International Journal of Innovative
Computing, Information and Control ICIC International ©)2016 ISSN 1349-4198
Volume 12, Number 5, October 2016 pp. 1721-1743

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS
USING MEAN DERIVATIVES, FUZZY LOGIC
AND GENETIC ALGORITHMS

MATEUS OLIVEIRA DE FIGUEIREDO, PAULO MARCELO TASINAFFO
AND Luiz ALBERTO VIEIRA DIAS

Computer Science Division
Technological Institute of Aeronautics
Praca Marechal Eduardo Gomes, 50 Vila das Acicias, Sdo José dos Campos/SP 12228-900, Brazil
mtsodf@gmail.com; tasinaffo@ita.br; 1_vdias@yahoo.com.br

Received November 2015; revised August 2016

ABSTRACT. Any mathematical function with a universal approximator of function’s fea-
ture can be used in the modeling of autonomous nonlinear dynamical systems. Such
modeling can always be numerically solved when seen or interpreted as a nonlinear pa-
rameters estimation problem. Among the best-known universal approrimators we can
mention these: artificial neural networks and polynomials of n dimension. Nevertheless,
there are other universal approzimators of this type such as fuzzy inference systems and
support vector machines. Therefore, what it is intended in this article is to use the Mam-
dani type fuzzy inference system with triangular pertinence functions and defuzzification
by the calculation of the center of gravity (centroids) in order to represent nonlinear
autonomous dynamic systems through the direct methodology of mean derivatives. The
IF-THEN rules of the fuzzy system are automatically obtained by means of a supervised
learning by using genetic algorithms. Three case studies of linear dynamic systems and
nonlinear are presented to validate this methodology.

Keywords: Fuzzy systems, Genetic algorithms, Universal approximators of functions,
Autonomous nonlinear dynamic systems, Fuzzy modeling for dynamic systems, Direct
mean derivatives methodology

1. Introduction. The modeling of dynamic systems is very important for the develop-
ment of mathematical tools (see [2,3]) that can be used for a better understanding of
phenomenon that occur in nature. In this sense, the nonlinear systems usually are those
which present a better representation for real systems. For being nonlinear systems, they
present, a greater mathematical complexity in its modeling.

Artificial neural networks have been much used in the modeling of nonlinear dynamic
systems in the last decades, because they have a high capacity of approximating nonlinear
mappings. Several studies were developed in this area by utilizing NARMAX (Nonlinear
AutoRegressive Moving Average with eXogenous inputs) methodology with latter appli-
cation in control (e.g., [1,7,10,11,14]). In addition to this, other methodologies were also
developed in the latest years like: instantaneous derivatives methodology (e.g., [9,12,17])
and mean derivatives methodology (e.g., [14-16,31]).

Alternatively, Fuzzy systems have been much used in control, prediction and pattern
classification. The main feature of Fuzzy systems is that they are built from Fuzzy Logic
and can accurately deal with vague information. Another important feature is that Fuzzy
systems, similarly to neural networks, are universal approximators. This is the main
motivation for this work, because from then on it is theoretically possible to substitute
artificial neural networks by Fuzzy systems in applications. There are several meaningful

1721

1722 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

works involving Fuzzy Logic as developed in [18-20,26-30]. Continuing this work, this
article intends to develop a methodology by using Fuzzy Logic and mean derivatives
functions for modeling of nonlinear dynamic systems. A Mamdani-type Fuzzy inference
system (see [27]) is specifically used to learn the mean derivatives functions.

It is important to note that, in this paper, the mean derivatives methodology is tested by
using an inference Fuzzy system in a different way of the one that occurs in [15,16], which
uses the mean derivatives methodology with artificial neural networks. The methodology
presented here is an alternative method to NARMAX methodology, which can be found
and described in detail in [7,10].

In addition to this, the mean derivatives methodology is also an alternative method
to the ones described in [9,12,17], which are methods that use instantaneous derivatives
instead of mean derivatives. Three linear and nonlinear case studies are proposed to
validate this methodology by using mean derivatives in a Mamdani-type inference Fuzzy
system. The Fuzzy system learns the mean derivatives functions by means of a supervised
learning, where the IF-THEN rules of Fuzzy system are automatically obtained through
the resolution of an optimization problem that uses a genetic algorithm. Thus, the IF-
THEN rules of the Fuzzy system considered do not need to be established by a human
expert. A mathematical and rigorous detail of mean derivatives method can be found in
[31]. Nevertheless, Algorithm 1 presented in Section 4 of this article briefly describes the
mean derivatives method.

This paper is organized into six sections. After introduction, there is a brief explanation
on genetic algorithms in Section 2. In Section 3, Fuzzy systems are described. Section 4
describes the two algorithms proposed in this article in algorithmic notation. They are
computationally compared in Section 5. Section 5 also refers to numerical outcomes for
three distinct case studies. General appreciation and conclusions are presented in Section
6. The whole implementation will be done in Matlab software.

2. Genetic Algorithms. An evolutionary algorithm can be defined as a search iterative
procedure inspired on biological evolutionary devices and can be directly related to system
optimization in engineering (e.g., [24,25]). Evolutionary Computing is the expression used
to name the line of research that handles with evolutionary algorithms. The main goal
of computing intelligence and therefore, of the evolutionary algorithms is to determinate
solutions to complex optimization problems. For example, evolutionary algorithms can be
applied to solving the following engineering problems: the traveling salesman, robotics (a
safe feasible way and collision-free which should be traversed by a robot), control theory,
economy, image processing and data mining problems, etc.

Based on this information, several evolutionary algorithms were proposed to solve com-
mon numerical optimization problems in engineering and numerical analysis. Among
them, genetic algorithms, evolutionary strategies, evolutionary programming, genetic pro-
gramming and classifier systems can be mentioned. All these algorithms together form a
field called Evolutionary Computing.

The basic concepts involved in genetic algorithms are relatively simple. Initially, they
originate from an initial chromosome population (e.g., ones and zeros strings or bits) which
evolve to a new population exclusively utilizing a kind of “natural selection” together with
mathematical operators inspired by genetics like selection, crossover and mutation oper-
ators (see [25]). Each chromosome consists of “genes” (e.g., bits) and each gene is an
instance of a particular allele (e.g., zero or one). The selection operator probabilisti-
cally chooses those chromosomes that will be allowed to reproduce in a given population
and thus, on average, the more adapted chromosomes will produce more offspring than
those less adapted [25]. The crossover will be responsible for exchanging subparts of

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1723

two chromosomes, clumsily mimicking the biological recombination between two simple
chromosomes (single-chromosome or haploid) deriving from two different organisms. The
mutation randomly varies the allele’s values in some specific localization of the chromo-
some.

When we watch the higher level “evolutionary rules”, they are extremely simple: species
involved in an environment which suffer random changes (through mutation, recombina-
tion end other evolutionary operators) that are followed by a natural selection process in
which the fittest specie tends to survive and reproduces itself, thus spreading its genetic
material to future generations. Therefore, by applying these evolutionary concepts to
computational engineering, it is possible to propose a basic evolutionary algorithm or a
pattern with the following features:

a) a population of applicants for solution (individuals with a genetic inheritance that
are able to exchange the genetic substance — crossover);

b) genetic variability and/or genetic mutation;

c¢) natural selection: individuals assessment in their environment by means of an as-
sessment or fitness function.

When all the previous steps: reproduction, genetic variability and selection had been
performed, one can say that a generation has occurred. In each iteration P is a population
containing N individuals P = {z1,2,,...,2y} (data structure). Fj, i = 1,2,..., N, is
the fitness function value of each population individual, and pc and pm respectively are
the probabilities of happening crossover and mutation. Thus, it is possible to propose
a pattern evolutionary algorithm like this: codification of variables (usually in binary
notation), creation of an initial population, assessment of response, crossing, natural
selection, crossover and mutation. The stopping criterion used is usually a stable number
of traversed generations or a determination of a satisfactory solution.

In evolutionary computation, the concept of Evolution is a solution search method (in
parallel) in a wide range of applicants submitted to variable conditions of adaptation.
The rules of evolution are simple enough: species randomly evolve being submitted to
natural selection before limited resources. The more adapted individuals survive and
reproduce themselves, by spreading their genetic substance to the following generations.
From this perspective, the evolutionary algorithms are numerical methods of optimization
that involve the creation of random numbers. Nevertheless, these methods are not purely
random, because genetic algorithms stand out in relation to those first, by requiring the
exploration of only a small fraction of the possible space for solutions. Classic genetic
algorithms also deal with: a stable size population; data structure of binary chain kind;
natural selection proportional to fitness via Roulette Wheel algorithm; simple crossover
and point mutation.

3. Fuzzy Logic. The main feature of Fuzzy Logic comes from its ability to infer con-
clusions and create responses from vague, ambiguous and qualitatively incomplete and
inaccurate information. Fuzzy Logic is based on Fuzzy sets theory. Fuzzy Logic can be
considered a generalization of the theory of traditional sets to solve the paradoxes created
out of the usual “true or false” arrangement of Classical Logic.

Human communication involves natural words that are often vague, imprecise, uncer-
tain and ambiguous. This way of communication is named natural language. Fuzzy Logic
is based on words and not on numbers, that is, values are linguistically expressed, for
example, hot, warm, fresh, and cold. In classical logic systems there are existential quan-
tifiers (3) and universal (V) only. In addition to those, Fuzzy Logic [20] acknowledges a
wide diversity of quantifiers (e.g., few, several, frequently, usually, and around five).

1724 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

Premise [:x is A"

Premise 2:If (x is A) then ¢ is B)

Consequence :y is B"

[Deuamteation |H—+

Precise
Outputs

X
. '(Fuzzification
Precise

Inputs

Inference

F1GURE 1. Blocks that compose a Fuzzy system

Fuzzy Systems are used to shape cognitive functions similar to higher order human
decisions. Their project can be divided in four stages (e.g., [8,13,21]) as schematized in
Figure 1: 1) a rule basis that reproduces the knowledge of a human concerning a specific
domain of application; 2) an inference device that indicates how to reason in relation to
the rules basis; 3) the fuzzification, which turns the input information into a shape that
can be used by the Fuzzy System and the 4) defuzzification that puts the conclusions of
an inference device in a proper shape to create an accurate output.

Fuzzy controllers use the Fuzzy sets and Fuzzy Logic (e.g., [22,23]) to implement a set
of rules concerning how to control a system. Thus, it is said that the Fuzzy controller
emulates the human cognition in a decision-making process, that is, it makes inference.
These are the processes that change the information so that it might be used by an
inference device (fuzzification), and transform the inference device actions so that they
might be used in practical application (defuzzification).

The main feature of Fuzzy modeling for systems and processes can be summed up as
follows: it is proper to describe complex systems with a reasonable amount of knowledge;
it is easy to select linguistic variables and corresponding values to be used in nebulous
rules in a relatively small category of words; the knowledge memorization is simpler and
allows more easiness in the communication of models with designers and analysts due to
the use of natural language.

3.1. Theoretical foundations of Fuzzy Logic. A Fuzzy system with multiple inputs
and one output (MISO) is a nonlinear mapping of an input vector x = [z, 29, ..., 7,|T €
R™ to an output y € R. In order to determine a MIMO (multiple-input/multiple-output)
Fuzzy system with m outputs, we simply define mMISO Fuzzy systems. The Fuzzy system
is featured by a set of p rules of the kind If-then stored in the rules basis and expressed
like:

Ri: If (:EléFlkle y .e:znéF,gl) then (gjéG“l)

: : : (1)
R,: If (;ﬁléﬁf”e y .e:znéﬁ,ip) then <yeG)

Here, Fb“ is the Ath linguistic value associated to a variable Z;, that describes an input
zp. In a similar way, G® is the Ath linguistic value associated to the linguistic variable y
that describes the output y. The linguistic variables vary in time and thus have a specific
linguistic value. In order to apply the knowledge represented by the linguistic rules, we

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1725

are to quantify the rules meaning by using the concepts of Fuzzy sets and Fuzzy Logic. In
particular, when the concepts of Fuzzy sets theory are used, the rules basis is expressed
as a set of Fuzzy implications of the kind:

Ry: If (Ff'e...eF!) then G

: : : (2)
R,: If (F{“pe...eF,ip) then G

where F}' and G* are Fuzzy sets defined by
Fba = {(l‘,upl;z(l'b)) Ty € R}

G* = {(y, pna(y)) : y € R} (3)

The pertinence functions jixa(z;) and pee(y) € [0, 1] describe how correct a particular
linguistic word is in numerical terms. There are several ways to define pertinence func-
tions. Nevertheless, both of the most used functions are triangular functions and Gaussian
curves.

Fuzzification. Fuzzification process is simply the process of obtaining values for the
inputs z; by calculating p(z;) to each of pertinence functions with input p.

The inference device. The premises of Fuzzy set are indicated by the Cartesian
product Fy X Fy x - -+ x F, of each rule with a pertinence function Hohi ol (z) that can

be obtained by using the t-norm, that is,
b (2) = g (1) % - % () (4)

That can be defined by the minimum operator (namely, x defined as minimum)

ikt () = min { (1), ()} (5)
or the product operator (namely, - defined as a conventional mathematical product)
bt (3) = g (1) - 1) (6)

among others. The t-norm simply quantifies the conjunction in each rule premise, be-
ing this the basic operation in Fuzzy Logic. Both of the approaches to quantify Fuzzy
implications for the Ith rule are:

luFlkz X---XFTlLi%Gai (‘/Ll7 y) = mln {/'I’Flkz X"'XFylLi (‘/'U)J /’LGai (y)} Y (7&)
and
MFlkix---xFTlf—)Gai (z,y) = /LFfix...foj () - pgai (y) (7b)

The use of one or another approach depends on how one desires to quantify Fuzzy
implications. For a given x, the pertinence function of the left sides of these two equa-
tions represents the conclusions reached by the inference device. This is named Fuzzy
implication sets.

Defuzzification. The defuzzification process converts Fuzzy implication sets into num-
bers that will be the system output. Generally, more than one rule will be applied in each
moment and therefore there will be more than one conclusion (i.e., more than one im-
plication about Fuzzy sets with non-null pertinence functions) obtained by the inference
device in each moment of time (i.e., the conclusions created by the inference device are the
Fuzzy implication sets where for the Ith rule, the pertinence function of Fuzzy implication
set is given by Pk Bl oy (x,y) with a specified). The defuzzification combines the

conclusions of all the rules and provides or offers a simple number that represents the

1726 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

conclusions. So, the defuzzification can be obtained by the determination of a center of
gravity that mathematically assumes the following shape:

p
Z.:ZICi‘T/‘MFfiXmXFTi«i_)Gai (l‘,T)dT
v=Flr) ="
> ‘[‘MFII%X'--XF#%G% (z,7)dT

=17

(8)
Here, ¢; is the pigei (y) center of area for the I'th rule. Another way to accomplish that

is through max-average norm, and y = F'(z) can be established like:

p

y=Fr)=

(9)

p

where each ¢; is the point in which pige; (y) reaches its maximum. It is assumed that Fuzzy
system is defined for all x € R", where one has fi (x) > 0 for at least one rule i,
1

so that Equations (8) and (9) are well defined.

Fuzzy rules can be provided by experts in the form of linguistic sentences of if-then
kind. The consistent determination of these rules consists in a foundational aspect for
the good performance in Fuzzy inference process. Nevertheless, drawing out rules from
experts cannot be an easy task. Therefore, there are automatic methods of drawing out
rules from numerical data. Though they are not presented in this paper, some of them can
be mentioned, for instance, the integration between Fuzzy inference systems and artificial
neural networks, what brings about Fuzzy-neuro systems, which has been proven suitable
for two important tasks: 1) tuning of the pertinence functions of both the input variables
(backgrounds) and the output variable (consequents); 2) for the automatic creation of
rules. However, if the tuning of the pertinence functions is manually or arbitrarily estab-
lished, one should always keep in mind that the higher the number of sets is assigned to
the backgrounds, the greater the difficulty of establishing a basis of consistent rules is;
always remembering that a very large basis of rules, besides being extremely difficult of
being manually obtained, inevitably causes a higher computational cost. In this paper,
an alternative methodology is developed to automatically create Fuzzy inference rules via
supervised training by using genetic algorithms. The Fuzzy inference system discussed in
this paper is the Mamdani-type.

1:
><...><Fnl

4. Proposed Algorithms. This section proposes two hybrid algorithms involving evo-
lutionary computation and Mamdani-type Fuzzy inference systems for numerical solution
of ordinary differential equations of first order systems, without considering control vari-
ables. The first algorithm is named Static Function methodology and the second, Dynamic
Functions methodology. The essential idea behind these two algorithms is to use a super-
vised learning technique, which calibrates the Fuzzy inference system by using a genetic
algorithm. The Fuzzy system is projected in such a way that the mean derivatives might
be obtained by direct methodology in its output.

4.1. Static Functions Methodology. The Static Functions Methodology is so called
because the pertinence functions of Fuzzy system sets both the input and output are not
changed over the generations of the genetic algorithm. Thus, the only difference from one
system to another is its inference rules that are changed.

First of all, one must establish how many Fuzzy levels each one of the inputs and outputs
must have. In fact, each Fuzzy level is a Fuzzy set that classifies an input or an output.

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1727

4 A, A; Ay As

FIGURE 2. Pertinence functions for five levels inputs

The number of levels corresponds to the number of Fuzzy sets that are used to classify
the input. So, by considering that the input ¢ has N levels, it means that this input has
N!. The pertinence functions for the N! = 5 case are shown in Figure 2. Note that there
are two trapezoidal levels on the extremes and triangular intermediate levels.

The presented levels are calculated like the following. The input interval is divided
into N! + 1 intervals of the same size. The triangular functions are built in such a way
that its maximum (place where they reach a degree of pertinence equals one) is on the
extreme of one of the intervals, and the points where the degree of pertinence is zero
are the extremes of the neighboring intervals (see details in Figure 2). Concerning the
trapezoidal functions, the first trapezoidal function has value “one” until the end of the
first interval and then, it decreases to zero at the end of the second interval.

When the number of input variables (n.), the number of output variables (ny), and the
number of input and output levels are defined, it is necessary to establish the rules. The
Fuzzy system rules will follow this model:

Ri: (If7,é X! eigé X}e ... €T, éX) then

B eV, Ga 6 Y2, . €Y (10)

The number of rules of the system can be calculated by the multiplicative principle.
Each input variable may assume each one of the linguistic values N’. The number of
rules of the system is shown in Equation (11). Each one of these rules must prescribe the
output variable values, that is, values should be established for each one of the ng (one
for each of the outputs).

Ne
Number of Rules = H N! (11)

i=1
The chromosomes of the genetic algorithm represent this set of rules. The output
variable y; needs a linguistic value Y/ for each one of the rules, so, for each output

Ne)

variable, [N! integers are needed to represent these linguistic values, and each one of
i=1

these integers is associated to one of the N Fuzzy sets of the y; output. Thus, the

Ne)
chromosome for the genetic algorithm should have [] N! integers for each output, which
i=1

1728 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

makes that the chromosome size is the value presented in Equation (12).

Ne
Chromosome Size = n, H N (12)

i=1
Consider a system as described in n, = ng; = 2, where each one of the inputs and outputs
has two levels. The Fuzzy sets for the input x; are A; and Ay, for the input x5 they are B,
and Bs, for the output y; they are C; and C5 and for the output Yo they are Dy and Ds.

For this system, there is a total of four rules <H N} = H Ni=N!-N2=2.2= 4)

=1 =1
example of a chromosome with its generated rules is shown below.

Chromosome: 1212121 2]

and an eight-size chromosome (nSHN1—2 [[N.=2-N;-N=2-2 2—8> An

1.If (z1 € Ay) e (z2 é By) then (y; é Cy) e ()
2. If (1 é Ay) e (x9 é By) then (y; é Cy) e (ya2 € Ds)
3. If (z1 é Ay) e (29 é By) then (y; é C) e ()
4.1f (21 € Ay) e (x5 é By) then (y; é Cy) e (y2 € Do)

The tabular representation of the previous chromosome can be seen in Table 1. The
first four bits of the chromosome refer to the rules of the first output variable, and the
last four bits of the chromosome are related to the rules of the second output variable.

Yo € Dy

Yo € Dy

TABLE 1. Table representation of rules

11, Output Variable 1o Output Variable
1'1/1'2 Bl Bg .ZL'I/.ZL'Q Bl BQ
A1 01 Cl Al Dl Dl
Ag CQ 02 A2 D2 D2

Based on the above in this section and in the previous sections, it is possible to formulate
a general algorithm for the Static Functions methodology. This algorithm can be divided
into three phases or stages as described as follows:

a) Phase 01 — Obtainment of a training pattern;

b) Phase 02 — Evolutionary training of the Fuzzy system;

c¢) Phase 03 — Test and simulation of learning model.
Algorithm 1: Static function methodology (without considering control vari-
ables).
a) Phase 01 — Obtainment of a training pattern.

1. Given the finite domains of interest [y"(to), y (¢ o)]" into for j = 1,2,...,n of
state variables, ¢ random values are generated according to a uniform distribution
within these intervals like:

i i i T .
P = [yl(tg) ys(to) - - .yn(tg)] ,fori=1,2,...,q (13a)
or
P=1[pi:p2:...: Dylnag (13b)

where n is the total number of state variables, and ¢ is the total number of training
patterns.

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1729

2. By using a high-order integration, all the p; initial conditions are propagated to
1=1,2,...,q for the state obtainment in the ¢, + At instant, that is,

P = [y (to + A1) yh(to + At) .. yi(to+ AD] T, fori=1,2,... ¢ (14a)

or
PR ptipet e :pﬁt] (14b)

3. The T; output vectors or output training patterns of the Fuzzy system should be
established (direct methodology of mean derivatives) like (see [31]):

nxq

1 : i T
Ti=%; [yt + At) — i (to) yb(to + At) — yilto) ... yi(to + AL) — yi (to)] (152)
= [tanmkai tanAtkaé .. .tanAtkaHT = tanAtkai, fori=1,2,...,q
or
T=[T:Ty:...:Ty|nag (15b)

4. The matrices P,;, and T,,, form the training patters that will be evaluated by
the hybrid training system by using Fuzzy logic and genetic algorithms in stage 02.
Note that once specified the value of the At integration step, it cannot be modified

anymore.
5. The input/output training patterns should be normalized through the expressions
Py, = pie - Poyg and Ty = pi Tz, Where p, and p, are respectively the maximum

values in the modulus of the component elements of the matrices P,;, and T,,.
Alternatively, one might have a distinctive normalization factor for each line of the
matrices Py and Th,zy.

Phase 02 — Evolutionary training of Fuzzy system.

1. Start from the training matrices P} and T, obtained in phase 01.
2. Precisely establish the number of input variables (n.) and the number of output
variables (n;). Note that in this case, n, = ny = n, because the Fuzzy system inputs

are y1(t),y2(t),...,yn(t) and the outputs are tana; Fal, tana; Fad, ..., tana; ¥al as
illustrated in Figure 3.

3. Consider N’ for i = 1,2,...,n the total number of the linguistic values of the input
variable i and N7 for j = 1,2,...,n the total number of the linguistic values of the

output variable j. In such a way, establish the total number of Fuzzy system rules
given by NR (Number of Rules) = H N! = [] N! and the size of chromosome (SC),
i=1 i=1

Ne . n .
in order to represent all the rules given by SC = ng [[N: =n [] N..

=1 =1
O — \ A/ I\‘\ NS e
/ .
¥20 —— ‘.f \ / \‘\/ \\ : — ol
. /K / \ “fl /\ :
¥a(0) —b- /I \ brr \Uf \\ ;f \ —.- tan " o]

FIGURE 3. Configuration of the input/output variables projected in
Mamdani-type Fuzzy system

1730

4.

M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

Output Variable 1 Qutput Variable ps=n

- NR length - NR length

- each bit with um integer value on the interval [1, Ns] - each bit with um integer value on the interval [1, Ng*]

- TC length

FIGURE 4. Pattern configuration of each chromosome to represent a specific
Fuzzy set of rules for the system considered in Figure 3

Each chromosome of the genetic algorithm must have an SC length and represents a
set of specific rules of the Fuzzy system in question. Each chromosome bit value is an
integer value obtained from N7, for j = 1,2,...,n. For example, where N7 = r, the
integer values allowed for N7 should be confined within the range [1,7] (see Figure
4).

. Do m =1 until NIP (Number of Individuals in Population)

5.1 Randomly generate a chromosome (), with the configurations as specified in
step 4.

n q
5.2 For the chromosome C,, calculate EQM,, = Y & >3 L (tank, *a’ — tanX, ka;)
j=1" =11

where EQM,, is the mean square error of all ¢ training patterns (each training

pattern is submitted to a fuzzification and defuzzification process), n is the total
k51

tanay Yok . .
number of state variables, tanN kaj = TJ is the value of the normalized
tanAtka
mean derivative desired or goal, and tan?}, kaj = ——1 is the value of the

normalized mean derivative estimated by the Fuzzy system which has a set of
rules specified by the chromosome C,.

5.3 Estimate the fitness function (f,,) of the chromosome C,,, mathematically given
by fm = EQ v . Note that it is desired to find an excellent chromosome given by
C}, that might minimize EQM,, value, but it is needed to use the inverted value
of EQM,, since the genetic algorithms naturally are maximization algorithms.

5.4 Alternatively, instead of directly using the fitness function value, one may choose
the rank selection technique. For example, the most adapted individual receives
the rank 1, the second most adapted individual receives the rank 2 and so on.
The size of the roulette slice for each of the individuals would be proportional

to 1/ Vrank:
End m
NOTE: once that NIP is established, it cannot be modified anymore.

. Start the application of the evolutionary algorithm.

6.1 Randomly create the chromosomes C,Cy,...,Cxnrp of the initial population,
with their fi, fo,..., fnrp respective fitness functions, as specified in step 5.
6.2 Do m = 1 until NTG (Number of Total Generations)

O
Initial Population (IP) < : = [C'IT :CF - C’NIP]

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1731

fi
Fitness Function (FF) <« : =[fife... fN[p]T
Inip
ARW = [CT : ... : C&p] & Reproduction through Roulette wheel
algorithm (IP, FF)
AOM = [C{T :. CX,ZGP] « Apply Mutation Operator (AMO)
Pl + AOM (Replacement of the current population for the next population)

End m

Phase 03 — Test and simulation of the learning model.
kyi « Vector p = [y1(to) y2(to) - - - yn(te)]” (Initial Condition)
Do i =1 until H (S1mulat1on Horizon)
kyis p (Normalization of the Initial Condition)

tan kad fSFM[vy fsex[.] = Normalized Fuzzy System
tanp, Fal ps tangt k * (Desnormalization of Mean Derivative)
k-l—lyz _ tanAt kaz At + kyi
kyi ¢ bty
End i
With the description of the three phases of this algorithm, the description of Static

Functions Methodology is ended. In the following section, it is possible to realize that
step 4 of Phase 02 can be improved, which leads to an enhancement in the learning of the
considered systems. This new methodology was conveniently named Dynamic Functions
Methodology.

4.2. Dynamic Functions Methodology. Dynamic Functions Methodology is so called
because the pertinence functions of the output Fuzzy sets are modified and/or dislocated
on the Cartesian axis along the generations of the genetic algorithm.

In this new methodology, the linguistic values of the input variable ¢ keep on being any

integer number given by N’ for 1 = 1,2,...,n Which must be accepted. The number of
rules also keep on being NR (Number of Rules) = H N! = J] N¢ for the specific case
=1

of n, = ny = n. Nevertheless, the number of l1ngu1st1(: Values of the output variable
j necessarily is equal to the number of rules, that is N7 = H N for j = 1,2,...,n
i=1
Therefore, the linguistic values of output variables are tied to the NR value. In this new
methodology, every rule of Fuzzy set of rules has a distinctive and unique trapezium as
an output, which can or cannot be symmetrical and may also have its center dislocated
in Cartesian axis. Since it takes at least five dimensions to characterize a trapezium in
the Cartesian axis (see Figure 5), the chromosome size for this methodology necessarily

needs to be equal to C'S =5 x n, x H Ni=5xnx H N!. Tt is important not to puzzle
=1
the chromosome size (CS) with the total number of output levels (TNOL) of pertinence

functions. The TNOL variable has an n X H N! dimension, that is, five times less than

i=1
CS.

Each one of these output levels must contain an associated Fuzzy set. All these sets have
a trapezoidal shape. The trapeziums were chosen because a triangle can be considered
a degenerate trapezium (if the two points of the lower base coincide), and this is good
because it continues to assert the theorem that states the Fuzzy systems with triangular
pertinence functions are universal approximators of functions.

1732 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

b1 b2
|4—|- -~

Bl c B2

FiGure 5. Graphical representation of chromosome values

\ /
06 | \ } \/ \ ,f 1

\ |

Pertinence Functions
.
e

Output

FIGURE 6. Pertinence functions of the output variable for chromosome 1

In order to define a trapezium in each one of these Fuzzy sets, five values are used,
which are: center (c), by, By, by and By. Center (c) represents a reference to other four
values. As it can be seen in Figure 5, b; is the size of the smaller base on the left of the
center, and by + Bj is the size of the bigger base on the left of the center. Values b, and
b, + By are analogous, but for the right side of the center. Figure 5 represents the five
values which define the trapezium. Reiterating it, the chromosome of this methodology
has a size equal to five times the number of output levels.

For example, for the specific case of Figure 6, the values used to define each chromosome
are real numbers in which the center varies in the interval [—1, 1] and by, By, by and By, and
varies in the interval [0,0.5]. As an example given, for a system of n, = 2, N! =2, N? =2

Ne
and n, = 1, the number of output levels is ng X [[N! =1 x N} x N2=1x2x2=4.
i=1
Each of these levels requires five values to define their respective trapeziums, causing
the chromosome has twenty real values. This system rules, as well as the examples of

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1733
chromosomes and the generated systems, are shown below and in Figure 6.
1. If (21 € Ay) e (z2 € By) then (y; é CY)
2. If (x1 é As) e (z9 é By) then (y; é Cs)
3. If (x1 é Ay) e (z9 é By) then (y; é Cs)
(

4. If (1 € Ag) e (x9 é By) then (y; é Cy)

If the chromosome which represents this set of rules is defined by [~1 0 0 0.25 0.25
~0.25 0.125 0.125 0.125 0.125 0.25 0.125 0.125 0.125 0.125 1 0.25 0.25 0 0], it generates
the output rules as schematized in Figure 6. It is important to note that Dynamic
Functions Methodology is only different on step 4 of Phase 02 when compared to Static
Functions Methodology. The chromosome size (CS) required by the Dynamics Functions
Methodology has a factor of 5 times the size of the chromosome of the Static Functions
Methodology. All other steps of the three phases of algorithms proposed in the previous
section continue unchanged for this new methodology.

It is still useful to note that, at the first sight, the Static Functions Methodology
approximates a finite number of functions, because the number of combinations of different
rules, however vast, still is finite. Nevertheless, the Dynamic Functions Methodology
presents continual changes on the output sets and, therefore, the number of approximated
functions becomes infinite.

5. Numerical Outcomes. The methodology outcomes are shown for solving systems
of differential equations (ODES). Equations are solved in a specific interest domain in
which the extremes of this domain serve for the normalization and denormalization stages
of input and output. The equation system used to verify the efficiency of methods is
presented as follows. All the presented systems are autonomous, that is, they are of the
kind & = f(z), in which derivative functions are independent from time.

5.1. Ordinary differential equations systems (ODES) for test.

Example 5.1. Simple Pendulum. This system of equations is quite simple and was chosen
to verify whether the generated approxrimators are able to adapt to this first test. Besides
being linear, this system has the advantage of making the solution a linear combination of
sine and cosine, which creates a solution within an easily found domain.

{ = (16)

i’g = —I

Example 5.2. Simple Pendulum with air resistance.

.',i,’l = T2

{ Ty = —9 - sen(xy) — k- 1y (17)
Example 5.3. Control loop with relay. Figure 7 displays the blocks diagram of the control
system in question. Equation (18) shows the differential equations system that represents
the considered system.

Ty = Ty

10, sedp—x>1
To=<¢ —10, seb—x <1

0, for another chaos

(18)

1734 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

\/

Ficure 7. Blocks diagram of control loop with relay

TABLE 2. Fuzzy training system data using static methodology and seven
input and output levels for the problem of the simple pendulum

Input Number: 2
Output Number: 2
Total of Training Points: 3025
Input and Output Levels -
(of pertinence functions):
Integration Step: 0.01
Population Size: 20
Training Domain: [—1.10 1.10] x [—1.10 1.10]
I I I I E Trainling Points ||
- Test Points
10** s
10** e
10** .
107§ .
10*° r ‘ ; . 7
10| . ='.._1, b ;:‘ ,E" li '1| I' ,'{"l. ‘ |l .. .3 | i .Z.; il | !“ |
1 l: 1 & R | ik “| :I-."'? I 'h"."‘lr‘.
0 2000 4000 6000 8000 10000 12000 14000

FiGure 8. Evolution of populations in the training system

5.2. Static Functions Methodology outcomes. First of all, the outcomes of Static
Functions Methodology are demonstrated for the problems of the simple pendulum and
simple pendulum with air resistance. Table 2 reveals the training patterns for the sine
function learning. Figure 8 presents the evolution of mean square error along the popu-
lations, the continuing line exemplifies the mean square error of the population average

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1735

15 fuzzy x1
...... fuzzy x2
X1

FIGURE 9. Propagation of Fuzzy system to the initial condition [0 1]

TABLE 3. Training patterns for simple pendulum with air resistance and
eleven input levels

Input Number: 2
Output Number: 2
Total of Training Points: 3025
Input Levels 1
(of pertinence functions):
Integration Step: 0.01
Population Size: 20
Training Domain: [—1.10 1.00] x [—2.00 2.00]

concerning the training points and the dashed line represents the mean square error re-
lating to test points. Figure 9 demonstrates the propagation of the solution found for the
initial condition [0 1].

The following outcomes refer to static function methodology for the problem of simple
pendulum with air resistance. The training patterns are displayed in Table 3. Figure 10
presents the evolution of mean square error along the populations. Figure 11 reproduces
the propagation of the solution found for the initial condition [0 1].

5.3. Dynamic Functions Methodology outcomes. In this section, we show the out-
comes obtained for the Dynamic Functions Methodology. Firstly, the outcomes for sine
learning are presented. Table 4 reveals the configuration of training patterns for the
sine function learning. Figure 12 demonstrates the evolution of mean square error along
the populations. Figure 13 shows the solution obtained by this method for the initial
condition [0.5 0.5].

1736 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

10" Training Points

.............. Test Points

10°21L N

10731 a

10°*H .

3.5

10°7 L Il :~; ; MR I"!' 'I . RATRPIRL R |
1 1 1 1 ! |
0 1000 2000 3000 4000 5000 6000 7000

Ficure 10. Evolution of populations in the training system

1 5 T T T T
fuzzy x1
2 I fuzzy x2
1L x1 _

FIGURE 11. Propagation of Fuzzy system to the initial condition [0 1]

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1737

TABLE 4. Training patterns for sine function learning using the Dynamic
Functions Methodology

Input Number: 2
Output Number: 2
Total of Training Points: 3025

Input Levels

(of pertinence functions): g
Integration Step: 0.01
Population Size: 40
Training Domain: [—1.50 1.00] x [—1.30 1.00]

10° C T T T T T T
[Training Points
Test Points

10°}

107+

107

) | [T e WA ey t I . -
0 500 1000 1500 2000 2500 3000 3500 4000

FI1GURE 12. Evolution of populations in the training system

Table 5 demonstrates the configuration of the initial parameters for the learning of
simple pendulum with air resistance and tree input levels. Figure 14 displays the evolution
of mean square error along the populations. Figure 15 shows the propagation of the
solution for the initial condition [0 1]. Finally, Figures 16 and 17 exemplify the trapeziums
configurations obtained by this method in order to create the pertinence functions for the
outputs x; and xy achieved by the best chromosome of the genetic algorithm. Figure 18
reveals the same problem, but it was resolved by using nine input levels. Note that the
outcome has much improved when compared to the solution presented in Figure 15, where
only tree input levels were used for pertinence functions. The resulting trapeziums were
omitted in Figure 18 due to their great number; in fact, they are 9 x 9 = 81 trapeziums
for the output pertinence functions.

The outcomes of dynamic function methodology for the loop control with relay are
presented in the following. The outcomes for this dynamical system are only presented in
relation to the dynamic methodology, since the static methodology did not perform good
results for the two previous problems.

Table 6 shows the configuration of initial parameters for the relay control system learn-
ing with nine input levels. Figure 19 displays the evolution of mean square error along

1738 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

0.8 T T T T

FIGURE 13. Propagation of Fuzzy system for the initial condition [0.5 0.5]

TABLE 5. Training patterns for the simple pendulum learning with air
resistance by using Dynamic Functions Methodology

Input Number: 2
Output Number: 2
Total of Training Points: 3025
Input Levels 3
(of pertinence functions):
Integration Step: 0.01
Population Size: 40
Training Domain: [—1.50 1.00] x [—1.30 1.00]

the populations. Figure 20 demonstrates the propagation of the solution for the initial
condition [0 1].

6. Conclusions. Concerning the practical outcomes, the following conclusions are drawn
from this paper. It is a fact that the work has achieved another goal, which is to imple-
ment an approximator of Fuzzy functions to approximate solutions of ordinary differential
equations systems. Two implementations were created with this goal: the Static Func-
tions Methodology and the Dynamic Functions Methodology. As the main contributions
one may cite:

1. The use of Fuzzy systems as function approximators as a substitutive for neural
networks;

2. Automatically creation of complex Fuzzy systems;

3. The use of Fuzzy systems for dynamic systems behavior learning;

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1739

107

Training Points
Test Points

107 -

)

10
0

1 1 1 1 1
2000 4000 6000 8000 10000 12000

FI1GURE 14. Evolution of populations in the training system with nine levels

T
i

e fuzzy X1
08 fuzzy 2 7
| x1

FIGURE 15. Propagation of Fuzzy system for the initial condition [0 1] with
three input levels

4. The use of genetic algorithms for Fuzzy systems training.

Nevertheless, some difficulties were evidenced. The static functions methodology did
not reach the desired outcome. When Fuzzy systems were fed back, they did not pursue
the estimated solutions through Runge-Kutta method. In the cases of test examples, the
system did not exceed squared errors of the order of 107°. This caused the solution was
not approximated in the correct way. And besides, this methodology cannot be tested

1740 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

1.0
0.8
0.6 |

0.4

Pertinence Functions

-1 -0.5 0 0.5 1
Output Variable xI

FIGURE 16. Trapeziums configuration of Fuzzy system for the output x;

1.0
0.8
0.6

0.4

Pertinence Functions

Output Variable x2

FiGUuRrE 17. Trapeziums configuration of Fuzzy system for the output xy

TABLE 6. Training patterns for control loop learning using the Dynamic
Functions Methodology

Input Number: 2
Output Number: 2
Total of Training Points: 3025

Input Levels

(of pertinence functions): 9
Integration Step: 0.01
Population Size: 20
Training Domain: [—1.00 11.00] x [—10.0 10.00]

for more input levels due to two problems: 1) systems with two inputs have quadratic
running time with the number of input levels and 2) the chromosome size quadratically
varies with the number of entries levels, too. The first factor makes that the running
time of populations increases very quickly and the second causes an increase in the search
space, so that the genetic algorithm needs additional generations to achieve a desired
error. Therefore, the static functions methodology did not become suitable for the skilful
computation time.

The dynamic functions methodology has demonstrated better outcomes by obtaining
mean square errors in the order of 107% and 1077, and it was able to follow the solution

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS

0.8

fuzzy x1
fuzzy x2
X1

FIGURE 18. Propagation of Fuzzy system for the initial condition [0 1] with
nine input levels

10°

Training Points
- Test Points

10" 1 1 1 1 L
0 2000 4000 6000 8000

10000 12000

F1GURE 19. Evolution of populations in the training system with nine levels

obtained through Runge-Kutta method. The outcomes have proved satisfactory for sys-
tems with up to two inputs. For systems with more number of inputs, the same problems

faced by the previous methodology made the Dynamic Functions Methodology unsuitable
due to the computation time demanded.

1741

1742 M. O. DE FIGUEIREDO, P. M. TASINAFFO AND L. A. V. DIAS

15 T T

FIGURE 20. Propagation of Fuzzy system for the initial condition [0 1]

Using Matlab proved to be a good choice on one hand, on the basis of Fuzzy Logic
packages and Genetic Algorithms, but a poor choice because the source codes are not
available, and therefore it was not possible to evaluate whether the defuzzification might be
optimized. Finally, if three inputs Fuzzy system is used, the rule matrix “If-then” is three-
dimensional and, generally, for n inputs we have a matrix of n dimension. This brought
several limitations to the methodology presented in this paper for it to be generalized for
the general case of n inputs. In addition to this, few publication presents Fuzzy systems
that were trained from genetic algorithms.

Acknowledgments. Initially, the authors of this article would like to thank for the
excellent technical review and good written suggestions made by the reviewers of this
paper. We would also like to thank the Technological Institute of Aeronautics (ITA),
Casimiro Montenegro Filho Foundation (FCMF) and the 2RP Net Enterprise staffs for
sponsoring this research.

REFERENCES

[1] S. Chen, S. A. Billings and P. M. Grant, Non-linear system identification using neural networks, Int.
J. Control, vol.51, no.6, pp.1191-1214, 1990.

[2] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, New Jersey, Networks Series, Electrical
Engineering Series, 1978.

[3] L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations, Academic
Press, New York and London, 1971.

[4] N. E. Cotter, The Stone-Weierstrass and its application to neural networks, IEEE Trans. Neural
Networks, vol.1, no.4, pp.290-295, 1990.

[5] G. Cybenko, Continuous Valued Networks with Two Hidden Layers are Sufficient, Technical Report,
Department of Computer Science, Tufts University, 1988.

[6] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approxi-
mators, Neural Networks, vol.2, no.5, pp.359-366, 1989.

MODELING AUTONOMOUS NONLINEAR DYNAMIC SYSTEMS 1743

[7] J. K. Hunt, D. Sbarbaro, R. Zbikowski and P. Gawthrop, Neural networks for control system — A
survey, Automatica, vol.28, no.6, pp.1083-1112, 1992.

[8] J. S. R. Jang, C.-T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence, Prentice-Hall, Inc., 1997.

[9] R. P. Melo and P. M. Tasinaffo, Uma metodologia de modelagem empirica utilizando o integrador
neural de multiplos passos do tipo Adams-Bashforth, Sociedade Brasileira de Automdtica (SBA),
vol.21, no.5, pp.487-509, 2010.

[10] K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural
networks, IEEFE Trans. Neural Networks, vol.1, no.1, pp.4-27, 1990.

[11] K. S. Narendra and A. U. Levin, Control of nonlinear dynamical systems using neural networks:
Controllability and stabilization, IEEE Trans. Neural Networks, vol.4, no.2, pp.192-206, 1993.

[12] A.R. Neto, Dynamic systems numerical integrators in neural control schemes, V' Congresso Brasileiro
de Redes Neurais, Rio de Janeiro-RJ, Brazil, 2001.

[13] J. T. Spooner, M. Maggiore, R. Ordénez and K. M. Passino, Stable Adaptive Control and Estimation
for Nonlinear Systems Neural and Fuzzy Approzimator Techniques, Wiley-Interscience, New York,
2002.

[14] P. M. Tasinaffo, Estruturas de Integracio Neural Feedforward Testadas em Problemas de Controle
Preditivo, Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais -INPE, Sdo José dos Campos,
Brazil, 2003.

[15] P. M. Tasinaffo and A. R. Neto, Mean derivatives based neural Euler integrator for nonlinear dynamic
systems modeling, Learning and Nonlinear Models, vol.3, no.2, pp.98-109, 2005.

[16] P. M. Tasinaffo and A. R. Neto, Predictive control with mean derivative based neural Euler integrator
dynamic model, Sociedade Brasileira de Automdtica (SBA), vol.18, no.1, pp.94-105, 2006.

[17] Y.-J. Wang and C.-T. Lin, Runge-Kutta neural network for identification of dynamical systems in
high accuracy, IEEE Trans. Neural Networks, vol.9, no.2, pp.294-307, 1998.

[18] P. Shi, Y. Zhang, M. Chadli and R. Agarwal, Mixed H-infinity and passive filtering for discrete fuzzy
neural networks with stochastic jumps and time delays, IEEE Trans. Neural Networks and Learning
Systems, 2015.

[19] R. S. Guimaraes, V. S. Junior and P. M. Tasinaffo, Multipolar-valued fuzzy sets to deal with the
cognitive ambiguities, International Journal of Innovative Computing, Information and Control,
vol.11, no.6, pp.1965-1985, 2015.

[20] F. A. C. Gomide and R. R. Gudwin, Modelagem, controle, sistemas e lgica fuzzy, Sociedade
Brasileira de Automdtica (SBA), vol.4, no.3, 1994.

[21] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intel-
ligence, Prentice-Hall, Inc, New Jersey, 1992.

[22] L. Zadeh, Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965.

[23] L. Zadeh, Fuzzy logic, IEEE Computer Society Press, vol.21, no.4, pp.83-93, 1988.

[24] L. I. Kuncheva, Initializing of an RBF network by a genetic algorithm, Neurocomputing, vol.14,
pp-273-288, 1997.

[25] M. Mitchell, An Introduction to Genetic Algorithms, First MIT Press Paperback Edition, 1998.

[26] B. Kosko, Fuzziness vs. probability, International Journal of General Systems, vol.17, no.2, pp.211-
240, 1990.

[27] E. H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, Proc. of the
Institution of Electrical Engineers, vol.121, no.12, pp.1585-1588, 1974.

[28] E. H. Mamdani, Applications of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE
Trans. Computers, vol.c-26, no.12, pp.1182-1191, 1977.

[29] T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and
control, IEEE Trans. System, Man and Cybernetics, vol.SMC-15, no.1, pp.116-132, 1985.

[30] R. S. Guimaraes, V. S. Junior and P. M. Tasinaffo, Implementing fuzzy logic to simulate a process
of inference on sensory stimuli of deaf people in an e-learning environment, Computer Applications
in Engineering Education, vol.24, no.2, pp.320-330, 2016.

[31] P. M. Tasinaffo, R. S. Guimaraes, L. A. V. Dias, V. S. Jdnior and F. R. M. Cardoso, Discrete
and exact general solution for nonlinear autonomous ordinary differential equations, International
Journal of Innovative Computing, Information and Control, vol.12, no.5, 2016.

