International Journal of Innovative
Computing, Information and Control ICIC International ©)2016 ISSN 1349-4198
Volume 12, Number 5, October 2016 pp. 1665-1677

APPROACH FOR MINING SOFTWARE EVOLUTIONARY
COMMUNITY OUTLIERS BASED ON COMMUNITY-MATCHING

GUuoYAN HuaNG!™2, JIALE WANG!H?*, X1A0JUAN CHEN'?, HAO WANG!?
AND JIADONG REN!?

LCollege of Information Science and Engineering
Yanshan University
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China
{ gyhuang; jdren }@ysu.edu.cn; *Corresponding author: jellywang92@163.com
xjchen1990@foxmail.com; 1324512861Q@qq.com

Received April 2016; revised August 2016

ABSTRACT. Study on detecting a tiny fraction of influential nodes in software evolution
is very significant for predicting software updating trends, facilitating software devel-
opment and version refactoring. We exploit recent advances in mining functions with
obvious change to better understand the feature of software evolution. In this paper, de-
tecting software evolutionary community outliers is our main work. Firstly, algorithm
Depth-First-Search Weight (DFS-Weight) is proposed to construct the Weighted Function
Dependency Network (WFDN). Secondly, we use key-nodes based approach Function Be-
longingness Matriz Generating (FBM-Gen) to detect the community structure of WFDN,
and then find the probability distribution of function nodes in each community. Thirdly,
community-matching based algorithm Software Evolutionary Community QOutliers Detec-
tion (SECO-Detection) is put forward. It generates software evolutionary community
outliers which evolve in a different way relative to other community members. Finally,
experimental results on both real and synthetic datasets show that the proposed approach
is highly effective in discovering interesting evolutionary community outliers.
Keywords: Complex software network, Software evolution, Community matching, Evo-
lutionary outliers

1. Introduction. With the increase of software system complexity, the overall structure
of the system is becoming more and more complicated, and the structure which is inher-
ited from former must be changed to meet the new application environment. However,
managing evolving, collaborative software system is an intricate and expensive process,
which still cannot ensure software reliability [1,2]. Hence, the research on software evolu-
tion is becoming significant and important especially [3,4]. To better analyze the software
evolution features, mining the key function outliers in evolution process is desirable. These
outliers significantly affect the quality of new software versions.

Using complex network analysis concepts can open many actionable avenues in soft-
ware evolution research and practice [5]. Given a complex network, one can unleash a
variety of techniques to discover software patterns and communities, detect abnormali-
ties and outliers in evolution process. As a consequence, research on software networks
reveals a significant community structure, with similar properties as observed for other
complex networks [6]. Authors have observed different phenomena that could promote
the emergence of community structure in software networks [7], and have discussed pos-
sible applications within software engineering and other sciences [3]. Otherwise, several
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approaches of network evolution have already been proposed to explain the emergence of
local structural modules (community) in different software networks [8].

By analyzing the communities of software evolution process, we can observe that these
communities evolve, often contracting, expanding, splitting or merging with each other.
Most of the functions within a community follow similar evolution trends and their average
defines the evolution trend of the community. However, evolutionary behavior of certain
functions is quite different from the average evolutionary behavior of its community. As
is well known, a function outlier can highly affect many mechanisms such as cascading,
spreading, and synchronizing in software structure [9,10]. Detecting and protecting these
functions can effectively identify hidden software defects or abnormalities. To better
reveal the trend of software evolution, it is crucial to find outliers evolve in a different
way relative to other community members in the software evolution process [11].

In recent years, many studies have concentrated on outlier detection. Chandola et al.
[12] and Hodge and Austin [13] provided extensive overview of outlier detection tech-
niques. Four main types of outliers studied in literature are point outliers, contextual
outliers, collective outliers and evolutionary outliers. Community Outliers Detection [14]
and Association-Based [15] methods have been proposed. However, they work on only
single snapshot data and hence cannot detect temporal changes. These methods cannot
be applied to mine outliers in different software versions. Traditional time series literature
[16] defined relative distance based on Hausdorff Distance associated with an individual
object across time, ignoring the community aspect completely. Recent work on outlier
detection on data streams has focused on distance-based local outliers [17] or on graph
outliers [18], while we focus on outliers in the community context. In general, existing
work ignores time or community information in outlier detection, and thus the outliers
detected traditionally are not evolutionary community outliers proposed in this paper.
The problem studied in this paper has connections with integrating community matching
and outlier detection algorithm [19] in the sense that we are trying to search evolutionary
community outliers in software evolution.

To address the issue, a novel approach based on community matching to mine software
evolutionary community outliers is proposed which considers both time and community
information. Designers or developers should pay more attention to software evolutionary
community outliers with high abnormity against other community members to enhance
the quality of new software versions.

The primary contributions of this paper can be summarized as follows.

e The key-nodes based approach is put forward to get function belongingness matrix,
and the notion of software evolutionary community outliers is proposed.

e Method which considers both time and community information is applied to detect
software evolutionary outliers. The algorithm SECO-Detection is presented to perform
community matching and evolutionary outlier detection simultaneously.

e The experiment on multiple real and synthetic datasets shows the interesting and
meaningful outliers by the algorithm SECO-Detection.

The rest of this paper is organized as follows. Section 2 contains some basic definitions.
Section 3 is a detailed description of our approach. The experimental results on real and
synthetic datasets are shown in Section 4. Conclusion and future work of our research are
mentioned in Section 5.

2. Problem Statement and Preliminaries. Software can be considered as a Function
Dependency Network (FDN) < N,E >, in which functions are represented by nodes
N and the collaborations or calling relationships between functions are abstracted as
directed edges E. Here, we will use X; and X, to denote the two versions of the software
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respectively. A Function Call Sequence (FCS) is an ordered list of functions, denoted as
{f1, f2, -+, fn} where f; € N and f; is a root node and f,, is leaf node in FDN. Here, we use
the frequency of FCSs to compute the weight. A Weighted Function Dependency Network
(WFDN) can be described as < N, E,WW >, W is an adjacency list storing the weight of
each directed edge in WEFDN. X; and X5 both can be constructed as WFDN. To mine
outliers in the evolutionary WFDN, following definitions are given to help formulizing the
problem.

Definition 2.1. Software Community. A community is a probabilistic collection of sim-
tlar objects, such that similarity between objects within the community is higher than the
similarity between objects in different communities.

Here, software community is a collection of similar functions which have close call
relationship. We will use K; and K5 to denote the number of communities in X; and X5.

Definition 2.2. Function Belongingness Matriz. FEach entry in the function belonging-
ness matriz corresponds to the probability with which a function n belongs to a community
c. The rows of the matriz correspond to functions while the columns correspond to com-
munities.

Let us denote the belongingness matrices for the N functions in X; and X, by P and
Q respectively. Thus, P € [0, 1]V*E1 Q € [0, 1]V* Kz, Zfill pni = 1 and Zf(:ll gni = 1 for
every function n.

Definition 2.3. Community Correspondence Matriz S. The match between two clus-
terings may be formulated as a matrixz called as the community correspondence matric
SK1><K2. AZSO, ZJKZQI Sij = 1 (Vl, T ;Kl)-

Here, we denote soft correspondence to match communities across software versions.
Soft correspondence means that a community of a given software version corresponds to
every community in another version with different matching degree.

Definition 2.4. Outlierness Matriz A. We denote the outlierness matriz by AN %2, q,;
represents the outlierness score for the (function, community) entry (n, j).

Definition 2.5. Software Evolutionary Community Outliers (SECO). A (function, com-
munity) pair (n, j) is an SECO if change in pn; to q,; is quite different from the average
change trend for community i in Xy and j in Xs. A function can be considered as an out-
lier if the change in its probability distribution with respect to community belongingness is
quite different from that of its X1 community members.

Given two different software versions X; and X, our problem is to estimate S and A
and thereby derive SECO with respect to the two software versions.

3. Detecting SECO in Software Evolution. In this section, we will present the ap-
proach of solving SECO-Detection problem in length. In Section 3.1, weighted function
dependency network is constructed by algorithm DFS-Weight. Key-nodes based method
FBM-Gen is used to generate function belongingness matrix in Section 3.2. Section 3.3 is
the formulation derivation of computing the community matching matrix and outlierness
score matrix respectively. In Section 3.4, we propose an algorithm called SECO-Detection
mining evolutionary community outlier from software evolution. The framework of solving
SECO-Detection problem is shown in Figure 1.
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Source code  Execution
trajectory SECO-

void main(){ || [tracking | cCalling or DFS-Weight FBM-Gen Function Detection
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' relationship matrix

FiGurE 1. Framework of detecting SECO

3.1. Constructing WFDN. Normally, functions and relationships of function calling
or dependency are extracted from software source code. Then we map them to function
dependency network. Finally, algorithm DFS-Weight is used to get the weight of each
edge, and the WFDN is constructed.

Algorithm 1 DFS-Weight for adding weight to FDN

Input: function dependency network (FDN)
Output: weighted function dependency network (WFDN)
Procedure: GetWFDN
run GetFCS-File to get FCS-File; //FCS-File is a data set storing all FCSs
for each directed edge < v,u > in FDN do
initialize W = 0;
for each FCS in DFS-File do
if FCS contains edge < v,u > then
W+
end if
end for
Wy = W/|FCS-File|;
end for
: return WEFDN;
Procedure: GetFCS-File
12: initialize FCS = rootnode;
13: if rootnode.child is not null then
14: for each child in set of rootnode.child do
15: FCS = FCS+child;
16: GetFCS-File (child); //call procedure GetFCS-File iteratively
17: end for
18: FCS-File.add(FCS);
19: end if
20: return FCS-File;

—_ =
—_ O

Algorithm DFS-Weight consists of two procedures. In procedure GetWFDN, GetFCS-
File is called to find all FCSs firstly (line 1). Then the weight of each edge is obtained
(line 2 to line 10) and a WFDN is constructed (line 11). Procedure GetFCS-File generates
all FCSs recursively from FDN based on DFS strategy. A data set FCS-File is used to
store all FCSs. Weight is computed in line 9, |FCS-File| is the number of all FCSs and
W is the number of FCSs that contains directed edge < v, u >.

3.2. Generating function belongingness matrix. The approach we proposed is based
on community matching, so we need construct function belongingness matrix firstly.
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We use the key-nodes based approach to divide the WFDN into communities and get
the function belongingness matrices. First of all, we rank all functions according to their
weights, and find top-k nodes as the community center. For community center functions,
the probability respect to their own community is 1. To the contrary, the probability
respect to other communities is 0. For other functions, we compute their probability by
their weight and the distance to center functions. Intuitively, the probability is high when
the relation position of a function node is close to center function or with high weight, the
probability is low when relation position of the function is far away from center functions
or with low weight. P and () generate respectively via this approach.

Algorithm 2 FBM-Gen for generating function dependency matrix

Input: weighted function dependency network (WFDN)
Output: function dependency matrix P(Q)
Procedure: GetFBM
run GetC to get C; //C' is a set of community center nodes
. for each node € C do
initialize Peurrent = 1, and Pothers = 0;
for each node n € WFDN/C do // WFDN/C is node in WFDN, but not in C'
if n is one step node then
set p as «;
else
set p as [3;
end if
end for
: end for
: return P(Q);
Procedure: GetC
13: for each node n € WFDN do

— = =
N = O

14: if n.weight is highest in the remaining nodes then
15: insert n to list L;

16: end if

17: end for

18: return top-k node as community center C' in L;

Algorithm FBM-Gen consists of two procedures. In procedure GetFBM, GetC is called
to find community center nodes firstly (line 1). Then probability with respect to com-
munities is obtained (line 2 to line 9) and a function belongingness matrix is constructed
(line 10). Procedure GetC generates all community center nodes from WFDN according
to their weight.

3.3. Deriving formulation for computing S and A. In this section, two formulations
will be derived. The formulations are iterative update rules for computing Community
Correspondence Matrix S and Outlierness Matrix A. Detailed derivation process is fol-
lowed.

To mine software evolutionary community outlier, first of all, we need to perform com-
munity matching between the two software versions to get the most similar communities,
which means we need to estimate a correspondence matrix S&1*2 such that the distance
(sum of entrywise squared differences) between the matrices Q and P x S is minimized.
However, such an approach will perform biased community matching if we take account
of the contribution from outlier entries too, when estimating the correspondence matrix
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S. For higher quality matching, one needs to ignore evolutionary outlier entries. Hence,
we need to incorporate the outlierness score matrix A into community matching. In the
remainder of this section, we will develop an integrated approach to compute S and A.

(qn] pn - S. ) denotes the squared error incurred in community matching and In ( )
Qnj

determines the outlier weight associated with the (n, j)th entry. Note that even if there
were no outliers, there would still be some matching error, because each object evolves
somewhat differently from the community averages. However, outliers that evolve very

differently from community averages are penalized using a higher a,; value. Using In (%)
nj

in the objective function allows us to smooth out outlierness values. The In function makes
sure that the weights for individual entry matching across software versions lie within a
small range. The more anomalous a particular (function, community) entry (n,j) is,

the higher will be the value of a,; and so In <ai) will be lower. This would mean that
nj

lower weight will be associated with the (n, j)th outlier entry when performing community
matching. While there could be other ways of formulating the objective function, we use
this particular formulation for ease of computation.

D) DY E Rk )

n=1 j=1
This formulation should be subject to the following conditions. Every entry s;; in S is
nonnegative, and Z]K:zl sij=1(W =1,--+,K;). Every entry a,; in A is between 0 and 1.
In addition, we would like to bound the total sum of all a,,; values to be within a maximum
level of outlierness we expect. Thus, we formulate the constraint as Zn 1 Z i1 Onj < [
As is shown in the formula, p is the total amount of outlierness. We will show later how
to estimate u in the description of Algorithm 3.

Analyzing the constraint of outlierness sum. If the total amount of outlierness is un-
bounded, one can simply mark all entries as outliers and then there will be no useful
community matching. This corresponds to the trivial solution of setting all A elements
to very high values. For the optimization (Equation (1)), we need to put in a constraint
based on the total amount of outlierness. Note that normal entries have small a,; values,
while outlier entries have large a,; values. Thus, we bound the total sum of all a,; values
to be within a maximum level of outlierness we expect in the software evolution. We
replace the formulation by an equality constraint to simplify computation. In fact, the
semantic meanings of outlierness scores will not change by this action because we only
care about the relative ranking of the scores. Essentially the equality claims that there is a
certain level of outlierness in the entire version. The objective function can be minimized
(local minimum) by alternately optimizing one of S and A while fixing the other. Next,
we will derive iterative update rules for the correspondence entry (s;;) and the outlierness
scores (an;). Using the method of Lagrangian multipliers, we can rewrite the problem as
follows. Here, 3; and v are Lagrangian variables.
N K,

min f = ZZ]n( >qm 55 +Z@[ZSU_1

n=1 j=1

+y

5]

n=1 j=1
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Taking the partial derivative of Equation (2) with respect to a particular a,; and setting
it to 0, we obtain the following.

25 g 5 =)
pj = ~— ~ . and = 3
j . ;; 3)

This gives us the update rule for a,; as follows.
— 32
(anj — P - --) p
—\2
Z 1= 12 o2 (s — Dl 57)

The numerator (qnj —ﬁ : s_j)) represents the squared error for the (n, j)th entry, which
represents the error incurred by matching the community detection results between two
versions on the nth function with respect to the jth community in ). The denominator
in Equation (4) represents the overall error across all the entries in matrix @, given
a particular S, which serves as a normalization factor. Intuitively, we assign a higher
outlierness score to functions and communities that incur higher community matching
error, while functions that are matched well with respect to certain communities across
two versions are considered normal and thus receive lower outlierness score.

Now, we will obtain the update rule for s;;. Taking partial derivative of f with respect
to s;5, we obtain the following.

3o (!

n'=1 Qn’ j

(4)

anj =

After some algebraic simplifications, we obtain the following update rule for s;;.
Zn/ 1 2In ( )pn i [Qn’j - ZkK:lLk;,gi pn’kskj] - 51
Zn’ 1 21n ( )pn "%

The intuition behind Equation (6) is as follows. Our goal is to compute s;; when other
elements of the matrix S are fixed. s;; involves matching of all functions with respect
to the ith column of P and the jth column of (). Contributions from each function n’

(6)

Sij =

are weighted by In (ﬁ) such that highly outlying functions contribute little to match-
n'j

ing. Fixing other elements of S, [Qn'j — Zf:ll,k# pn/kskj] represents the part of g, ; that

functions to be explained by py;s;;. f; and the denominator of Equation (6) are used to
make sure that 3. s;; = 1. f§js can now be computed easily using Equation (6) and the

constraints ZK sij =1(Vi=1,---,K;). This value of 5; can then be substituted back
in Equation (6) to obtain the update rule for s;;.

3.4. Algorithm SECO-detection. S captures the average evolution trend for the com-
munities in the two software versions. It also captures the permutation effect when match-
ing two communities. s;; represents the degree to which the community ¢ in version X;
contributes to the community j in version X,. Thus, s;; averages the evolution/match
across all the functions belonging to ¢ in X; and j in X5. If a community 7 splits into two
parts j; and jo, s;;, and s;;, will have non-zero values. Similar to this split case, s;; can
be used to represent community merges, community expansion, community shrinking and
a mix of such scenarios. Now, if there are evolutionary outliers, they will possess values
quite different from the average. However, an outlier will have most of its mass moving
from community 7 in X; to communities other than j in X,. Presence of such outliers
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can affect the computation of s;; itself because outliers can lead to significantly different
average values. In our formulation, a weight is given to a function n when computing
the community evolution values for community j. For normal (function, community),
an; should be low, while for outlying (function, community), a,; should be high. A is
designed to capture such evolutionary outlier.

Algorithm 3 SECO-Detection Algorithm

Input: function belongingness matrix P, ()
Output: Estimates of S and A
: Initialize p to 1;

1

e 1 1.

2: Initialize all s;; <= e and a,; < i

3: while NOT converged do

4: Update A using Equation (4) (Outlier Detection Step);

5: Update S using Equation (6) (Community Matching Step);
6

7

8

: end while

N Ko — —>\2
Zn’:lz]'l (qn’j’_pn’-'s-j’) .
)

T e ()
: Repeat Steps 2 to 6;

Algorithm SECO-Detection does initialization in line 1 and line 2. Perform line 3 to
line 6 iteratively until the change in the value of the objective function is less than a
threshold. In the first procedure, y is initialized to 1. Then, p is estimated as the ratio
of overall error to the maximum entry value, as shown in Line 7 of Algorithm 3. The
algorithm uses this estimated p for the second procedure. Since p increases compared
to the first procedure, a,; values are relatively large. This reduces the overfitting of S
to the outlier entries. Hence, matching for non-outlier entries improves, and so outlier
detection improves too. We initialize all a,; values to NLKQ, i.e., we begin by considering
all functions to be equally anomalous. We initialize all s;; to K%a i.e., we assume that each
community in X5 evolves equally from each of the communities in Xj.

4. Experiment and Analyses. In this section, we evaluate the results on real and
synthetic datasets. Firstly, we evaluate the results on real datasets using case studies.
We perform comprehensive analysis of functions to justify the top few outliers returned
by the proposed algorithm. Real dataset contains two open source software datasets
cflow and tar. Moreover, evolutionary outlier detection algorithms are quite difficult due
to lack of ground truth. We perform experiments on multiple synthetic datasets, each of
which simulates real scenarios. We will evaluate outlier detection accuracy of the proposed
algorithm based on outliers injected in synthetic datasets. Furthermore, comparison of the
proposed algorithm with other algorithms on computational complexity will be performed
in Section 4.3. Experiment is conducted on 64 bit Windows 7 ultimate, Xeon CPU E5-
2603 @1.80GHz, 8G Memory and Ubuntul4.04. We get the experiment data with the
help of pvtrace, CodeVize, Gephi and Graphviz.

We compare the proposed algorithm with three baseline methods: OneStage (1S),
TwoStage (2S) and NearestNeighbor (NN). As discussed, our method SECO-Detection is
named as EC'u because it integrates outlier detection and community matching, and p is
estimated using a two-pass procedure.

4.1. Results on real datasets. We perform experiments using two real datasets: cflow
and tar. We run algorithm SECO-Detection on two versions of cflow/tar to mine the
software evolutionary community outliers. The results of the cflow and tar are showed
below.
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FIGURE 2. Outlierness score of all functions on cflowl.2 and cflowl.3
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FIGURE 3. Outlierness score of all functions on tarl.25 and tarl.27
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Different color represents different community’s change between two software versions.
High outlierness score represents obvious change of that function.

Here, we discuss case studies obtained from these datasets.

Figure 2 shows that some function nodes present obvious anomaly against others in the
cflowl.2 and cflowl.3 evolution process, and top 5 function outliers are shown in Table

TABLE 1. Top 5 function outliers in cflow

Function number

Function name

Outlierness score

%)
42
43
53
38

maybe_parm_list
dirdcl
skip_to
parse_function_declaration
parse_variable_declaration

0.784
0.734
0.527
0.646
0.476
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TABLE 2. Top 5 function outliers in tar

Function number Function name Outlierness score
52 find_next_block 0.847
94 xattrs_acls_get 0.427
97 blocking_read 0.424
3 priv_set_remove_linkdir 0.395
44 timespec_cmp 0.371

1. Here, we select two software evolutionary community outliers returned by SECO-
Detection and discuss below. In cflowl.2, dirdcl belongs to community C41, but in
cflow1.3, the weight of function dirdecl becomes higher than before, because of this, dirdcl
evolves into a key node. From this evoluation, we can capture the knowledge that function
dirdcl becomes more important. To the contrary, parse_function_declaration in cflow1.2
is a key node, but in cflow1.3, the weight of function parse_function_declaration becomes
lower than before, because of this, parse_function_declaration evolves into an outlier
node. We can capture functions which become not that important as first software version.

Figure 3 shows that some function nodes present obvious anomaly against others in
the tarl.25 and tarl.27 evolution process, and top 5 function outliers are shown in Table
2. In tarl.25, find_next_block is a key node with high weight, and there are certain
functions belonging to its community, but these functions evolve to other community in
tarl.27. This phenomenon may reflect function find_next_block evolves to a discarded
function. Through the analysis, xattrs_acls_get and blocking_read are new functions that
emerged in tarl.27, and this suggests that these functions maybe relate to new application
environment.

4.2. Results on synthetic datasets. In order to compare the performance of our algo-
rithm with other similar algorithms, we generate a variety of synthetic datasets to capture
different spatial cases of evolution. For each dataset, there are two snapshots. In each
snapshot, we generate multiple clusters, each of which represents a community. Each
cluster is modeled using a 2D Gaussian distribution, and evolution is modeled by chang-
ing the means and the variances of the Gaussians. For each of the N points, we obtain
pnj and ¢n; as the probability with which the point can be generated from its cluster’s
Gaussian distribution. Using P and @), we obtain S as the community matching matrix
in absence of any outlierness. S captures evolution without the effect of outliers. Next,
we inject outliers as follows. First we set an outlierness factor ¥ and choose a random set
of objects, R with N x U objects.

The experiment uses a variety of different settings. For each setting, we perform 100
experiments and report the mean values. Threshold e for convergence fixes to 107¢. We
vary the number of objects as 1000, 5000 and 10000. The percentage of outliers injected
into the dataset varies as 1%, 5% and 10%. Using these settings, we compare the actual
outlier objects with the top outliers returned by various algorithms. The results of the
three baselines and the proposed method are shown in Table 3 and Table 4.

Note that the proposed algorithm (SECO-Detection) outperforms the others in finding
the top few outliers most precisely. The area under this curve (AUC) is a good measure
of the effectiveness of the algorithm in identifying the outliers. We report the AUC
values in Table 3. As the table shows, the proposed algorithm outperforms all the other
algorithms for all the settings by a wide margin (sometimes as high as 30% better than the
TwoStage method). Comparison with 1S will help us understand improvement in accuracy
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TABLE 3. SynContractExpand & SynMerge dataset AUC (NN, 2S, 1S, EC'p)

N | (%) SynContract Expand SynMerge

NN | 25 | 1S |ECu | NN | 2S5 | 1S | ECpu

1 656 | .935 | .961 | .959 | .746 | .779 | .829 | .927

1000 5 658 | .864 | .914 | .957 | .706 | .664 | .723 | .855
10 | .647|.783 | .837 | .957 | .667 | .621 | .660 | .808

1 619 | .946 | .969 | .959 | .740 | .779 | .815 | .925

5000 5 641 | .894 | .926 | .963 | .736 | .694 | .742 | .831
10 |.635|.776 | .834 | .964 | .702 | .645 | .679 | .795

1 606 | .948 | .972 | .963 | .745 | .783 | .816 | .929

10000 | 5 638 | .911 | .933 | .965 | .740 | .713 | .749 | .822
10 |.630|.771|.820 | .965 |.719|.666 | .700 | .799

TABLE 4. SynSplit & SynMix dataset AUC (NN, 2S, 1S, EC'u)

2000

A~

1000

5000

10000

Number of Nodes

SynSplit SynMix
N ¥ FRNT2S T 1S TECH|[NNT 25 [ 1S [ECH
1 7311 .928 1 .937 | 913 | .672 | .872 | .883 | .919
1000 5 683 (.796 | .890 | .923 | .641|.768 | .816 | .914
10 .6701.736 | .819 | 917 | .632|.729 | .770 | .915
1 697 .922 ] .946 | .920 | .668 | .882 | .896 | .920
5000 5 .688 | .811 | .917 | .926 | .653 | .830 | .858 | .922
10 676 |.766 | .840 | .932 | .637 | .788 | .831 | .916
1 6971 .943 | .957 | 922 | .676 | .887 |.904 | .921
10000 5 .688 | .815|.929 | .927 | .651 | .843 | .864 | .916
10 6741 .768 | .831 | .932 | .634 | .801 | .841 | .921
16000
14000 /x
__ 12000
z /
g 10000 == SynMix
= 8000 /
.g / SynMerge
3 6000
L% / —@—SynSplit
4000
—o— SynContractExpand

FIGURE 4. Running times (ms) for SECO-detection
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by improved estimation of p. Comparison with 2S will help us understand performing
outlier detection and community matching (2S) in an integrated way (SECO-Detection)
is better. NN performs commonly. This is because it does not consider evolution and
assumes that the set of nearest neighbors does not change across the snapshots. To the
contrast, the proposed algorithm detects outliers in the context of community evolution.
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Figure 4 shows the execution time of different evolution types as the objects number
increases. As Figure 4 shown, execution time rises steadily which indicates the algorithm
we proposed have a good scalability with increasing dataset size.

4.3. Comparison on computational complexity. Recall that N is the number of
objects (functions), K; and K3 are the number of communities in the two software versions
respectively. Sum of all error values in Equation (4) can be computed once for all a,; in
O(NK;K,) time. Then, computation of each a,; takes O(NK) time. S consists of K; K,
entries. When computing S, at every iteration, for each s;;, one needs to use Equation
(6) which is O(NK;) itself. Thus, computational complexity of the SECO-Detection
Algorithm is O (NKIQKQI) where [ is the number of iterations. As can be seen, the
running time is linear with respect to the number of objects. Usually the number of
communities is small, and thus the proposed method scales well to large data sets.

1S is the one procedure version of SECO-Detection (line 1 to 6 of Algorithm 3). Com-
putational complexity of the 1S Algorithm is O (NK12K2) without I iterations. Although
the complexity is reduced, the accuracy is much worse than SECO-Detection. Compu-
tational complexity of 2S is the same as SECO-Detection, 2S performs outlier detection
after community matching. The accuracy decreases especially as the number of objects
and outliers increases. For the algorithm NN, we find k-Nearest Neighbors set NN, (0)
for every object 0. An outlier entry (o, j) has a high score if belongingness of object o to
community j in the second snapshot is quite different from the average belongingness of
its X nearest neighbors to the same community j in X,. Computational complexity of
NN is O(NK K, K,I) where K is the object number of k-Nearest Neighbors set. It is not
quite different from SECO-Detection. However, the accuracy of NN is not satisfactory
when considering community evolution.

5. Conclusions and Future Work. In this paper, we focus on mining software evolu-
tionary community outliers in function dependency network. We propose a novel approach
based on community matching to conduct outlier detection. First we get functions and
the relationships of function calling or dependency from source code with the help of
some tools and map them to a weighted function dependency network. Next, key-nodes
based algorithm FBM-Gen is put forward for constructing function belongingness ma-
trix. Finally, algorithm SECO-Detection is designed to generate correspondence matrix
S and outlierness matrix A. Case study on versions of two open source software datasets
reveals some interesting and meaningful evolutionary outliers. Experiments on a series
of synthetic data show capability of the proposed algorithm is remarkable in detecting
various types of community evolution outliers. Although the proposed algorithm focuses
on two versions, it can detect trends and outliers, as versions can consist of short or long
intervals. Moreover, our future work includes extending the approach to software network
at class granularity and multiple versions of open source software.
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