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ABSTRACT. Cloud computing and big data era introduces a new opportunity for enter-
prises to commission their massive computing tasks to Internet data centers (IDC) with
relatively low cost. However, the explosive growth of massive data processing has imposed
a heavy burden on computation, storage, and communication in IDCs, which hence in-
curs considerable operational expenditure to data center providers. Data in the cloud
computing need to be transferred and processed with high efficiency and cost effectiveness
while meeting the demand on reliability. This paper formulates the cost minimization
of IDCs servers and renewable power problem to minimize time-averaged expected power
cost subject to the constraints of data queue stability and server allocation policy with
the comsideration of renewable energy utilization. We design an algorithm leveraging the
Lyapunov optimization technique to approzimately solve the CMISRP problem. All data
are originally from Ordos Uni-Cloud Technology Co., Ltd. to simulate the proposed al-
gorithm. Numerical results show that our algorithm can reduce total energy cost while
guaranteeing QoS, queue stability and server allocation policy.

Keywords: Internet data center, CMISRP, Data queue stability, Lyapunov optimiza-
tion, Cost minimization

1. Introduction. The 21st century announced the arrival of cloud computing. With the
growing amount of industry data, common enterprise computer rooms have been no longer
suitable for the needs of high-tech development, so large and medium-sized Internet data
centers (IDC) have sprung up like mushrooms after rain. In research field, topics about
IDC are inevitably brushing professors’ and professionals’ brains. S. Zaman and D. Grosu
[1] and P. Bonacquisto et al. [2] focused on fixed power price scenarios and J. Zhao et
al. [3] extended their works to environment with geo-distributed IDCs and time-varying
power price. However, the global problem faced by IDCs’ operators is a high cost due to
the large power consumption. IDCs’ energy consumption grew by 56% from 2005 to 2010
[4], and data centre dynamics recently revealed that data center power usage increased
by 63% in 2012 [5]. Therefore, the need for optimizing power management is urgent to
save the energy cost in IDCs all over the world.

Numerous professionals facing IDCs’” power cost control have designed a large number
of problem models and algorithms. Z. Zhou et al. put forward a diffused algorithm in
order to make autonomous decisions on winning bid victory and workload management
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by combining techniques in the Gribb’s sample method and the multipliers’ alternating
direction method of multipliers [6]. They concluded that incentive mechanism consist
of a win-win mechanism for the geo-distributed cloud and the smart grid. L. Rao et al.
researched the minimization of the total electricity cost under different electricity markets
while guaranteeing quality of service geared to the various and changing electricity price
affected by multiple locations and time [7]. They formulated the question as a constrained
mixed-integer programming and figured out a valid solution. Evaluating real electricity
price data from multiple IDC locations attested the efficiency and efficacy of their algo-
rithm. P. Lama and X. Zhou proposed a new system, PERFUME, which synchronously
guaranteed power and performance targets with flexible tradeoffs and service differenti-
ation among co-hosted applications while assuring control accuracy and system stability
8].

Though the above models considered the energy consumption of servers, they overlooked
the IDCs’ renewable resource utilization. Renewable energy is generally defined as energy
collected from resources which are naturally replenished on a human timescale, such as
sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy often provides
energy in four important areas: electricity generation, air and water heating/cooling,
transportation, and rural (off-grid) energy services. Based on 2014 report [9], the renew-
able contributed 19% to humans’ global energy consumption and 22% to their generation
of electricity in 2012 and 2013, respectively.

In recent years, renewable energy has stepped into researchers’ fields of vision. Green-
Slot, a scheduler proposed by I. Goiri et al. [10], was used to process parallel batch jobs
in a data center powered by a photovoltaic solar and the electrical grid (as a backup).
Compared to conventional schedulers, GreenSlot can make solar energy consumption as-
cending and energy cost descending. C. Li et al. modeled and evaluated data centers
powered by intermittent renewable energy. Using real-world data center and renewable
energy source records, they demonstrated that designing sustainable high performance
data centers needed two crucial metrics, renewable power utilization and load tuning
frequency [11]. The variable and intermittent characteristics of many renewable energy
sources made them and electric grid challenging, which limited the entrance of renew-
able energy. A. Krioukov et al. proposed a solution: supply-following loads could be
used to adjust power consumption matching the available renewable energy sources. A.
Krioukov and his mates utilized wind power to schedule the workload and used a simple
supply-following job scheduler to produce 40-60% better renewable energy entrance than
supply-oblivious schedulers [12].

Although the above papers studied utilization of renewable energy of IDCs, the renew-
able energy is not the main source of IDCs. Renewable energy alone does not perfectly
maintain the servers running. Taking the servers’ energy consumption as well as renewable
energy into account in some proportion is a hot issue in the control of energy consumption
and electricity cost in IDCs.

However, it is difficult to predict most renewable energy resources because the average
energy consumption must be optimized. Traditional algorithm must acquire the future
renewable energy information and greedily optimize the current cost rather than the
average cost during a period of time. Although some models predict the average cost,
unfortunately their results are inaccurate so that their applications are very limited. We
design an algorithm leveraging the Lyapunov optimization technique to combine server
energy with renewable energy.

This paper is organized as follows: Section 2 proposes the system model of data cen-
ter; Section 3 formulates the cost minimization of IDCs’ server and renewable power
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(CMISRP) problem; Section 4 applies the Lyapunov optimization theory to approxi-
mately handling (CMISRP) problem and analyzes the implementation issues; theoretical
performance analysis is presented in Section 5; Section 6 further investigates the perfor-
mance using simulations; Section 7 concludes the paper.

2. System Model. The architecture shown in Figure 1 illustrates IDC’s applications,
each of which hosts racks of servers. The infrastructures located in IDCs provide electricity
for each server to run its service. All requests entering an application share the same
workload queue and are scheduled to a server once it is currently idle. Quality-of-service
(QoS) requirement associated with each application is also in our consideration.
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FIGURE 1. System model

Though the huge cost of electricity consumption troubles most IDCs’ operators, renew-
able wind energy will validly cut the total energy cost of a data center. In this paper, we
focus on how to minimize the total energy cost subject to QoS.

min Power cost
subject to:
Queue stability, for each application
The server allocation policy is under control.

The control variable of this problem is the number of servers belonging to each application.
The queue stability constraint ensures a limited queue length, which implies a limited
queueing delay according to the [little’s law. This paper will discuss the details of this
problem in the following sections.
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3. Problem Formulation.

3.1. Server power consumption model. Let J be the total number of applications
hosted in Ordos Uni-Cloud Co.’s IDC. At any time slot ¢, define p;(t) and m;(t) as the
power consumption for a single server and the number of servers allocated to the corre-
sponding application j € [1,...,J] in slot ¢, respectively. Then the power consumption
for application j is

p;(t) = m;(t)w

where w is the energy consumption per server. The total energy consumption for all
servers can be expressed as

Pt =Y b0 (1

3.2. Queueing dynamic. Assume all requests into a single application share the same
queue and all servers in each application also fetch data from the queue. Any request
in accordance arrives the system and directly into service if there is a free server, and
otherwise joins the queue. Once a server finishes serving a request, it immediately leaves
the system, and the next one in line, if there is any, enters service. Suppose that the
service rate for application j is p;. Let Q;(t) be the queue length at the time slot ¢ of
application j. So update the formula for @Q;(¢) as:

Q;(t+1) = max {Q;(t) — m;(t)p;, 0} + X;(¢) (2)

where \;(t) represents the amount of new work that arrives on slot t. m;(t)u; represents
the amount of work the queue in application j can process on slot t. Obviously, both
A;(t) and m;(t)p; are non-negative.

3.3. Problem formulation. After analyzing the distinguished problem of minimizing
the energy cost in IDCs, we can now define the objective function as follows:

min lm sup % SCE{c()(P(t) - R(£)} 3)

subject to:
lijr{lﬁszp% Y E{Q(1)} < o0 (4)
0 < m;(t) g_m;.““ (5)

> mst) < M (6)

where R(t) is wind energy as the main source of renewable energy, c(t) is the instant
electricity price on slot ¢ and M is the number of servers in the data center.

4. Solution.
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4.1. Lyapunov approach. The Lyapunov optimization framework provides a method to
design a control algorithm, choosing actions for all ¢ to yield a time average expectation
of the objective function value close to optimal solution. Meanwhile, make the queue
();(t) mean rate stable. In this way, the original problem is transformed into that of
minimizing the time average of a cost function subject to queue stability. Not only do we
need to minimize IDCs’ energy cost, but control the length of queues. Lyapunov drift and
optimization theory can hold a balance between the two problems. Define the Lyapunov

function:
1
= 5 Z Qj (75)2
7=1

Let
A(Q(t) =E{L(t+1) - L(#)|Q(#)} -
The drift-plus-penalty objective function is

A(Q(t) + VELc()(P(t) — R(1))|Q(t)} (7)
Theorem 4.1. The drift-plus-penalty objective Function (7) can be bounded by the fol-
lowing
A(Q(1) + VE{c(t)(P(1) — R(1))|Q(t)} (8)
< Z Q; (HE{(A;(t) —my(1)1;)|Q(E)}

J 2
j=1 ( max Mmax/imax) )

+(
2

where B is a constant defined as B =

Proof: Squaring the queue update Equation (2), we have
QF(t+1) < (Qs(t) — my(H)y)” + A1) +2Q; (1) A (¢)

= Q5 (1) + A3(1) +2Q;(1) (A (1) — my(£)py) + (my(H);)” (10)
Therefore,
Q(t+1)—Q
i ; il ) ()\2( )+ (my()1)*) + Q5(1) (A () — my(t)py)
Taking conditional expectatlon of the above equation and summing over j € {1,...,.J}

give a bound on A(Q(t)). Adding VE {c(t)(P(t) — R(t))|Q(t)} to both sides leads to
Lyapunov drift-plus-penalty expression. Hence, we have

A(Q() + VE{c(t)(P(t) — R(1))|Q(t)}
< ZQj(t)E {(A(1) = m;(H)p;)1Q(t)} + VE {C(t) (Z m;(t)w — R(t)) ‘Q(t)}

Z 04007 + by (00 (1)

Under any control algorithm, the drift-plus-penalty expression satisfies (9) for all ¢,
all possible values of Q(t), and all parameters V' > 0. B is a positive constant. In the
model, assume the maximum of 1;(¢) is fimax and 0 < m;(t) < Mpax. For all t: B =

_|_
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}'7:1 (A?I)ax+(mmaxlima,x)2)

5 , such a constant B exists because Q(t) isi.i.d. and the boundedness
assumptions in (3) hold. Q.E.D.

We apply Lyapunov drift-plus-penalty to the control of queue length and power cost
from IDC (Internet data center) in place of the original objective function. While taking
actions to minimize a bound on A(Q(t)) every slot ¢t would stabilize the system, the
resulting average power cost might be extremely large, and vice versa. Lyapunov drift-
plus-penalty intends to reach a balance between queue length and power cost. Regardless
of directly minimizing (3), the Lyapunov optimization seeks to minimize a bound of the
drift-plus-penalty Function (8).

Our algorithm is designed to minimize (9). This is done via the framework of op-
portunistically minimizing a conditional expectation and the resulting algorithm is given
below.

CMISRP algorithm: observe the current queue states Q(t) in each time slot ¢, and
make a control decision based on solving the following problem:

Minimize : ZQj(t) (A(t); — mj(t)pj) +V {c(t) (Z m;(t)w — R(ﬂ) } (12)

j=1

subject to constraints (5) and (6).
In the next section, we will discuss the implementation of this algorithm.

4.2. Implementation. To easily minimize Lyapunov optimization, the objective func-
tion of problem (12) can be rewritten as

Minimize - Z Qi(t)\,(t) — Z m;(t) (Q;(t)p; — Ve(t)w) — Ve(t)R(t)  (13)

We choose Algorithm 1 to enlarge the second term. Once (Q;(t)p; — Ve(t)w) <0, m;(t)
will be set as 0. Confronted with (Q;(t)u; — Ve(t)w) > 0, the algorithm records its value.
Algorithm 2 accumulates all results for all applications and sets them in a descending
order. According to the order, we will assign the corresponding maximum of servers to
the ranked-well application, but the total number of servers is no more than the capacity
of IDC, i.e., M. In this way, m;(t) tends to be determined for the lower energy-cost
application. Suppose that ();(1) = 0, and then update the values of all Q;(¢) by letting
my;(t) into (2). While conserving @;(¢) for each application, we easily figure out the energy
of servers reference to (1) and calculate the mean power cost depending on (3).

Algorithm 1: Determining the coefficient of m; for the Drift-Plus-Penalty Algorithm

if co > 0 then
return co
else
return 0
end if

Finally, adjust V' until we constantly minimize (13) and find the balance between data
queue @ and the objective function.

5. Performance Analysis. In this section, the minimum time-average IDC power cost
can be achieved using a randomized stationary control policy independent of the data
queue state Q(t). The performance bound for objective function can be derived.
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Algorithm 2 CMISRP: Choosing the best m; for the Drift-Plus-Penalty Algorithm

1: Determine the upper bound of m; as m}**, the capacity of IDC M;
2: Define co = (Q;(t)p; — Ve(t)w)

3: Study the coefficient of m;:

4: for all j € J do

5. co[j] = Algorithm 1

6: end for

7: for all j € J do

8:  if co[The jth max] > 0 and M > 0 then
9: if M —m, """ > 0 then

10 m; = m}“he jth max

11: M=M— m]The jth max

12: else

13: m]- =M

14: end if

15:  else

16: m; = 0

17: end if

18: end for

19: return m;

Define E {c¢"(t) (P™(t) — R™(t))} as the expected power cost in the interval [1,...,7]
under any control policy 7, and e* as the minimum achievable E {c"(¢) (P™(t) — R"(t))}
over all possible 7. We have the following result.

Theorem 5.1. Suppose that \;(t) is stationary stochastic process. If problem (3) is
feasible, then for any & > 0, there is an w-only policy ©*, for all t, and:

E {c”*(t)(P”* (t) — R”*(t))} <e' 49,
E{\T(t) —m] (t)u;} <.
Proof: It is a direct application of Theorem 4.5 in [13] Q.E.D.
Theorem 5.1 describes that there is a queue-independent randomized stationary policy

yielding a power cost arbitrary close to the optimum as long as the problem is feasible.
In the next step, the performance bound is given.

Theorem 5.2. Suppose that E{L(Q(0))} < co. We have the following results.
1) The achievable total energy consumption of the CMISRP algorithm can be bounded

by

T
1 B

lim sup — E{c(t)(P(t) — R(t))} < — +¢€* 14
T%othz:‘{()(() &)} <7 (14)

2) The queue Q(t) is mean rate stable, i.e.,

E{Q;(t

lirnsupM =0 (15)

T—o00 T

Proof: Part 1: In every slot ¢, CMISRP tries to minimize the right-hand-side of the
drift expression (9) over all 7, and we have for each slot ¢:

A(Q) + VE{c()(P(t) — R(1))|Q(1)}
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< ZQ“ JE{ (A" (¢ FO1) 1Q) ) + VE{c™(1) (P7(t) — R"(1) [Q(1)} + B (16)

where c¢™(t), P™(t), R™(t), and A™(t); —m7(t)u; are the instant electricity price, the server
power, the wind energy and data queue under any alternative (possibly randomized)
decision .

Now consider the w-only policy 7* in Theorem 5.1. Because this is an w-only policy,
and the values of ¢™(t), P™(t), R™(t), and A"(t); — mJ (t)u; are independent of the current
queue Q(t), we have:

E{c™( P“() R™( }:E{c"* ”*(t)—R”*(t))}ge*M,
E{(\(1); - uy)lQ )} =E{(\(#); —mj ()} < 0.
Plugging these into the r1ght—hand—81de of (16) and taklng § — 0 yield:
A(Q(t) + VEL{c(@)((P(t) — R(1))|Q(t)} < B+ Ve’ (17)

Further, from the above drift expression, we take iterated expectations and telescope sums
for any ¢ > 0:

LBl - Ry < 2+ QO "

which proves the theorem by taking a lim sup as ¢t — oo.

Part 2. As the research refers to the actual power cost, suppose that the expected
penalty is lower bounded by a finite value e™® for all ¢ and all possible control actions.
We have:

E{c(t)((P(t) — R(t))} > e™ (19)

Plug the above function into (17):
E{L(Q(t+1))} —E{L(Q(t)} + Ve™ < B + Ve (20)
Summing the above over t € {1,..., T} for some slot ¢ > 0 and using the law of telescoping

sums yield: .
B{L(Q()} < TB+TV (¢ — &™) + E{L(Q(0))}.
Using the definition of L(Q(t)) yields:

% Z E{Q,(t)?} < TB+TV (¢" — ™) + E{L(Q(0))} (21)

Therefore, for all j € {1,...,.J}, we have:
E{Q;(#)*} < 2TB + 2TV (e* — ™) + 2E{L(Q(0))}.

However, because the variance of |@Q;(¢)| cannot be negative, we have E{Q;(t)?} >
E{|Q;(t)|}?. Thus, for all slots ¢ > 0, we have:

E{|Q;(t)[} < /2T B + 2TV (e* — emin) + 2E {L(Q(0))}.
Dividing by T" and taking a limit as ¢ — 0o prove that:
P} 2B VT o) 2EHQO)]
T T T?

Thus, all queues @Q;(t) are mean rate stable, proving Part 2. Q.E.D.
According to the above detailed analysis, we conclude the [O(1/V), O(V)] tradeoft, i.e.,
the power expenditure can be pushed arbitrarily close to the optimum as V' — oo.

lim sup =0.

T—o00 T
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6. Numerical Evaluations. In this section we conduct extensive simulations to evaluate
the proposed CMISRP algorithm.

6.1. System configuration. Our team members chose Poisson process to simulate work-
load arrivals and obtained the numbers of servers from applications in the time granularity
of one hour, which is shown in Figure 2.
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FIGURE 2. Mean number of servers vs. application

This IDC’s capacity is 3000 servers in all and four applications can respectively accom-
modate at most 1000, 500, 500, 900 servers. Without loss of generality, the service rate
of a single server 1, is normalized as 1 across all applications. The power consumption of
a single server is 100 Watt. In this study we consider the wind energy as the main source
of renewable energy and obtain a one-week wind speed trace from a 70-meter high wind
mill of a production wind farm. To translate the wind speed into electricity power, we
use a polynomial power curve [16] to approximate the power generation:

0 v < Uip
) (et vt ev?) x Py, < v <o,
P(U) N Pr Uy S U < Vout (22)
0 V> Ut

where v;,, v, and v,,; are the cut-in, rated, and cut-out wind speed, respectively. Typ-
ically, these values can be set to v, = 5, v, = 15 and v,,; = 20. Though currently
renewable energy is intermittent and unpredictable, its contribution to global energy gen-
eration is constantly increasing. The renewable energy used to power Facebook data
centers has grown from 19% in 2012 to 25% in 2015 [14], and is even expected to reach
50% in 2018 [15]. Google reports that over 30% of their services are supported by renew-
able energy [16]. Based on the above certificate, the rated power Pr, whose value is set
as 8.9 * 10°, accounts for approximately 30% of the power demand in average.

6.2. Result analysis. Based on the parameters above, we investigate the performance
of the CMISRP algorithm.

Figure 3 discovers the change of mean cost while V' is set to different values from 0.2 to
1. Lyapunov optimization imposes effects on the simulation that the mean cost decreases
with the increase of V, especially in V' = 1. The mean power cost when V = 1 is 12%
less than that when V = 0.2.

Figure 4 depicts that during the whole process, server consumption for all applications
basically reaches peak values and occasionally show jitter phenomenons. The above two
figures illustrate that PCR algorithm reduces the mean power cost while cutting the
energy consumption.
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FiGURE 5. Queue length in application 1 vs. V'

Figures 5, 6, 7 and 8 have the same ordinates to respectively illustrate data queue
lengths from different applications. It is easy to discover that Q(t) shows a general de-
clining trend with the promotion of V', the weight of Lyapunov drift-plus-penalty objective
function. The fluctuation in Figure 6 does not affect the overall decreasing effect.

7. Conclusion and Future Works. This paper concentrates on cutting the energy cost
of the data center by leveraging the electricity fluctuation and renewable energy. To design
a dynamic control algorithm to achieve this goal is challenging since the workload distri-
bution cannot be obtained in advance. To address this issue, we leverage the Lyapunov
optimization technique and develop an algorithm to approximately solve energy cost min-
imization problem. The research shows that our algorithm can be pushed arbitrarily close
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F1cure 8. Data queue in application 4 vs. V

to optimal solution as the control parameter V' increases. Extensive simulations are im-
plemented to explore the performance of the proposed algorithm. Numerical results show
that our algorithm can reduce total energy cost while guaranteeing QoS constraints.

In the near future, our research will expand to further consider other factors that
influence the energy cost and consumption of data centers, such as the cooling system
(refrigerating machine in summer, cooling tower in winter), lighting systems and UPS.
Research team will continue to cooperate with Uni-Cloud Technology Co., Ltd and extend
the model into a multiple geo-distributed data centers scenario. Once the time is ripe,
a more general form of dynamic pricing strategy will be implemented in several typical
data centers.
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