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ABSTRACT. A discrete general solution and exact for nonlinear autonomous ordinary
differential equations is proposed in this paper. Seemingly simple, the solution is based on
Euler integrator. However, we used mean derivative functions instead of instantaneous
derivative functions on this integrator. Empirically determining the mean derivative
functions is not a trivial task. Therefore, it is necessary to solve a monlinear parameter
estimation problem by using some universal approzimator of functions such as an artifi-
cial neural network or a fuzzy inference system. This article proposes to mathematically
demonstrate these facts.

Keywords: Autonomous nonlinear ordinary differential equations, Neural numerical
integrators, Neural networks, Mamdani-type fuzzy inference systems

1. Introduction. Informally, one can say that there is an exact and accurate relation-
ship between the continuous space and the discrete space, when the context of ordi-
nary differential equations system (ODES) is only considered. An informal represen-
tation for this is that there is a precise and exact transformation W[.] between the
continuous and the discrete space that can be represented by U[y = f(y)] — **y¢ =
tana, ol At+*y?, where the mean derivative tana, ka;- is defined by tana, kag- = %t_ky;,
for j = 1,2,...,n. The inverse of this transformation is also valid, that is, there is an
inverse transformation W~'[.] which relates the discrete universe to the continuous one
given by U~ [Flyf = tany, *al - At + %yl — ¢ = f(y). The inverse transformation
U~![.] states that for any discrete sequence of points in the discrete space, there is a con-
tinuous instantaneous derivative function in the continuous space (existence theorem).
Initially, this article aims to formally prove these facts. However, it remains how to de-
termine in practice the mean derivative functions. A brief description of how to perform
this calculation is also suggested in the following. It can be obtained by using tools used
in artificial intelligence. So, one can see that the problem of empirically determining the
mean derivative functions may be reduced to a nonlinear parameter estimation problem
involving supervised learning using input/output training patterns.

In the past few decades, artificial intelligence has received considerable attention due
to the extensive applications in signal processing, target tracking, optimization, pattern
recognition, and associative memories [23-26]. Three of the most successful approaches
are artificial neural networks, fuzzy logic and genetic algorithm that allow, for example,
the recognition of writing, image processing, modeling of nonlinear dynamic systems, and
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applications in control theory. A good introduction to artificial neural networks theory
can be found in [5,14,22]. An extremely important starting point in the study of arti-
ficial neural networks or fuzzy inference systems is that they are considered universal
approximator of functions [3,4,6,8,16]. Thus, the artificial neural networks (ANN) have
long been used in the modeling of nonlinear dynamical systems in recent decades, as they
have a high ability to approximate nonlinear mappings. Several studies have been devel-
oped in this area by using NARMAX methodology (Non linear Autoregressive Moving
Average with eXogenous inputs) with a subsequent application in control [2,7,11,12]. A
brief description of NARMAX methodology can be found in Appendix B. In addition to
this, other methodologies have also been developed in recent years to represent nonlinear
dynamical systems, including the instantaneous derivative methodology [9,13,20] and the
mean derivative methodology [17-19]. Although there are these three methodologies to
represent nonlinear dynamical systems by using artificial neural networks or any other
universal approximator for functions, this article focuses only on a formal and accurate
description from a mathematical perspective of the mean derivative methodology for the
empirical determination of functions given by tana, *a’.

From this, this paper provides one original contribution. The major is to offer a theoret-
ical basement for the method named mean derivative, which informally appears in [18,19]
and can be applied to model linear dynamic systems and non-linear ruled by autonomous
ordinary differential equations. Sections 2 and 3 exclusively dedicate to this task.

The methodology presented here is an alternative method to NARMAX methodology,
which can be found and described in detail in [2,7]. Nevertheless, in Appendix B of
this paper, the NARMAX methodology is explained in a summarized way. Therefore,
it can be stated that there are three empirical methodologies for representing dynamic
systems: NARMAX methodology, the methodology that uses instantaneous derivative
[9,20] and the one which utilizes mean derivative. One meaningful distinction among
these three methodologies is that the NARMAX methodology and mean derivative have
a fixed integration step, while the instantaneous derivative methodology has a variable
step. This is a meaningful distinction because the fixed step demands a new supervised
learning training whether the integration step is modified, while the method of variable
step does not.

2. Theoretical Development. Being the autonomous system of nonlinear ordinary dif-
ferential equations,

J=fy) (L.a)

where,
y=[y v2 -yl (1.b)
fW) =) ) - fa)]” (1)

Consider also by definition, y = yi(t) for j = 1,2,...,n a trajectory of the family
of solutions of nonlinear differential equations system § = f(y) going past y'(t,) at the
initial time ,, starting from a domain of interest [y (t,), ;-“ax(to)]n, where y"(t,) and
Yy (t,) are finite. If one can say that there are initial conditions for all interior points of
this domain, it means that for any discretization ¢, yj- (t,) there is a possible set of initial
conditions in ¢, of the nonlinear differential equations given by (1.a) within a domain of
interest in [y;-“in, y;-“a"]n forj=1,2,...,n.

It is appropriate to introduce the following vector notation concerning the possible sets
of initial conditions and solutions of (1.a):

v =y (te) = [Wi(t) vi(to) - wi(to)]”

(2.a)
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v =y'(1) = [Bi0) B0) o ] (2.b)
where i = 1,2, ...,00; and oo indicates that the number of points in the discretization loop
can be as big as one wants. Figure 1 is an illustrative sketch for the one-dimensional case
in the variable j of a family of solutions ¢; = f(y;) that parts from the initial conditions

yi(t,) contained within the interest domain [y (£,), y*(t,)] g

o4 ¥7 W =y
¥ .
1

KO =¥

N o) =3t
L =41
n =¥y

2
¥ (i)

¥ t) = (o)

t

t,

FIGURE 1. Family of curves i = 4! (t) solutions of jj; = f(y1) of the interest

domain [y""(t,), yi"™(t,)] " in t,
It is important to demonstrate two important results (see [1]) regarding the differential
equations solutions system (1.a). The first relates to the existence and oneness of solutions,
and the second deals with the existence of stationary solutions of (1.a).

Theorem 2.1 (T1). Assume that each of the functions fi(y1,Y2, .- Yn),---» fn(Y1, Y2,

-y Yn) has continuous partial derivative with respect to yi,...,y,. Then, the initial value
problem § = f(y), y(t,) in the interest domain [y;-“i“, y;-“ax]n toj=1,2,...,n, int,, there
is one and only solution y* = y*(t) in R", from each y'(t,). If both solutions y = ¢(t) and

y = @(t) have a common point, they should be identical.

Property 2.1 (P1). If y = ¢(t) is a solution of (1.a), y = ¢(t + ¢) is also a solution of
(1.a), being ¢ any real constant.

P1 is not true if the function (1.a) explicitly depends on time [1], because in this
case, assuming that y = ¢(¢ + ¢) is also a solution of the non-autonomous system g =
f(t,y) implies another differential equation of the type § = f(t + ¢, y), which leads to a
contradiction.

As, in general, ¢ = f(y') does not have analytical solution, it is common to know only
for y* = y*(t) a discrete set of points [y*(t + k- At) y'[t+ (k+1)-At] ... y'[t+ (k+
n) - At]] = [Fy' Fyt o0 Fyi] for Byt = yi(¢t + k - At) on the horizon [ty ty1,] and
At = (tgn — tx)/n a constant.

Property 2.2 (P2). As ' = f(y') is given by (1.a), it immediately follows that, if
Fyt = ot + k - At) is known, *y' = it + k - At) will also be.

This property, although quite obvious, will be very useful when applied in the differen-
tial mean value theorems and integral on the sets of points ¥3* and ¥ in the space R"
to determine important properties concerning the tangent of the secant between two con-
secutive points ¥y’ and ¥+1y on the curve y(t), which is a particular solution of § = f(y)
that starts from y'(t,).
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By definition (see [10]), the secant between two points *y* and **'y’ belonging to curve
y'(t) is the straight segment which joins these two points. So the tangents of the secants

between points Fyi and **lyt Fyi and Flyi ... Byl and Tyt are defined as:
tana, o' (t + k - At) = tanp, Fa' = [tanAt Fol tana Fal ... tana, kafl]T (3.a)
with,
S i
tanas 0 = toj=1,2,....,n (3.b)

where o/, is the secant angle that joins both *y and **'y points belonging to curve y’(t).

Property 2.3 (P3). If*y’ is a discretization of solution y* = f(y') and At # 0, tana; Fo*
exrists and it is unique.

i

Flyt, given a

Proof: T1 guarantees the existence and oneness of y(t) and of *y} and

discretization At # 0, which results in the existence and oneness of tana, *o.

Property 2.4 (P4). Given the state vector y'(t,) at t, instant of the non-linear differ-
ential equations § = f(y) and if the vector [Fy® 'yt .. ¥yl s the discretization of
a trajectory solution so that for Fy' = y'(t+k - At) it is a solution of the dynamic system,

then tana; **lat for 1 =0,1,...,(n — 1) exist and are unique.

Proof: By successive application and induction of P3, tana, **'ai for [ = 0,1,..., (n—
1) exist and are unique.

Two other very important theorems that link the values of tana; o’ and tana, *d/,
respectively, with the mean derivative calculated from [Fy? #¥1yt ... ktnyil and [kyi B+l
... Ftngi] are the differential and integral mean value theorems [10,15,21] which are set
out below without proof.

Theorem 2.2 (T2). (The differential mean value theorem). If the function yi(t) for
J = 1,2,...,n is defined and continuous function on the closed interval [tg,tr41] and
differentiable on the open interval (tg,tr41), there is at least one number ty, with t, <t <
ti + At such that

Gy s =Y

Y; (tr) = At (4)

Theorem T2 states [10,21] that given a secant to the graph y(¢) of a differentiable curve,

one can always find a graph point between the two points **y* and ¥y of the intersection
of the secant with the curve y*(¢) in # and ., such that the tangent straight line to
the point y*(¢;) is parallel to the secant. This interesting geometric property of 7(¢;) is
so called mean derivative of the function y'(t) on the closed interval [ty, tx1]-

Theorem 2.3 (T3). (The integral mean value theorem). If a function yi(t) for j =
1,2,...,n is a continuous function on the closed interval [tg,tyy1], then there is at least
one t inner number to [tg,tr41] such that

yitp) At = [ (o) )

Generally, ¢} is different from ?7 and it is also important to observe that the mean
values theorems say nothing on how to determine the values ¢; and ¢j. The theorems
simply state that ¢; and ¢ are contained in the interval [ty, tx1].

Property 2.5 (P5). Applying T3 theorem on curve y'(t) is equivalent to apply T2 theo-
rem on the curve y'(t) both on the same closed interval [tg,tr+1], that is, §'(t7) = y'(t;)-



DISCRETE AND EXACT GENERAL SOLUTION 1707

Proof: From T3 theorem applied to the curve 7(¢) it results a g (t¥) for t < t¥ < 34y
such that gi(t7) - At = ti’““ yi(t) - dt = *Ftly? — kyt by the fundamental theorem of
calculus. Thus, 7'(tf) = %{kyl = tana; *af. On the other hand, the application of

T2 theorem on the curve y'(t) implies that there is a g'(t;) for tx < t; < tr41, so that
k+1

yi(tr) = yTt_ky = tana, *a’. Thus, 7(t8) = y(¢;).
Nevertheless, this theorem does not allow one to state that ¢ = ¢;.

Property 2.6 (P6). The mean derivative y'(t%) on the graph of y'(t) in the closed interval
[te, tes1] is equal to tana; ®al, as an immediate consequence of the definition itself of the

mean derivative.

Property 2.7 (P7). Note that if 4*(t7) = y'(t;) (P5) and y'(t}) is the mean derivative
of y'(t) (T2 theorem) in the closed interval [tg, ty1], 9 (t%) will also be numerically equal
to the mean derivative of y'(t) for the same close interval.

It justifies why the index z was used in ¢} in the formulation of the previous theorem
instead of the index *. Thus, following the data adopted in this work, *(¢;) is the
application of T2 theorem on the curve g(t), ¥*(t%) is the application of T2 theorem on
the curve §'(t) and so on. On the other hand, §(¢¥) is the application of T3 theorem
on the curve jj*(t) and so on, that is, the * index is always associated to the T2 theorem
application and the z index is always associated to the application of T3 theorem. The
application of T2 theorem on the curve ¢'(t) implies that there is at least one ¢} in [ty, tx.1],
so that §j(t;) = tana, .

Numerical and geometric equivalences between 3'(t¥) and ¢*(t;) can be interpreted as
shown in Figure 2. Note that there are three possible geometric interpretations for the
greatness §'(t7) = y'(t;) = tana, "a': the first interpretation is that it is, in fact, the mean
derivative of 3(¢) in the closed interval [ty,%;,1], the second one is that At - tana *a? for
At = t}41 — ty, is the area on the curve 3'(¢) on the same interval [, tx41], and the third
interpretation is that tana, *o is, in fact, the exact derivative of at least one point within
the interval [t, tx41] of the y'(¢) function, as illustrated by the two tangent straight lines

Integral Mean Value Theorem on ¥t

____________________________________________________

________________ sy |y /|
. ) ;

L : 1 1 1 r

L ! §2 &a t

Differential Mean Value Theorem on yii)

................. e L

; )y =tanaat ]

-y =

ko H | kil
L 'y & e t

FIGURE 2. Geometrical interpretations of ¢*(t%) and g*(¢})
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on y'(t) in Figure 2. P6 suggests that if there is more than one value for §*(t%), then they
should be equal to tana,; *o’.

Figure 2 illustrates this, and as it can be seen, ' (t£') = §'(¢¥?) = tana, *a’ even for the
case where ¢7' is different from #§2. T2 and T3 theorems can also be used to guarantee
the existence of tana, o, but they do not guarantee that they are unique, for that it is
really required the use of T1 theorem. Figure 2 also suggests that ¢! = ¢! and %2 = ¢},

but this cannot be demonstrated on the basis of the theorems presented here.

k

Theorem 2.4 (T4). The discrete general solution and exact k“y;- for j =1,2,...,n

of the nonlinear differential equations systems 1 = f(y%) can be established through the

relation 'yl = tana, Pl - At +Fyl for a given *y' and At.
o dyi k+1 t X
PI‘OOf: If yl = E = fk v d i t:-H f(yz) - dt. Thus)
trt1
iyt = / FQy) - dt +Fy (6)

2

The application of the integral mean value theorem T3 on the curve 3'(¢) in the closed
interval [ty, tx41] implies that there is at least a number ¢ in [tg, x41] so that

i) St = [ 5w)-de= [ 1) a )

By P6 '(t7) = tana; *af. Therefore, replacing the greatness ¢*(¢7) in Equation (7) and
this in Equation (6), results in:

k+lyi — tanp, ot - At By (8)

Equation (8) is the discrete general solution and exact to the ordinary differential
equations system (1.a). Note that this is a fairly simple expression. It is nothing more
than Euler simple step integration structure. However, instead of using instantaneous
derivative functions, it uses mean derivative functions.

Corollary 2.1 (C1). The solution **™y! for j =1,2,...,n of the nonlinear differential
equation system 3j' = f(y*) can be estabhshed by a given yi through the relation:

Proof: By the successive application of T4 theorem one has *+ly = tana,*a’ - At +
yz, k+2y = tana; k1ot o At + k—l—ly e k-l—my = tana, k+m— 104 At + k-l—m—lyz. The sum
of all these expressions immediately results in: **™yi = ST T tany, #+al - At 4 by

Corollary 2.2 (C2). For the differential equation system ' = f(y*), the relation

1 m-—
tan,,. A" a] = — E tana; "ol
m pa—

for 3 =1,2,...,n is valid.
Proof: From T4 theorem it immediately results in,

k+my; = (tanm.At ka;'-) -m - At + ky; (10)
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From Corollary C1 one has,

hmy i z:taunm"“rl LA 4y (11)
From the addition of equations we have,

tan,.a F o) :% mz tana, ol (12)

Equation (12) is graphically illustrated in Figure 3. Note that in the case in which
the system (1.a) is autonomous, y"(t;) = y(ty) for iy # iy and t, # t, implies that,
¥ (t1) = ¥ (t2). In fact, from (1 a) one obtains gyt = f(y'). So,

§(t) = fly" (t)] (13.a)
72 (t2) = fly™ (t2)] (13.b)
¥w
k+m},}
km-ljy]i
k+1}'ji
k+1},:'|.i.
; t+at 2t - tHm-DLAt t+moit
At

~Y

FI1GURE 3. Graphical representation of the concept concerning delayed en-

tries applied to the function tany,.a, o/

Hypothetically, 3 (t;) = y*(t;) results from (13.a) and (13.b) that 3 (t;) = y*2(t2).
This property states that two curves that start from two different initial conditions 3 (t,)
and y®(t,) for i; # iy, from the solution family of the system 3 = f(y), have the same
derivative if 3" (t;) = y(t5) even when t; # t,, that is, the system is autonomous.

P1 establishes that if 4" (t;) = y(t5), y*'(t) and y™(t) are in the same orbit in the
phase plane, and therefore, they are just delayed solutions on the time (ty — t1).

Note that if 5 (t;) = 3 (t2), fly(t1)] = fly™(t2)]. In this last case, y (t,) = y(t2)
only if there is an inverse f~'(.) of f(. ) and it is unique. The question that remains now
is whether the mean derivative tana;*a’ of ¥y* and ¥*'y are also autonomous, that is,
time-invariant? To answer this question the following property is quite useful.

Property 2.8 (P8). If y''(t) and y*(t) are solutions of y = f(y) which respectively

arise from y''(t, = 0) and y2(t, = 0) and if y*(t, = 0) = y2(T) for T > 0, y"(At) =
y2(T + At) for any At.
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Proof: If y2(t) is a solution of §y = f(y), y2(t+T) is also a solution by P1. Note that if
y"(0) = y2(T), y"* (t) = y2(t+T) for t = 0. Since y* (0) and y*(T) are solutions, for y* ()
and y*2(t+T) respectively in ¢t = 0, T1 theorem guarantees that they are unique for every
t. Thus, y*(t) = y™(t + T), and, particularly, if t = At, we have y"' (At) = y2(At + T).
P1 warrants that if 4" (0) = y*(T) then, y"*(t) = y”(t + T) are in the same orbit of
the phase plane for any . In fact, the equation y' (t) = y*(t + T) determines that the
solutions y* (t) and y(¢ + T) are only delayed in the time 7" > 0.

Property 2.9 (P9). If 4" (t,) = y2(t2) for iy # iy and t; # to, then, tana, o' (1) =
tana; a®2(ty) for At > 0, that is, tana, "o is time invariant.

Proof: By definition, tana; o' (t;) = gt (t”AAti*y” (1) and tanag o2 (ty) = L= (t2+AAt17yzz (F2),
Hypothetically, yi' (t,) = y&(t,) so yi (t, +At) = y22(t,+At) and therefore, tanasa’ (t,) =
tana2(t,).

P9 establishes that tana,*a’ is also autonomous. This outcome is very useful because
it determines that knowing the values of tana*o’ for i = 1,2, ..., 00 at the initial time t,
is enough for a particular interest domain [y;“m, y;“ax] for 7 =1,2,...,n, because in the
other instants ¢t > t, they are repeated if the solution of dynamic system does not exceed the
boundaries of the n-dimensional interval of state variables [y;“‘“, y;nax] forj=1,2,...,n
specified in t,. Figure 4 illustrates the reasoning presented in this paragraph. One also
needs to remark that When the dynamic system is propagated forward, its angle *a(i)
varies only in the range —Z < Fa(i) < Z, and thus, it is unique Based on this, when the
dynamic system is propagated backwards then Z < *a(i) < 2Z, and therefore, the angle

Fa(i) is also unique.

Theorem 2.5 (T5). The outcome of T4 is still valid when control discretized values *u
in each [t t,. ] are used to solve the dynamic system:

g = fy' ) (14)

Proof: In fact, it is sufficient to note that in this case, the continuous function f(y*, u),
with an approximated *u as a constant in each [t1,#;,1] can be seen as a parameterized

tan o'l (t)) = tan , ol (t )

i i2
tan, o’ (t)) tan,, o' (t,)

¥t =y (t,)

yll (tn ) /

Y2t

t ty t
At At

FIGURE 4. The discrete function tana;*o’ is autonomous, that is, time invariant.
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one in relation to the control variable and therefore, one can ensure that whichever is the
k+1
ki

ik,
—4— Y — tanpa/a’ is

discretization interval, the existence of mean derivative j'(t;) = —%;

warranted so that the result in (8) remains valid.

Theorem 2.6 (T6). The definition of the secant between two distinct and any points,
separated by the finite distance At on the continuous curves y;(t), forj =1,2,...,n s also
an ezxact general solution and discrete to the system of autonomous ordinary differential
and nonlinear equations § = f[y(t)].

It has been demonstrated up to this point that Euler integrator with means derivative
is the general solution of nonlinear ordinary differential equations system. However, as
mentioned in the introduction of this article, the reverse of this is also true. T7 theorem
addresses this question.

Theorem 2.7 (T7). For sequences of discrete points represented by equations k“y;- =

tana ol At+*ys, for j =1,2,... n, there is always an instantaneous derivative function
y= f(y) associated to them.

Proof: Thus, given Euler mean derivative equations:

k“y; = tanAtka;- WAV ky;-, forj=1,2,...,n (15.a)
or
Bty i .
]At = tana o af, for j =1,2,...,n (15.b)
Py -ty

by using the differential mean value, we have —%— = gi(t*), for any #* in ¢ < t* < t+At
and j = 1,2,...,n. By exceeding the limit AT — 0 in the equation involving g’(¢*), the
result is:

k+1 yz )
7‘7 = i I. *
A A~ Amel) (16)

The derivative of the left side of Equation (16) exists if a continuous and differentiable
curve over the sequence of discrete points of the discrete space can be interpolated on
it. This can be ensured due to the existence of universal approximators of functions (see

Appendix A). Thus, Equation (16) results in dytf = g;(t), for j = 1,2,...,n, because, in
this case, when At tends to zero, t* converges to t. Changing the ¢’ (t) function’s name

to f;(t), it follows that:

itf:fj(t), for j=1,2,....n (17)
This way, Equations (15.a) and (15.b) till (17) can be summarized by Theorem 2.7.

3. Empirical Determination of Mean Derivative Functions. As mathematically
demonstrated in the previous section, the equation 13’ = tana,fa’- At +%y is a discrete
general solution for nonlinear ordinary differential equations system J = f (7, ), where
tana ol is the mean derivative function with At step. It is important to highlight that
the application of equation **'¢’ = tana,*a’- At+*y¢ is only allowed if the mean derivative
function is known. Theoretically, one can use any universal functions approximator for
this purpose (see Appendix A). Here the symbol "~ is applied to state that the variable as-
sociated with it is an estimation and not an exact value. Moreover, the accuracy achieved
by this equation is the same as if we use a high-order integrator on the instantaneous
derivative functions.

The methodology of mean derivative uses fixed integration step both in the training
phase and the simulation phase, being applicable only to the first-order integrator of Euler
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type. There are two approaches for determining mean derivative: direct and indirect (or
empirical) approaches (see [17,18]). A direct approach is outlined in Figure 5 and the
indirect or empirical approach in Figure 6. As presented in Figure 5, the mean derivative
are directly inserted in the universal approximator in direct approach. However, in indirect
or empirical approach, as outlined in Figure 6, the mean derivative are indirectly learned
from the value #*14%. This difference is mathematically significant because in [17], when
one considers the particular case in which the universal approximator is represented by a
neural network with a feedforward architecture, it was verified that the backpropagation
remains unchanged in direct approach. Yet, in empirical approach, the backpropagation
must be slightly modified.

In the methodology of the mean derivative both direct and indirect approaches can be
applied to real-world data; however, it was experimentally proved that the direct approach

kyi »

|_ Supervised ¢
Training

FIGURE 5. Direct approach to determining the mean derivative

u—o »

f:fﬁyi, w)dit
ky.i. -5 » /

NN +
AR 4
k+lgi .
| : —5(x)

xy

A M +

Supervised
Training

FIGURE 6. Indirect or empirical approach for determining mean derivative

l:+ly.i.

w

h 4

=

-~
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is the most suitable [9]. The direct methodology of mean derivative applies to real-world
problems, since the mean derivative are easily calculated from the input/output training
patterns. However, if one intends to learn instantaneous derivative function (see [9,20]),
the direct methodology cannot be applied to real-world problems, because instantaneous
derivative functions are not easily estimated. This difference between direct and indirect
approach cannot be applied to NARMAX methodology.

Hence, the following algorithm is proposed for computational determination of mean
derivative via direct methodology involving both state variables and control variables:

. ni
1). Given the finite domains of interest |y"(t,), y;.nax(to)] intyfor j =1,2,...,n4

. n2
of the state variables and also finite domains of interest [u;?“n(to),u;-nax(to)] for j =

1,2,...,n, of control variables, ¢ vectors are randomly generated according to a uniform
distribution within these ranges such as:
; ; ; ; ; ; T
pi = [yi(to) ya(to) -y, (to)s uito) up(ty) ... up,(t)] (18.a)
and
P=[p ipy:...: pq](nlJrnQ)mq (18.b)

which are the input training patterns of the universal approximator at the instant .
The number of ¢ training patterns must be large enough to ensure a proper supervised
learning.

2). By using a high-order integrator, we propagate all the initial conditions p; for
i=1,2,...,q in order to obtain the states at the time ¢y + At, that is,

P = [yi(to + A1) yilto+At) ... i (to+A1)]" (19.a)

and

P = [pP i ppt L pl] (19.b)

NOTE: Alternatively in this step, one may use a computerized data acquisition system
to capture the behavior of the real world dynamic systems.

3). One should establish output vectors or output training patterns 7; of neural network
(this is so called mean derivative direct methodology) as follows:

1

nirq

T, = 57 Wi (fo + A1) = i (fo)i(to + A1) = yi(to) ..y, (fo + A1) — i, (t0)] (20)
= [tana, "ol tana Fod ... tanaFal | = (tana, Fof)
and
T=[T:Ty: "':T‘I]nlmq (21)

Since function tana, o’ is also autonomous, it only takes one propagation over all the

initial conditions of input vectors p; for i = 1,2, ..., p, in order to model training patterns
P and T required by the universal approximator of functions.

4). Once one has the input vectors P and the output vectors T required by the universal
approximator, this can go through a supervised training process to learn mean derivative
functions within the desired accuracy.

5). When the supervised training of the universal approximator is consolidated, it is
possible to simulate the dynamics from the following discrete expression:

MG = tanaFal - At 4y (22)

For the purpose of analyzing the local error on Euler integration structure given by

the equation ¥t = tana,fa’ - At + *3* concerning the aspects of the mean derivative
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k+1 45

functions, consider the exact value ¥*'7* and the estimated value ¥+’ obtained by the

means of Equations (23.a) and (23.b).
FHLgi — tana,fol - At + 5y (23.2)

P = (tanadt o + en) - AL+ (23.b)
where e, is the mean absolute error of the output variables of the universal approxima-
tor trained to learn the mean derivative functions. By subtracting Equation (23.b) of
Equation (23.a) and squaring the final result, one has:

(k-l—lgz' _ k+1gz’)2 — A2 2 (24)

m

The existence of universal approximator of functions ensures that Equation (24) comes
close to any desired accuracy, since €2, can be as small as one desires for a constant
and greater than zero integration step At. For a global error analysis of Euler type
integration structure (designed with mean derivative), more studies are required, which
is beyond the scope of this article. With respect to Equation (24) one also should observe
that if the integration step At has a smaller than one and greater than zero value, this
variable receives the ability to decrease the local error learned by universal approximator.
This is probably the reason why the methodology of mean derivative is easier of being
computationally trained than NARMAX [18,19] methodology. However, the experience
has proved that for integration steps At > 1 the error is amplified.

4. Conclusions. From what has been stated in the previous sections, one takes up the
following conclusions.

1) The integration step At is fixed and does not need to be infinitesimal; it can be
of any value, including greater than one. However, it is important to note that if it is
desirable to change the integration step to determine mean derivative functions, a new
estimation is necessary, since these values will all be changed in function of the size of
integration step. o

2) tana; ol = %{W is, by definition, the mean derivative or secant from interval
[tg, te11] of curve yi(t), and at the same time it is the discrete and general solution for the
dynamic system ¢° = f (y*, u).

3) The general solution given by the mean derivative functions in Euler integrator for
the nonlinear autonomous ordinary differential equations system is discrete and exact.
However, the empirical determination of mean derivative functions through any universal
approximator of functions is approximated, but it is always within a desired error.

4) From T1, P1, P2, P3 and P4 we have the values of tana; “™a’ to [ = 0,1,..., (L —
1) exist and are unique, thus tana; ¥+’ is a static function with the same qualitative
properties of the instantaneous derivative function ¥ty = f (¥ly? Fly) In fact, it can

be shown that Allitlrn0 tana Myt = f (Fy', FHu). Tt is also important to realize that the
_)

instantaneous derivative function ¢ = f (y*,u) does not depend on At, but tana,*+'a’
does. This latter property implies that the mean derivative methodology has a fixed
integration step while the method of instantaneous derivatives, firstly proposed by Wang
and Lin [20] may have variable integration step.

5) From Theorem T2 tana,*a’ is really an exact derivative of at least one point inside
of the interval [ty, t;1], which is also another way to ensure the existence of tana; *a’.

6) From T3 and T4 theorems, and P6 property it follows that the recurrence relation
that links **'y® with *y® and *u to obtain a discretized solution for the dynamic system
7' = f (y',u) is, in fact, given by **1y! = tana, *a’ - At +*y¢ which is a simple integration
structure of Euler type.
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7) From Theorem T5, both the instantaneous derivative functions f (*y’, *u) and mean
derivative functions tana, o' are invariant in time; however, they are parameterized in
relation to *u.

8) Apparently, from a mathematical perspective, it would be extremely inaccurate to
simply state geometrically or graphically that the secant definition is a general discreet
solution and exact for the differential equations system § = f(y). It really needed a little
bit more elaborate algebra to affirm that.

9) Interpolation or estimation of mean derivative functions up to the infinite is impos-
sible; therefore there is a restriction imposed to finite domains outlined in Figure 1.

10) If it is desirable to use the general solution of Euler with mean derivative in control
theory, then the integration step At must be very small and close to zero to ensure the
parameterization mentioned in T5 theorem in the dynamic 3' = f (y*,u) for a correct
representation of temporal variation, that are subject to the values of the control variables.

11) The methodology presented in this article has been successfully tested in neural
control theory [19].

12) Because of Equation (24) it seems that the use of Euler integrator designed with
mean derivative for the integration step AT < 1 is more effective from the computational
point of view, than the use the NARMAX methodology.

13) The methodology of mean derivative is virtually unknown by the community of
artificial neural networks.

14) Euler integrator designed with mean derivative has many applications in real-world
problems; for example, it can be used to predict river flows in watersheds from past
measurements or to predict the formation of sunspots.

15) The confined integration step At in the interval [0, 1] always decreases the local
error. Nevertheless, if this At value is very close to zero, for example At = 0.0001,
the global error will increase much, though the local error is very small (very small At
values display much more iterations in Euler integrator with mean derivative). Thus,
it is prudent to think that there is a At step of integration between zero and one, not
very close to zero nor too close to one, which minimizes the global error. However, the
calculation of this optimum At is beyond the scope of this article.

From the findings above one can guarantee the possibility of using any universal ap-
proximator of functions to represent dynamic systems through a Euler-type integration
structure, for a given At step. Just consider the capacity of representing functions of
these universal approximators to deduce their ability to control the local error in Euler
integration process with mean derivative.

Being so, the equation (*'y* — k+1g)i)2 = At?- €2 is close to any desired accuracy since

e? can be as small as one desires for a fixed integration step At > 0. Thus, ¥l in

m
equation *'j¢ = (tana, *al + €,,) - At + Fy' is close to any desired accuracy because the
universal approximator has the ability to estimate, within a domain of interest, the mean
derivative functions tana, "o}, which is invariant in time. However, the smaller the square
error desired e2, during a supervised learning process is, the greater the computational

effort to determine mean derivative functions is.
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Appendix A. Universal Approximator for Functions. A priori, for a proper math-
ematical study of the function approximation theory some definitions are needed (see
[16]), as follows.

Definition A.1. A function f : D — R"™ is uniformly continuous on D C R™ point
if for each £ > 0 there is a 0(¢) so that for each x,y € D satisfying |x — y| < §(¢),
|f(z) — f(y)| < e. The function f : D — R is continuous on D if it is continuous for
each point in D.

Definition A.2. A real number b is a superior quota of a set X # ¢ of real numbers if
and only if © < b for every x € X. Besides that, if any number smaller than b is superior
quota of X, one may say that b is a supreme of (sup)X.

Being so, from this definition of supreme, it is possible to state the fundamental principle
of the existence of a supreme in real numbers domain, that is:

Supreme Principle. Every real function of the type y = f(x), superiorly limited, has a
supreme.

One can write the functions approximator as F'(x,w), where w € RP is the parameters
vector used to define the mapping of the approximator. Suppose that 2 C RP denotes
the subset of all values that the approximator parameters can obtain. Thus, it is assumed
that:

G={F(z,w):weQ’ p>0} (25)

is the class of functions in the form F(z,w), w C QP for any p > 0. In this case, when
one refers to the functions of G class, one omits how great p is. That said, a uniform
approzimator is defined as follows.

Definition A.3. A function f : D — R is uniformly continuous on D C R™ if for each
e > 0, there is a 0(g) (dependent e only) so that for every x,y € D satisfying |x—y| < d(¢)

then |f(x) — f(z)| < e.

Regarding Definition A.3, note that the supreme operation on the function F'(z) — f(z)
establishes that even the maximum difference in the greatness of these two functions,
which inevitably occurs to some z, should still be less than . Thus, it gives now the
definition of a universal approximator.

Definition A.4. A mathematical structure defining a class of functions G is considered
a uniwersal approrimator for the class functions Gs, if each f € Gy can be uniformly
approximated by G.

Thus, according to Jang et al. [8], the establishment of a broad class of universal
approximators is mere existence theorems and not constructive methods. The starting
theorem to establish the existence of universal functions approximators is the Stone-
Weierstrass theorem. This theorem provides a useful way to determine whether certain
approximators are really universal for a class of continuous functions and defined on a
compact set. The Stone-Weierstrass theorem is stated below (see [3,8,16]).

Theorem A.1 (T8). (Stone-Weierstrass). A continuous function f : D — R can be
uniformly approximated on D C R"™ by the class functions G if,

(1) The constant function g(x) =1, x € D belongs to G,

(2) If g1, g2 belong to G, a- gy + b+ gy will belong to G for every a,b € R,

(3) If g1, g2 belong to G, gy - g2 will belong to G, and

(4) If x1 # x5 are two distinct points in D, then there will be a function in g € G so

that g(z1) # g(z,).
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The Stone-Weierstrass theorem, which derives the real classical analysis can be used
to demonstrate that some neural network architectures have a universal approximation
capacity [3]. The Stone-Weierstrass theorem states conditions that warrant that neural
networks with MLP (Multilayer Perceptron) architecture or RBF (Radial-Basis Func-
tions), or Mamdani-type Fuzzy Inference System (see [8,16]) can approach any continuous
functions in the sense given by Definitions A.3 and A.4. So before listing some impor-
tant theorems taken from [16] concerning the theme of universal approximators, some
important functions used in neural networks theory are set up.

A sigmoid function is every continuous function in the form of “s”. An example of
such a function can be the hyperbolic tangent function (or tansig function) with horizon-
tal asymptotes in —1 and +1 given by the equation ¢(net) = m — 1. Another
example of sigmoid function can be the logistic function (or logsig function) with hori-
zontal asymptotes in 0 and —1 and given by the equation p(net) = m. Besides
these, there are other functions with “s” shape, but they are discontinuous. Two of them
are defined below.

Signal Function (Signum Function): a discontinuous function given by the equation

1 senet >0

or p(net) =¢ 0  senet =0 . Note that this
—1 senet <0

equation is the limit of A — oo in the hyperbolic tangent function.

Heaviside Function or Threshold Function: a discontinuous function given by equation
o(net) = 1 ifnet >0

0 ifnet <0
neuron in 1943. Note that this equation is the limit of A — oo in the Logistic function.

Note that the signal function and threshold are not sigmoid functions, since they are not
continuous. Given the definitions of these functions, one may list the following universal
functions approximators [16] that can be demonstrated from Theorem A.1.

1 senet > 0

¢(net) = sgn(net) = { —1 senet <0

This equation was originally used in McCulloch and Pitts

Theorem A.2 (T9). MLP networks of two layers, an inner layer of neurons defined by
the sigmoid functions or threshold function and a linear output are universal approrima-
tors for f € Gu(n, D), D = |a,b].

Theorem A.3 (T10). RBF networks defined by radial basis class functions G, =
{g(z) =30, aiexp(—vilzr — ¢i|*)} with a;,v € R and ¢; € R" for i = 1,2,...,p are
universal approzimators for f € Gu(n, D).

Theorem A.4 (T11). Fuzzy systems with triangular or Gaussian pertinence functions
in the input and a defuzzification that uses the average of the centers are universal ap-
prozimators for f € Ge(n, D), D = [a,b].

Appendix B. A Brief Summary of NARMAX Methodology. A universal approx-
imator of functions can be used to represent a non-linear dynamic system of the type given
by Equation (26) from a discrete set of input/output training patterns,

y=fly,u) (26)

In this equation, the function f(.) is invariant in time (see [2]). In order to do this,

it is usually assumed the possibility of approximation of the dynamic system given by
Equation (26) by a discrete model of NARMAX type, given by:

y(t+ At) = f(y(t),y(t — At), ..., y(t — nyAt);u(t),u(t — At),...,u(t — n,At)) (27)

where n,, n,, At are constants that must be adjusted depending on the problem being
addressed and the desired accuracy. This possibility is considered for the use of any
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universal approximator of functions to act as a discrete model as given by Equation (27).
For example, for the particular case of an artificial neural network, the size of the neural
network (number of layers and number of neurons per layer) can be adjusted to reach the
desired accuracy for a given choice of n,, n,, At.

At this point it is convenient to remember a similar situation that occurs when numer-
ical integrators and dynamical systems are used as in Equation (26), they are treated by
discrete approximations as in Equation (27). Neural networks of multi-layer perceptron-
type with one inner layer are sufficient to accomplish this representation task for virtually
any function found in many engineering applications [6]. It is important to observe that
the great difference between NARMAX methodology and the methodology that uses a
Euler type integrator with mean derivative is that in the first one, the universal approx-
imator outputs are the future values y(t + At), while in the second, the outputs are the
mean derivative functions at the instant ¢.



