and α is dual molecules. We pretreat
the generalized clause set before the specific algorithm is given, and the concrete steps
are as follows.

Step 1: If the sets S1, S2 in Theorem 3.3 are nonempty under the valuation v of LP(X),
go to Step 2; otherwise, the multi-ary α-semantic resolution methods are not suitable for
generalized clause set S.

Step 2: Check all generalized clauses occurring in S: If there exists generalized clause
Ck ≤ α, then pretreatment stops and S ≤ α. Otherwise, go to Step 3.

Step 3: Check any disjunctive term g occurring in S: If g ≤ α, then delete g, the
pretreatment stops.

Theorem 4.1. Let S = C1 ∧ C2 ∧ · · · ∧ Cm be a generalized clause set in LP(X) and
α ∈ L. S∗ is generalized clause set obtained by pretreating S, then S ≤ α if and only if
S∗ ≤ α.

Proof: Let S = C1 ∧ C2 ∧ · · · ∧ Cm ≤ α and v be valuation of lattice-valued propo-
sitional logic LP(X). If there exists a disjunctive term gi ∈ Ci (i ∈ {1, 2, · · · ,m}) such
that gi ≤ α. We transform S into a generalized disjunctive normal form. As S ≤ α,
very disjunctive term in generalized disjunctive normal forms is α-false. Therefore, the
generalized disjunctive norm forms obtained by deleting disjunctive term containing gi

are still α-false, so S∗ ≤ α.
Conversely, let S∗ = C∗

1 ∧ C∗
2 ∧ · · · ∧ C∗

m ≤ α, S∗ is a generalized clause set obtained
after pretreating S. Therefore, there exists C∗

i ∈ S∗ such that C∗
i is obtained by deleting

α-false disjunctive term g from Ci, that is, C∗
i ∨ g = Ci. Therefore,

S∗ = C∗
1 ∧ C∗

2 ∧ · · · ∧ C∗
i−1 ∧ Ci ∧ C∗

i+1 ∧ · · · ∧ C∗
m

= C∗
1 ∧ C∗

2 ∧ · · · ∧ C∗
i−1 ∧ (Ci ∨ g) ∧ C∗

i+1 ∧ · · · ∧ C∗
m

=
(
C∗

1 ∧ C∗
2 ∧ · · · ∧ C∗

i−1 ∧ C∗
i ∧ C∗

i+1 ∧ · · · ∧ C∗
m

)
∨

(
C∗

1 ∧ C∗
2 ∧ · · · ∧ C∗

i−1 ∧ g ∧ C∗
i+1 ∧ · · · ∧ C∗

m

)
≤ S∗ ∨

(
C∗

1 ∧ C∗
2 ∧ · · · ∧ C∗

i−1 ∧ g ∧ C∗
i+1 ∧ · · · ∧ C∗

m

)
≤ α.
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Now we give an algorithm for multi-ary α-semantic resolution methods based on LP(X).
In this algorithm, we assume that S is a generalized clause set after above pretreatment.
The resoluable generalized literals satisfy condition (3) in Definition 3.1.

Step 0: Determine a valuation v of generalized clause, an order G of generalized literals
in lattice-valued propositional logic LP(X) and set M = {C ∈ S|v(C) ≤ α}, N = {C ∈
S|v(C) � α}. If M,N ̸= ∅, turn to Step 1; otherwise algorithm stops and S cannot be
resolved by multi-ary α-semantic resolution methods.

Step 1: Set j = 1;
Step 2: Put A0 = ∅, B0 = N ;
Step 3: Set i = 0;
Step 4: If Ai contains an α-empty clause, then algorithm stops and S ≤ α; otherwise,

turn to the next step;
Step 5: If Bi = ∅, then turn to Step 9; otherwise, turn to the next step;
Step 6: Computing the multi-ary α-resolvent of S1, S2 satisfies condition (3) in Def-

inition 3.1, where S1 ⊆ M , S2 ⊆ B0 ∪ B1 ∪ · · · ∪ Bi−1; Denote the set of all multi-ary
α-resolvent as Wi+1. If Wi+1 contains an α-empty clause, then algorithm stops; otherwise,
turn to the next step;

Step 7: Let Ai+1 = {Φ ∈ Wi+1|v(Φ) ≤ α}, Bi+1 = {Φ ∈ Wi+1|v(Φ) � α}; If Ai+1 = ∅,
then turn to the next step; otherwise, turn to Step 9;

Step 8: Set i = i + 1, turn to Step 4;
Step 9: Put T = A0 ∪ A1 ∪ · · · ∪ Ai, M = M ∪ T ;
Step 10: Set j = j + 1;
Step 11: Computing the multi-ary α-resolvent of S1, S2 satisfies condition (3) in Defi-

nition 3.1, where S1 ⊆ T , S2 ⊆ N ; Denote the set of all multi-ary α-resolvent as R. If R
contains an α-empty clause, then algorithm stops; otherwise, turn to the next step;

Step 12: Let Ai+1 = {Φ ∈ R|v(Φ) ≤ α}; Bi+1 = {Φ ∈ R|v(Φ) � α}; Turn to Step 3.

Theorem 4.2. (Soundness) Let S = C1 ∧ C2 ∧ · · · ∧ Cm be a generalized clause set in
lattice-valued propositional logic LP(X) and α ∈ L, applying above algorithm on S. If the
algorithm terminates in Step 4, then S ≤ α.

Proof: If the algorithm terminates in Step 4, then there exists a multi-ary α-semantic
resolution deduction from S to α-empty clause. It follows from Theorem 3.2 that S ≤ α.

Theorem 4.3. (Completeness) Let S = C1 ∧ C2 ∧ · · · ∧ Cm be a generalized clause set
in lattice-valued propositional logic LP(X) and α ∈ L, applying above algorithm on S. If
S ≤ α, then the algorithm terminates Step 4.

Proof: If S contains α-empty clause, then the α-empty clause must be in M . When
i = 0, we can choose some generalized clauses in M and B0 (i.e., N), respectively, to
take part in the multi-ary α-resolution. The multi-ary α-resolvents and α-empty clauses
will be in W1. It follows from Step 7 that α-empty clauses will be in A1; therefore, the
algorithm will terminate Step 4.

If S does not contain α-empty clause, the algorithm cannot cycle infinitely. If the
algorithm loops infinitely to loop variable i, that is, Bi ̸= ∅, there is always multi-ary
α-resolvent which is not less than or not equal to α under the valuation v in the multi-
aryα-resolution deduction. As N is finite, this case is impossible. If the algorithm loops
infinitely to loop variable j, then there is no α-empty clause in the multi-ary α-resolution
deduction, which contradicts with S ≤ α. Therefore, the algorithm cannot loop infinitely,
and it must be terminated in Step 4.

Now, we can show the validity of the algorithm by an example.
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Example 4.1. Let

C1 = x → y,

C2 = (x → z)′ ∨ (s → t),

C3 = (y → z) ∨ (y → a2) ∨ (a5 → q),

C4 = (s → t)′,

C5 = (p → q)′

be five generalized clauses in lattice-valued propositional logic L9P (X) and S = C1 ∧C2 ∧
· · · ∧ C5, where a2, a5 ∈ L9 and x, y, z, s, t, p, q are propositional variables. Let α = a6

and v be a valuation in L9P (X) such that

v(x) = I, v(y) = a7, v(z) = a3,

v(s) = v(t) = v(p) = a5, v(q) = I,

then

v(C1) > α, v(C2) > α, v(C3) > α, v(C4) < α, v(C5) < α.

Let

G : (s → t)′, (p → q)′, y → z, (x → z)′, x → y, y → a2, s → t, a5 → q

be an order of generalized literals in S.

M = {C4, C5}
N = {C1, C2, C3}

j = 1 :A0 = ∅, B0 = N

W1 = {(x → z)′ ∨ α, (y → z) ∨ (y → a2) ∨ α}
A1 = {(y → z) ∨ (y → a2) ∨ α}
B1 = {(x → z)′ ∨ α}
T = {(y → z) ∨ (y → a2) ∨ α}
M = {C4, C5, (y → z) ∨ (y → a2) ∨ α}

j = 2 :R = {(y → a2) ∨ (s → t) ∨ α}
A0 = ∅
B0 = {(y → a2) ∨ (s → t) ∨ α}
W1 = {(y → a2) ∨ α}
A1 = {(y → a2) ∨ α}
B1 = ∅
T = {(y → a2) ∨ α}
M = {C4, C5, (y → z) ∨ (y → a2) ∨ α, (y → a2) ∨ α}

j = 3 :R = {(s → t) ∨ α}
A0 = ∅
B0 = {(s → t) ∨ α}
W1 = {α}
A1 = {α}
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From above Example 4.1, we can obtain three multi-ary α-semantic resolvents

(α, (y → a2) ∨ α, (y → z) ∨ (y → a2) ∨ α)

by applying multi-ary α-semantic resolution algorithm. The result is consistent with
Example 3.3 by using multi-ary α-semantic resolution method directly.

5. Conclusions. In the previous works [7, 8], α-resolution principle based on lattice-
valued logic with truth-value in a lattice implication algebra is carried out through finding
α-resolution pairs. As an α-resolution pair only includes two generalized literals, the ap-
plication of α-resolution principle is limited to a certain extent. By extending α-resolution
pairs to α-resolution groups, which can have more than two generalized literals (in fact, it
is general case in LP(X)), Xu et al. [12] proposed multi-ary α-resolution principle based
on the above lattice-valued logic.

In current paper, we mainly investigated multi-ary α-semantic resolution automated
reasoning method based on the multi-ary α-resolution principle for lattice-valued logic
with truth-value in a lattice implication algebra. The definitions of the multi-ary α-
semantic resolution and multi-ary α-semantic resolution deduction are given, and the
soundness and completeness are gotten. The multi-ary α-semantic resolution automated
reasoning algorithm along with soundness and completeness is constructed. This will
become the theoretical foundation for establishing the resolution method and technique
with the goal of applying to some practical fields such as expert system design, intelligent
robot design, and machine learning system design.
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