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ABSTRACT. In a service oriented environment, it is important to reduce the variability
in the completion times of jobs and the waiting times in a system. This paper investi-
gates unrelated parallel-machine scheduling problems with simultaneous considerations of
controllable and general position-dependent processing times. We examine two models of
resource allocation, namely the linear resource allocation model and the convex resource
allocation model. We aim to find the optimal resource allocations and the optimal job
sequence to minimize the cost function containing total absolute deviation of comple-
tion times and the resource allocation and the cost function containing the total absolute
deviation of waiting times and the resource allocation, respectively. If the number of ma-
chines is fixed, we show that all the considered problems can be solved in polynomial time.
Keywords: Scheduling, Unrelated parallel-machine, Controllable processing times, Gen-
eral position-dependent processing times

1. Introduction. Scheduling problems with controllable processing times have become
a popular topic among researchers in the past years. In many cases schedulers may control
the actual processing time of a job by varying the allocation of additional resource. Vari-
ants of such problems have found many applications in areas such as controlling the ingot
preheating process in metal production [12], part manufacturing [18], machine tooling
environment [24], assembly environment [5,6] and VLSI circuit design [25]. There are two
models of scheduling with resource allocations considered in the literature, namely the
linear resource allocation model and the convex resource allocation model [23]. Vickson
[26] is among the pioneers to provide such a problem with a linear resource allocation
model of processing times in terms of assigned amounts of resources. On the other hand,
for many resource allocation problems in physical or economic systems, they do not use
a linear resource consumption function, since it fails to reflect the law of diminishing
marginal returns. This law states that productivity increases at a decreasing rate with
the amount of resource allocated [23]. In order to model this, some studies on scheduling
problems with resource allocation assumed that the job processing time is a convex de-
creasing function of the amount of resource allocated to the processing of the job, such as
[3], [8], and [28]. Survey on this area of scheduling research is provided by Shabtay and
Steiner [23]. For new trends in scheduling with controllable processing time, we refer the
reader to Karimi-Nasab and Fatemi Ghomi [15], Li et al. [17], Niu et al. [19], Oron [20],
Rudek and Rudek [21,22], Yin et al. [30] and Yin et al. [31].
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In the literature of scheduling with controllable processing times, the single-machine
problems have received most of the attention. Nevertheless, the parallel-machine problems
are interesting and closer to the real problems industrials in practice. Comprehensive
survey of different scheduling problems concerning parallel-machine scheduling problems
with additional resources is presented by Edis et al. [9]. Recently, Yang et al. [27] consider
unrelated parallel-machine scheduling involving controllable processing times and rate-
modifying activities simultaneously. They assume that the actual processing time of a
job can be compressed by allocating a greater amount of a common resource to process
the job. The objective is to determine the optimal job compressions, the optimal positions
of the rate-modifying activities and the optimal schedule to minimize a total cost function
that depends on the total completion time and total job compressions. They proposed
an efficient polynomial time algorithm to solve the problem under study. Chang et al.
[7] further investigate unrelated parallel-machine scheduling problems with simultaneous
considerations of resource allocation and rate-modifying activities. They examine two
types of resource allocation. They aim to find the optimal resource allocations, the optimal
rate-modifying activity positions, and the optimal job sequence to minimize the cost
function containing the total completion time plus the resource allocation and the cost
function containing the total machine load plus the resource allocation, respectively. They
show that the problem under study can be formulated as an assignment problem and thus
can be solved in a polynomial time algorithm.

On the other hand, we often encounter environments in which the processing times of
jobs may be subject to change due to various possible changes of the positions of jobs in
a sequence. Two different models to position-dependent processing times in scheduling
settings have been introduced. If the job processing times increase with the number of
jobs already processed that results in decreasing of the production efficiency, this phe-
nomenon is called the position-dependent deteriorating effect; while if the job processing
times decrease with the number of jobs already processed that results in increasing of the
production efficiency, this phenomenon is called the learning effect. Scheduling problems
with position-dependent processing times have received increasing attention in the last
decade. For details on this area of research, we refer the reader to [1,2,13,14], among
others.

It is natural to study scheduling problems combining controllable and position-depend-
ent processing times. To the best of our knowledge, however, the scheduling problem with
simultaneous considerations of controllable and general position-dependent processing
times has never been investigated on an unrelated-parallel setting. The general position-
dependent processing times mean that the processing time of the job is not restricted
to any specific function dependent on its position in a sequence. Motivated in a service
oriented environment, it is important to reduce the variability in the completion times
of jobs and the waiting times in a system. In this paper, we consider unrelated-parallel
machine scheduling problems involving controllable and general position-dependent pro-
cessing times. The objective is to find the optimal resource allocations and the optimal
job sequence to minimize the cost function containing total absolute deviation of comple-
tion times (TADC) plus the resource allocation and the cost function containing the total
absolute deviation of waiting times (TADW) plus the resource allocation, respectively.
The TADC is a function for completion time variance of jobs. It is deemed desirable
that each job spends approximately the same time in the system as every other job. The
TADW is a measure of waiting time variation in scheduling. It is important in reducing
the variability in the waiting times. Obviously, the first objective function under consid-
eration is related to the variability in the completion times of jobs. This type of problems
has applications in many manufacturing or service environments whenever it is deemed
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desirable to provide jobs the same treatment. The second objective function under study
is related to the variability in the waiting times in a system. The supplier might be in-
terested in providing as much uniform quality of production or service as possible based
on the jobs’ waiting times in system [16].

The remainder of this paper is organized as follows. We formulate the problem under
study in Section 2. In Sections 3 and 4, we provide polynomial time solutions for solving
the proposed problems. We conclude the paper and suggest some topics for future research
in the last section.

2. Problem Description. In this section we first introduce the notations to be used
throughout the paper, followed by formulation of the problem.

n:  the number of jobs;

m:  the number of machines;

Jii jobg,3=12...,m

M;: machine i, 1 = 1,2,...,m;

n;:  the number of jobs assigned to process on machine M;, n = >""" n;, i =1,2,...,m;

S;: the set of jobs assigned to process on machine M;, i =1,2,...,m;

Dij:  the normal processing time of job .J; on machine M;, ¢ =1,2,...,m,j =1,2,...,n;

vi;:  the compression rate of job J; on machine M;, v;; > 0,7 = 1,2,...,m, j =
1,2,...,m;

U;;:  the upper bound on the amount of resource allocated to job .J; on machine M;,
1=1,2,....m,7=1,2,... n;

u;;:  the amount of resource allocated to job .J; on machine M;, ¢« = 1,2,...,m, j =
1,2,...,n;

f(r): a general position-dependent function, f(r) > 0,r=1,2,... n;

pijr: the actual processing time of job .J; scheduled in the rth position on machine M;,
r=1,2,....m,7=12,...,nand r=1,2,...,n;

Cjj:  the completion time of job J; on machine M;, t =1,2,...,m, j =1,2,...,n;

Wij: the waiting time of job .J; on machine M;, ¢ =1,2,...,m, j=1,2,...,n;

G the per unit time cost associated with the resource allocation to job J; on machine
M;,v=1,2,....m,5=12,...,n;

O(-): big O notation for the time complexity;

TADC": the total absolute differences in completion times;
TADW: the total absolute differences in waiting times.

Subscript
[ir]: the job scheduled in the rth position on machine M;, i = 1,2,...,m and r =
]_, 2, NN 7R
We are giving a set of n independent jobs J; (j = 1,2,...,n) to be processed on m
(m < n) unrelated parallel machines M; (i = 1,2,...,m). All the jobs are simultaneously

available at time zero and job preemption is not allowed. A machine can process at most
one job at a time and cannot stand idle until the last job assigned to it is finished. Let
S = (S1,52,...,Sn) be a schedule for the machines, where S; denotes the set of jobs
assigned to process on machine M;. Then S;NS; =0, Vi # j, and ", S; = { /1, ..., Jn}.

In this paper we study the unrelated parallel-machine scheduling with simultaneous
considerations of controllable and general position-dependent processing times. We con-
sider two models of resource allocation. In the first one that describes the linear resource
allocation, the actual processing time p;; of job .J; scheduled in position 7 on machine
M, is given by the following function:

Pijr = Dis f(r) —vijwij, i=1,2,...,m, j=12,...,nandr=1,2,...,n;, (1)
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where 0 < u;; < 1 < ﬁjv—f(r) The second model concerns a convex resource allocation
ij
and the actual processing time p;j, of job .J; scheduled in position r on machine M; is
given as follows:
_ k
Dijr = <”T() , i=1,2,....m,7=1,2,...,nand r =1,2,...,n,, (2)
ij

where u;; > 0 and k is a positive constant. It should be noted that in models (1) and
(2), f(r) > 0 is a general position-dependent function. We do not restrict f(r) to any
specific function. Clearly, the actual processing time of a job is not only a function of the
amount of resource allocated to the processing of the job, but also a function of the job’s
scheduled position.

In this study we aim to determine the optimal resource allocation and the optimal
schedule such that the corresponding value of the following objective functions is mini-
mized, respectively:

and =1 T%I
where I :1 ;1
TADC =} Z Z [Clan = Clasa| = D Z (r = 1)(ni = 7 + 1)ppin (5)
nd =1 lnt kn% } =1 r:lm }
respectively. e o

The considered problem, according to the three-field notation scheme «/3/~ [10], with
model (1) will be denoted as Rm/PR,lin/TADC and Rm/PR,lin/TADW, respec-
tively, and with model (2) as Rm/PR,con/TADC and Rm/PR,con/TADW, respec-
tively, where PR denotes “position-dependent and resource-dependent processing times”
and [in and con denote the linear resource allocation model and the convex resource
allocation model, respectively.

3. The Linear Resource Allocation Model. In this section we consider the linear
resource allocation model. We will show that both Rm/PR,lin/TADC and Rm/PR,
lin/T ADW problems can be solved in polynomial time.

3.1. Optimal solution for Rm /PR, lin/TADC. In this subsection we investigate
the Rm/PR,lin/TADC problem. If we substitute Cp) = Zlep[ir} into (5), then we
obtain that

i=1 r=1

= 3 [r = D) = 7+ Dpjiry + Grirguan]]

=1 r=1

=3 Z {lr =D =+ D)) (Bn f (r) = varugn)) + Grarugar §

i=1 r=1
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:E:Ei%mw +§:§: — Qi Ulir]) Ufir), (7)

=1 r=1 =1 r=1

where o, = (r—1)(n; —r+1),i=1,2,...,mand r =1,2,...,n,.

Lemma 3.1. Given a sequence, the optimal resource allocation for the Rm /PR, lin/T A-
DC' problem can be determined by

% Ufir), Zf G[ir] — Qi Ul < 0, (8)
0,  if Gpir) — vy > 0,

where “E}r} denotes the optimal resource allocation of a job scheduled in the rth position
on machine M;.

Proof: From (7), we know that

m n; m n;
f(uj, Si) = TADC + Z Z Gijui; = Z Z P f (1) + Z — QU zr]) U[ir]-
i=1 r=1 i=1 r=1 =1 r=1

Thus, for any job sequence, for minimizing the objective f(u;;,S;), the optimal resource
allocatlon of a job in a position with G — ;vj;7 < 0 should be its upper bound on
the amount of resource ], and the optimal resource allocation of a job in a position
with G;;1 — agrvpy) > 0 should be 0. Therefore, the optimal resource allocation of a job
scheduled in the rth position on machine M; is
. Upir), it Gpip) — vy <0,

0, if G[zr] — QrUlir) > 0.
This completes the proof of Lemma 3.1.

In what follows we prove that the Rm /PR, lin/T ADC problem can be optimally solved
in O(n™"?) time.

Theorem 3.1. The Rm/PR,lin/TADC problem can be solved in O(n™*?) time.

Proof: First, we denote by P(n,m) = (ny,ns,...,n,) the job-to-machine allocation
vector [29], where n; denotes the number of jobs assigned to process on machine M; and
n =Y n;. Next, let z;;, € {0,1} such that z;;, = 1 if job J; is scheduled in the rth
position on machine M; and z;;, = 0 otherwise. Then, we can minimize the objective (7)
via solving the following problem:

Minimize i i i )\ijrxijr (9)

j=1 i=1 r=1
m n;
subject to ZZJEW =1,7=12,...,n, (10)
i=1 r=1
agr=1i=12...,m r=12..n;, (11)

zij € {0,1}, i=1,2,...,m, j=1,2,...,n, r=1,2,...,n;, (12)

where
\or — { i Dij f (1), if Gij — arvy; > 0, (13)
T airDig (1) + (Gij — qirvij) g, if Gy — aipvyy < 0.
The constraints ensure that each job is scheduled exactly once and each position on
each machine is occupied by one job. Thus, the problem (9)-(12) can be viewed as an
assignment problem and, therefore, can be solved in O(n?) time [4].
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Moreover, for a given vector P(n,m) = (ni,ng,...,n,), the number of jobs n; on
machine M; may be 0,1,2,...,n, for : =1,2,...,m. Thus, if we get the numbers of jobs
on the first (m — 1) machines, the number of jobs assigned to the last machine is then
determined uniquely because n = Y1" | n;. As a result, the upper bound on the number of
allocation vectors P(n,m) is (n+1)™"!1. Therefore, we conclude that the time complexity
for the Rm /PR, lin/TADC problem is O(n™*%?). This completes the proof of Theorem
3.1.

Algorithm 3.1 gives a method to find the local optimal solution for the objective (7)
when vector P(n,m) = (ny,ng,...,ny) is known.

Algorithm 3.1.

Step 1. Calculate a;,, fori=1,2,...,mand r =1,2,...,n,.

Step 2. Calculate \;j, by using (13), for i = 1,2,...,m, j = 1,2,...,n and r =
1,2,...,n

Step 3. Solve the assignment problem (9)-(12) to determine the local optimal job se-
quence.

Step 4. Calculate the local optimal resources by using (8).

Step 5. Calculate the local optimal actual processing times by using (1).

Step 6. Calculate the corresponding value of the objective by using (7).

The global optimal solution is the one with the minimum value of the objective for all
possible allocation vectors P(n,m) = (ny,na, ..., Ny).

3.2. Optimal solution for Rm /PR, lin/TADW . Similar to the above analysis, if
we substitute Cp) = Zlep[ir} into (6), then we obtain that

g(uij, S;) = TADW + Z Z Gijuij

i=1 r=1

= ZZ = T)Plir] + Gzr ]
i=1 r=1

= Z Z {[r( (Pranf () = viirugin)) + Grarugar
=1 r=1

- Z Z wirp[zr + Z Z — Wirv zr}) Uir], (14)
i=1 r=1 i=1 r=1

where w;, = (n; —r)r,i=1,2,...,m and r = 1,2,...,n;. Following the analysis in the

previous subsection, we have the following results.

Lemma 3.2. Given a sequence, the optimal resource allocation for the Rm/PR,lin/T A-
DW problem can be determined by

* a[ir]a Zf G[zr} — Wir Vi) < 0;
{ 0,  if Glir) — wirvjir) > 0. (15)

Proof: The proof is similar to that of Lemma 3.1.
Theorem 3.2. The Rm/PR,lin/TADW problem can be solved in O(n™*?) time.

Proof: The proof is similar to that of Theorem 3.1.
Obviously, for a given vector P(n,m) = (ny,ng,...,n,), we can obtain the optimal
value of the objective (14) in a similar manner of Algorithm 3.1.
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4. The Convex Resource Allocation Model. In this section, we consider the convex
resource allocation model. First, Lemma 4.1 is a useful lemma which will be applied to
solving the considered problem.

Lemma 4.1 ([11]). Let there be two sequences of non-negative numbers z; and y;. The
sum of the products of the corresponding elements Y .| x;y; is the least if the sequences
are monotonic in the opposite sense.

4.1. Optimal solution for Rm /PR, con/TADC. In this subsection we consider the

Rm/PR,con/TADC problem. If we substitute C;,) = S Plir] into (5), then we obtain
that

m  n;

m  n; — k m  n;
f(uij, SZ) =TADC + ZZGUUU - Z Zair (p[zzj[f('r)> + ZZG[ZT]U[W}, (16)

i—1 r=1 i—1 r=1 ir] i=1 r=1

where o, = (r—1)(n; —r+1),i=1,2,...,mand r =1,2,... n,.

Lemma 4.2. Given a sequence, the optimal resource allocation for the Rm/PR, con/T A-
DC' problem can be determined by

* ok 22 _ _k_
vin=(32) " Guare), (7

wheret=1,2,....mandr =1,2,...,n;.

Proof: We take the first derivative of f(u;;,.S;) with respect to up,) and let it be equal
to 0. We obtain that

1
O[Z'rk>k_+l _ _k_
Ul = (Dpar) f (1)) F1,
] (G[ir]

where i = 1,2,...,m and r = 1,2,...,n;. Since the objective (16) is a convex function,
(17) provides necessary and sufficient conditions for optimality. This completes the proof
of Lemma 4.2.
By substituting (17) into (16), we obtain
f(uig, Si) = (/f’“;*]cl + kﬁ“) Z Zg[ir}¢ira (18)
=1 r=1
k 1
where ;) = (GlirPiir)) ** and ¢y = (i (f(r))F)**,i=1,2,...,mand r =1,2,...,n,.
In what follows we show that the Rm/PR,con/TADC problem can be solved in
O(n™logn) time.

Theorem 4.1. The Rm/PR, con/TADC problem can be solved in O(n™logn) time.

Proof: Clearly, (18) can be viewed as the scalar product of the ;) and ¢;, vectors,
for: = 1,2,...,m and r = 1,2,...,n;. By Lemma 4.1, the optimal job sequence is
obtained by matching the smallest ¢;, value to the job with the largest 0};; value, the
second smallest ¢;, value to the job with the second largest ;] value, and so on. The
time complexity of a sorting algorithm is O(nlogn). In addition, the upper bound on
the number of allocation vectors P(n,m) is (n + 1)™!. Therefore, we conclude that the
time complexity for the Rm/PR, con/T ADC problem is O(n"logn). This completes the
proof of Theorem 4.1.

For a given vector P(n,m) = (ny,ny,...,ny,), we can obtain the local optimal solution
by Algorithm 4.1
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Algorithm 4.1.

Step 1. Calculate «;,, fort=1,2,...,mand r =1,2,...,n;.

Step 2. Calculate the #;, and ¢y, fort=1,2,....mand r=1,2,...,n,.

Step 3. By Lemma 4.1, assign the job with the largest 6;, value to the position with the
smallest value of ¢;,, the job with the second largest 6;, with the second smallest
value of ¢;. and so on. Then, obtain the local optimal job sequence.

Step 4. Calculate the local optimal resources by using (17).

Step 5. Calculate the local optimal actual processing times by using (2).

Step 6. Calculate the corresponding value of the objective by using (18).

Clearly, the global optimal solution is the one with the minimum value of the objective
for all possible allocation vectors P(n,m) = (ny,ng, ..., Nmy)-

4.2. Optimal solution for Rm/PR,con/TADW . Performing a similar analysis of
the Rm/PR, con/TADC problem, we obtain that

g(uij, S;) = TADW+ZZG”u” ZZ ( ) ZZGW g (19)

=1 r=1 =1 r=1 =1 r=1
where w;, = (n; —r)r,i=1,2,...,mand r = 1,2,...,n,;. Based on the analysis in the
previous subsection, we have the following results.

Lemma 4.3. Given a sequence, the optimal resource allocation for the Rm/PR, con/T A-
DW problem can be determined by

1

% wirk kit _ _k
u“’“]:<G[.]> (Blar) f (r)) 741, (20)

where 1t =1,2,...,m and r =1,2,...,n;.

Proof: The proof is similar to that of Lemma 4.2.
Theorem 4.2. The Rm/PR,con/TADW problem can be solved in O(n™logn) time.

Proof: The proof is similar to that of Theorem 4.1.
Again, for a given vector P(n,m) = (ny,ng,...,ny), we can find the optimal value of
the objective (19) in a similar manner of Algorithm 4.1.

5. Conclusions. In this paper we investigated scheduling problems with simultaneous
considerations of controllable and general position-dependent processing times. The goal
of this study was to find the optimal resource allocation and the optimal job sequence
to minimize the objective functions. The linear and convex resource allocation models
are examined, respectively. Two objective functions are examined, namely the total cost
function consisted of TADC and the resource allocation and the total cost function con-
sisted of TADW and the resource allocation. If the number of machines is given, we
showed that all the studied problems are polynomially solvable. It is worthy of future
research to consider the problem with variable rate-modifying activity durations or multi-
ple rate-modifying activities, or in more complicated machine setting, or optimizing other
performance measures.
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