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Abstract. The goal of this paper is trying to develop fusion methods for combining mul-
tiple Bayesian networks for modeling students’ learning bugs and skills. Seven methods,
maximum, minimum, mean, product, majority vote, sub-structure and support vecter ma-
chine, are proposed and evaluated based on educational assessment data. There are five
test data, and each has five different Bayesian networks designed by experts. Experiment
results show that the proposed fusion methods, maximum, minumum, mean, majority
vote, sub-structure and SVM can improve the classification rates but only sub-structure
and SVM methods can increase classification rates stably across all datasets. Using SVM
to combine the different experts judgments is a more proper method which outperforms
other methods.
Keywords: Bayesian network, Fusion, Support vector machine, Combining information,
Diagnostic testing

1. Introduction. Knowing student’s state of learning, for instance, lack of concepts,
proficiency level of skills, or presence of bugs, is benefit to teachers and remedies instruc-
tors planning instructions. Especially bugs are hard to diagnose with their uncertainty
and instability, meaning that the bugs may arise inconsistently between items even in a
single test.

Ketterlin-Geller and Yovanoff [1] compare three types of diagnostic assessment ap-
proaches, cognitive diagnostic assessment, skills analysis assessment, and error analysis
assessment. Skills analysis assessment involves aggregating student’s responses data to
determine skills mastery for personalized profiles and is usually used to identify students
who may be at risk for failure in the domain. Error analysis is the process of reviewing
student’s item responses to identify a pattern of misunderstanding and can be used to
provide information for designing remedial instructional program [1,2]. Ketterlin-Geller
and Yovanoff take some examples to describe only using one of the skills or error analysis
assessment is not enough, by integrating multiple information and the principles of cogni-
tive psychology with response analysis. Diagnostic assessments can be created to provide
detailed information into sustained errors that disturb student thinking [1].

One of the most popular diagnostic assessment methods of modeling uncertainty is
Bayesian networks [3-5] which consider unstable event occurrences using a probabilis-
tic approach. It is a powerful tool to diagnose, explain, and model student’s cognitive
skills and has been applied widely in educational assessment, including mixed-number
subtraction [3], physics problem solving [6,7], proportional reasoning [8], and diagnostic
student’s learning bugs and sub-skills [9,10]. Bayesian network is a probabilistic graphical
model that can represent the relationships between variables such as concepts and bugs
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by conditional probabilities. For example, given learning bugs, the network can be used
to compute the probabilities of the lack of corresponding sub-skills.

Nevertheless, the probabilities of bugs and skills occurrences are estimated according to
the architectures which are constructed by the domain experts. Different experts may con-
struct different Bayesian networks based on their own domain knowledge, judgment and
teaching experiences. These differences may let some nodes be estimated better in some
specific networks. Building a good Bayesian network that means all nodes estimations
are better than other networks is very difficult and also time-consuming.

Many studies [11,12] show that combining multiple information or fusing the outputs of
different classifiers may improve classification of complicated datasets. Accordingly, the
goal of this paper is trying to develop fusion methods for combining multiple Bayesian
networks and compare to the classification results of the proposed methods.

2. Bayesian Network. Bayesian networks are graphical models for probabilistic rela-
tionships among a set of domain variables. These graphical structures are used to illustrate
knowledge about comprising uncertainty.

Bayesian networks not only enable efficient uncertainty reasoning with hundreds of
variables, but also help humans understand the modeled domain better. It has been
applied to expert systems in many fields. A Bayesian network is composed by a directed
acyclic graph and a corresponding set of conditional probability distributions. The graph
consists of a set of nodes and directed arcs, where the nodes represent variables, and the
arcs signify direct dependence between the connected nodes. In addition to the graphical
structure, P = {p(x1 |π1), . . . , p(xn |πn) } is a set of conditional probability distributions
(CPDs) associated with each node in the network, where πi is the set of parents of
node Xi in D. According to conditional independence property in Bayesian network,
the joint probability distribution of all variables can be simplified and reduce complexity
of inference desired probabilistic information.

Figure 1. An example of a Bayesian network

Figure 1 is an example of a Bayesian network, X1 is parent node for X2, and it can be
represented by conditional probability P (X2|X1). X2 and X3 are parent nodes for X4, so
it can be represented by P (X4|X2, X3). And the joint probability can be shown as:

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3)P (X4|X2, X3) (1)

If X4 is observed, then Bayesian network can compute the posterior of X1 by using
Bayesian estimation theory. Thus, complex relationships between lots of variables can be
decomposed to smaller subsets multiplication of variables.

Mislevy et al. [13] described three key points of a Bayesian network framework that
can be used for proceeding probability-based inference in cognitive diagnosis. The first
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one is building Bayesian networks for a student model; the second is constructing tasks
that may let students demonstrate their performance in targeted knowledge and skill; the
third is creating Bayesian networks for evidence models that describe how to extract the
evidence from the task, and indicator to parent student-model variables. Different experts
may have their own view in student model that means different connection relationship
between variables, so this study tries to use multiple student models to diagnose students’
skills and bugs.

3. Multiple Classifiers Fusion Methods for Bayesian Networks. In [14], six fusion
methods were applied to combining Bayesian networks. Five of them, maximum, min-
imum, mean, product, and majority vote methods, were adopted from Duin’s multiple
classifiers fusion methods [15]. A brief description of those six methods is in the following.

Once a set of posterior probabilities {pij(x), i = 1, . . . ,m; j = 1, . . . , c} for m classifiers
and c classes is computed for test object x, they have to be combined into a new set qj(x)
that can be used for the final classification. In this study, it only has two classes, master
and non-master of the skills, and then the new confidence q(x) for class j is now computed
by

q(x) = qj(x) = rule (p1j(x), p2j(x), . . . , pmj(x)) (2)

There are two sets of rules: fixed fusions and trained fusions [15]. The following fixed
fusions are used for rules: maximum, minimum, mean, product, and majority vote
[11,16,17]. The maximum rule selects the network producing the highest posterior prob-
ability estimates. In contrast, the minimum rule selects the network having the lowest
probabilities. Mean rule averages the posterior probability thereby reducing estimation
errors.

According to the Bayesian theory, given networks measurements P (x|BNi) as the pos-
terior pi(x) = pi1(x), i = 1, . . . ,m, the node, x, should be assigned to 1 to provide the
interpretation of a posteriori probability by comparing with a threshold ε, in which 0.5 is
used in this study.

assign x→ 1 if q(x) = rule{P (x|BN1), P (x|BN2), . . . , P (x|BNm)} ≥ ε (3)

3.1. Maximum method.

assign x→ 1 if
Max {P (x|BN1), P (x|BN2), . . . , P (x|BNm)}

= arg max
i

{P (x|BN1), P (x|BN2), . . . , P (x|BNm)} ≥ ε
(4)

3.2. Minimum method.

assign x→ 1 if
Min {P (x|BN1), P (x|BN2), . . . , P (x|BNm)}

= arg min
i

{P (x|BN1), P (x|BN2), . . . , P (x|BNm)} ≥ ε
(5)

3.3. Mean method.

assign x→ 1 if

Mean {P (x|BN1), P (x|BN2), . . . , P (x|BNm)} =
1

m

(
m∑

i=1

P (x|BNi)

)
≥ ε

(6)

3.4. Product method.

assign x→ 1 if

Prod {P (x|BN1), P (x|BN2), . . . , P (x|BNm)} =

m∏
i=1

P (x|BNi)

m∏
i=1

P (x|BNi)+
m∏

i=1
(1−P (x|BNi))

≥ ε
(7)
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3.5. Majority vote method.

assign x→ 1 if

∆i =

{
1 P (x|BNi) ≥ ε
0 otherwise

, i = 1, 2, . . . ,m

Vote {P (x|BN1), P (x|BN2), . . . , P (x|BNm)} =
1

m

m∑
i=1

∆i ≥ 0.5

(8)

3.6. Sub-structure fusion method. As the first step of majority vote method, assign
posterior probability into master or non-master, and then ψ(∆i) will equal 1, if the ith
Bayesian network has the highest correct classification on node x. The sub-structure
fusion method selects the best Bayesian network diagnosis as the output for each node.

assign x→ 1 if

∆i =

{
1 P (x|BNi) ≥ ε
0 otherwise

, i = 1, 2, . . . ,m

M sub = [ψ(∆1), ψ(∆2), . . . , ψ(∆m)]T , ψ(∆i) ∈ {0, 1}
Sub {P (x|BN1), P (x|BN2), . . . , P (x|BNm)}

= [P (x|BN1), P (x|BN2), . . . , P (x|BNm)] ∗M sub = P (x|BNi) ≥ ε

(9)

In the experiment of [14], three Bayesian networks were generated based on one edu-
cational test data. The performances of single Bayesian network, and six fusion methods
were evaluated. The experimental result of [14] showed that maximum, mean, majority
vote, and sub-structure fusion methods outperformed single Bayesian network and sub-
structure fusion method has the best performance. This finding may be very limited and
restricted because of using only one data.

Moreover, sub-structure fusion method tended to select the best sub-structure among
different Bayesian networks, and then combined all the best sub-structure to form a
new Bayesian network, which is very similar to the feature selection method in machine
learning. Basically, the performance of sub-structure fusion method cannot exceed the
union of all Bayesian networks.

In this study, a new fusion method using support vector machine will be proposed and
the classification accuracy of this proposed fusion method is expected to exceed that of
the union of all Bayesian networks. In addition, more datasets and Bayesian networks are
used in experiments for obtaining a more robust result.

4. Multiple Bayesian Networks Fusion by Support Vector Machine. Support
vector machine (SVM) [18,19], a success learning algorithm commonly used for classi-
fication and regression issues, is motivated by designing a linear discriminate function
with the consideration of the margins. The following is a brief introduction of SVM [20].
Given a training dataset of labelled pairs (xi, yi), where xi ∈ ℜn, yi ∈ {+1,−1}, and
i = 1, 2, . . . , N , the goal of SVM is to find the separating hyperplane wTφ(x) that maxi-
mizes the margin b, and it requires the solution of the following optimization problem:

min
w,b,ξ

1

2
wTw + C

N∑
i=1

ξi

subject to yi

(
wTφ(xi) + b

)
≥ 1 − ξi and ξi ≥ 0

yi

(
wTφ(xi) + b

)
≥ 1 − ξi

(10)

where C and ξ are penalty parameter and slack variables, respectively, for the soft-margin
SVM. In this study, the posterior probability of bug, skill, and indicator nodes in every
single Bayesian network will be treated as the input xi of SVM and related expert’s
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classification of each bug, skill, and indicator nodes will be treated as the label yi. By
this way, a training dataset can be generated to train an SVM for classifying bug, skill,
or indicator. For this fusion method, we used a set of off-the-shelf classifiers taken from
Matlab toolbox PRTools [21].

5. Experiment Design. For evaluating the performance of the proposed SVM fusion
method, six educational assessment datasets about math are collected from the 6th and
7th grade students in Taiwan. The research developed computerized diagnostic assessment
by using multiple Bayesian Network [22-27] and the units of assessment include four
fundamental operations of fraction, cylinders and pyramid, girth of fan-shapes, algebra,
circular area, and linear equation with two variables.

Table 1 represents the abstract of six datasets including sample sizes, number of items,
bugs and skills. Every test was taken for forty-five minutes. Each dataset comprises
five Bayesian networks which were constructed by domain experts individually within
the same skills and bugs. Figure 2 to Figure 6 show different Bayesian networks of test
1. There are four layers designed in proposed Bayesian networks, including competence
indicator, sub-skill, bug, and item. The first layer is defined to targeted domain, and links
to the second layer, corresponded sub-skills. This structure implies mastery of competence
indicator is evaluated by mastery of sub-skills. The third layer is defined to correspond
bugs with sub-skills. And the fourth layer is tasks which are designed to detect students’
profiles.

Table 1. Summary of six tests

Sample size Number of items Number of bugs Number of skills
Test 1 140 20 13 10
Test 2 289 32 30 20
Test 3 260 29 14 13
Test 4 233 35 20 21
Test 5 256 39 32 25
Test 6 302 26 20 17

Table 2. Correct classification rate index

hhhhhhhhhhhhhhhhhhhExperts’ judgment

BN diagnostic
Master(1) Non-master(0)

Correct(1) f11 f10

Incorrect(0) f01 f00

Take “fundamental operations of fraction” unit as an example. Competence indicator
can be fraction addition and subtraction, and one of the sub-skills is fraction addition.
The most constantly occurring bug is “numerator plus numerator, and denominator plus
denominator”, so the corresponding task can be designed as “1/2 + 3/8”. Bayesian
network will diagnose students’ learning status according to their response of tasks. (More
error types detail can see [1], p.6.)

Evaluation index. To evaluate Bayesian network, which means how consistency of a
diagnostic of networks with that from experts, a 5 folds cross-validation method is used.
Four fifths of samples are chosen to be training data which are used to train the Bayesian
network and the others of samples are retained as the validation data to test the model.
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Figure 2. The first Bayesian networks of test 1

This cross-validation process is executed five times, with each of the one fifth subsamples
selected as the validation data. An average of five folds results is computed as the final re-
sult that means the evaluation index, correct classification rate. The correct classification
rates shown are the percentage agreement between the models diagnostic and experts’
judgment [9,10,28]. The computing formula is as follows:

The correct classification rate =
f11 + f00

N
N : the number of testing samples.
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Figure 3. The second Bayesian networks of test 1

6. Results. There are several skills and bugs in each Bayesian network, so the mean
of all skills and bugs results is used to represent the performance of networks. Table
3 represents the correct classification rates of each test cross network and the cells of
character shading in every row show the highest classification rates in each test. In test
1, the classification rates are greater than 90% across the five networks and the difference
between networks is smaller than 2%. The similar results can also be found in other tests.
These results imply experts may have some better opinions when modeling the Bayesian
networks, but classification rate is difficult to substantially exceed others’.

For more detail, the highest classification rate does not imply every node is higher than
that in other networks. For example, the Bayesian network 3 classification rate is the
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Figure 4. The third Bayesian networks of test 1

Table 3. Correct classification rates of single Bayesian networks

BN1 BN2 BN3 BN4 BN5
Test 1 91.30% 90.68% 91.77% 91.27% 91.02%
Test 2 95.53% 95.48% 95.40% 95.88% 95.86%
Test 3 88.35% 88.12% 88.63% 87.75% 89.06%
Test 4 92.94% 93.00% 93.21% 92.97% 92.91%
Test 5 91.42% 91.60% 91.59% 91.41% 91.16%
Test 6 92.79% 92.19% 92.06% 92.75% 92.60%
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Figure 5. The fourth Bayesian networks of test 1

highest result in test 1, but some nodes like skills in Bayesian network 1 are better than
Bayesian network 3. So that is why we need to combine different Bayesian networks’
classifications.

Table 4 represents the fusion method results of combining five networks classifications
and the cells of character shading mean the correct classification rates higher than single
Bayesian network result. Compared with the highest classification rates in each test, the
results of maximum and minimum fusion methods are improved in tests 4 and 5. The
results of vote method are increased in tests 3, 4, and 5. The results of mean method are
increased in tests 2, 3, 4, and 5. Only sub-structure and SVM methods results are higher
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Figure 6. The fifth Bayesian networks of test 1

than before in all tests. Moreover, SVM method’s results outperform sub-structure in
every test. Conversely, the results of product method are decreased in all tests.

7. Discussion. Bayesian networks are powerful and useful tools of diagnosing assessment
dataset of bugs and skills. Clearly defining the relations between bugs and skills, and
simultaneously diagnosing bugs and skills can improve the diagnostic results [9].

Combining multiple Bayesian networks information can increase the diagnosis consis-
tency [14]. The results of this study are conducted from multiple datasets and Bayesian
networks. Seven fusion methods were evaluated on six educational test data. Some fusion
methods can increase the classification rates but are not stable across different tests. Only
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Table 4. Classification rates of seven fusion methods

Max Min Product Vote Mean Sub-structure SVM
Test 1 90.68% 91.49% 88.08% 91.55% 91.71% 91.96% 92.76%
Test 2 95.02% 95.87% 95.36% 95.71% 96.01% 96.09% 97.45%
Test 3 87.78% 89.00% 80.07% 89.36% 89.39% 90.11% 90.63%
Test 4 93.25% 93.24% 90.19% 93.27% 93.31% 93.34% 93.93%
Test 5 91.61% 91.73% 81.02% 91.70% 91.73% 91.82% 92.43%
Test 6 92.44% 92.08% 87.68% 92.69% 92.68% 92.82% 92.98%

sub-structure fusion and SVM methods can promote classification rates stably, and SVM
method outperforms sub-structure method in all tests. The results show the robustness of
SVM [29] holds in combining educational test data classification. Thus, the methodology
proposed here may provide a suggestion to deal with different experts’ opinions.
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