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ABSTRACT. In this paper, a theoretical approach is taken to propose how to find out a
parable interpolation between two successive points derived from the solution of an au-
tonomous nonlinear dynamic system without the need of precisely knowing a third point.
However, it is necessary to represent the mean derivative functions of the solution of
this dynamic system by a universal functions approximator that uses the simple Euler
integrator structure to obtain the discrete solution for this same system. In this way,
the parable interpolation allows the variability of the integration step size with relevant
success, although each interpolation of that original discrete solution has a particular and
different parable. Two important theorems of differential and integral mean values are
used to reach this goal.

Keywords: Autonomous ordinary nonlinear and linear differential equations, Neural
numerical integrators, Neural networks, Fuzzy systems, Universal functions approxima-
tors, Direct mean derivatives methodology

1. Introduction. Neural networks and fuzzy logic have been used for the identification
of dynamic system and application in control theory involving nonlinear autonomous
dynamic systems for project and simulation of real world plans (e.g., [4,8,11,14,16,19-
21]). The usual approach in control schemes is the one that uses NARMAX inputs/outputs
(nonlinear autoregressive moving average with exogenous inputs) to approximate dynamic
systems (see [4]).

An alternative to solve this kind of problem is to use a numerical integrator (e.g.,
[9,10,23]) for ordinary differential equations (ODE) together with feedforward network (see
[12,13,15]) and therefore, when this set is used simultaneously, there are some advantages
as listed as follows: (i) the network only needs to learn the instantaneous derivative
functions or rates of change of system states that are only a static function in themselves,
(ii) the network can predict the system behavior at any time [12] and not for a fixed time
step as it happens in the NARMAX method, and (iii) local errors can be adjusted by
evaluating methods that automatically vary the order of the integrator step size.

In this way, Wang and Lin [12] introduced the RKNN’s (Runge-Kutta neural networks)
term into artificial neural networks literature for mapping nonlinear dynamic systems. An
application that uses neural numerical integration of fourth order with Adams-Bashforth
structure for training dynamic systems and its respective application in control theory
was performed in [22].

The control theory using neural numerical integrators was recently introduced (e.g.,
[18,22]) and the first important feature about it is the difficulty of using a numerical
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integrator with higher order because there are many inherent obstacles to determine the
gradient function that combines feedforward network sets and numerical integrators which
uses backpropagation concept.

In this way, mean derivatives functions were elaborated inside a Euler integrator or
first order integrator with fixed time step size (e.g., [17,24,25]), where the neural network
is used only as a mean derivative of the original system and not as instantaneous deriv-
ative anymore. This has the great advantage of simplifying the backpropagation that is
present in the training of the neural network and also in the neural predictive control
and adaptative theory. However, the mean derivative method has only a discrete solution
with constant step size and for this reason, this paper has the purpose of allowing the
variation of integration step size in the solution obtained by Euler integrator, which uses
mean derivative functions through a parable interpolation between two successive points
without the need of a third intermediate point.

As described below, in Section 2, Euler neural integrator structure that uses mean
derivatives for the solution of a nonlinear dynamic system is presented in a concise way.
In Section 3, the complete mathematical reasoning for the development of parable inter-
polation by using differential and integral mean values theorems is presented in order to
change the mentioned method for the variable step size method. Section 4 elaborates the
conclusion of this work.

2. Mean Derivatives Methodology. In this section, it firstly presents the fundamental
concepts that support the possibility of getting a nonlinear dynamic system model through
Euler numerical integrators by using mean derivative functions. Qualitative properties of
first order nonlinear autonomous dynamic systems are considered to prove the possibility
of using some universal approximator of functions (e.g., [1-3,11,16]) as mean derivative
functions inside Euler neural integrators.

These theoretical results support the possibility of obtaining a discrete model for a
dynamic system by using a feedforward neural network that represents mean derivatives
in the structure of a Euler integrator. The capacity of neural networks to represent
nonlinear functions and the use of mean derivatives, instead of instantaneous derivatives,
allows the accuracy of any high order integrator by using a first order Euler structure
only. This means that there is a meaningfully less complex discrete model to be used in
simulations.

Being the autonomous system of nonlinear ordinary differential equations,

J=f(y) (L.a)

where,
Yy = [yl Ya ... yn]T (1-b)
f) =1 fo) .. @] (1.c)

Consider also by definition, y: = yi(t) for j = 1,2,...,n a trajectory of the family
of solutions of nonlinear differential equations system g = f(y) going past y}(t,) at the
initial time t,, starting from a domain of interest [y™"(t,), y™*(t,)]", where y™"(t,) and
y™®*(t,) are finite. It is appropriate to introduce the following vector notation concerning
the possible sets of initial conditions and solutions of (1.a):

Yo =1'(te) = Wi (te) 13(te) - yn(to)]" (2.2)

v =y =) wn . )" (2.b)
where s = 1,2, ..., 00, and oo indicates that the number of points in the discretization loop
can be as big as one wants. As, in general, j' = f(y’) does not have analytical solution,
it is common to know only for y* = y'(¢) a discrete set of points [y*(t + k - At) yi[t +
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(k+1)-At] ... y[t+ (k+n)-At]] = [Fyt Tyt L0 Fyl] for Byl = yi(t + k- At)
on the horizon [tg, tyyn] and At = (tx4, — tx)/n a constant. By definition (see [10]), the
secant between two points 3y’ and ¥1y¢ belonging to curve y(t) is the straight segment
which joins these two points So the tangents of the secants between points ¥y¢ and ¥+1yt,

Fyb and iyl ... Ryl and ¥ty are defined as:
tana, o' (t + k - At) = tana, "o’ = [tana, "ol tana Fad ... tanp, Fol]T (3.a)
with,
b Y=Y .
tanas G = toj=1,2,...,n (3.b)

where o/, is the secant angle that joins both *y? and **'3 points belonging to curve y’(t).
Being so, some properties and theorems without demonstration are enunciated in the

following. For more details concerning to the mathematical development that follows, see
[24].

Property 2.1. (P1). If *y' is a discretization of solution j* = f(y') and At # 0,
tana, Fal exists and it is unique.

Property 2.2. (P2). Given the state vector y'(t,) at t, instant of the nonlinear differen-

tial equations y = f(y) and if the vector [yt kHlyi o kil s the discretization of
a trajectory solution so that for y' =y (t+ k- At) it is a solution of the dynamic system,
then tana, ot for 1 =0,1,...,(n — 1) exist and are unique.

Two other very important theorems that link the values of tana,* k

o' and tana, *é,
respectively, with the mean derivatives calculated from [Fy? F+lyi . ktnyiland [Fyt kg
. FHngil are the differential and integral mean value theorems (e.g., [5,7]) which are set

out below without proof.

Theorem 2.1. (T1). (The differential mean value theorem). If the function y;(t) for
j = 1,2,...,n is defined and continuous function on the closed interval [tg,tr41] and
differentiable on the open interval (tg,tr+1), there is at least one number t;, with t, < t; <
tr + At such that

kt1,i _ ki
v Y, Y;
zt* — J J 4
i) = —4 0 (@)
Theorem 2.2. (T2). (The integral mean value theorem). If a function yj(t) for j =
1,2,...,n is a continuous function on the closed interval [tg,tyy1], then there is at least
one ty inner number to [tg, 1] such that
byl
RN UURT )
tr

Generally, t; is different from ¢7 and it is also important to observe that the mean
values theorems say nothing on how to determine the values ¢; and ¢j. The theorems
simply state that ¢; and ¢} are contained in the interval [ty, tgi1].

Property 2.3. (P3). Applying the T2 theorem on curve y'(t) is equivalent to applying
the T1 theorem on the curve y'(t) both on the same closed interval [ty,ty. 1], that is,

y'(th) = 9'(t;)-
Property 2.4. (P4). The mean derivative U (t%) on the graph of y'(t) in the closed

interval [ty,, tr11] is equal to tana, *al, as an immediate consequence of the definition itself
of the mean derivatives.
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Property 2.5. (P5). Note that if y'(t%) = ¢*(t;) (P3) and y'(t}) is the mean derivative
of y'(t) (T1 theorem) in the closed interval [tg, tyy1], ¥ (t%) will also be numerically equal
to the mean derivative of y'(t) for the same close interval.

Theorem 2.3. (T3). The discrete general solution and ezact *™'y! for j =1,2,...,n
of the nonlinear differential equations systems ' = f(y') can be established through the

relation *t1yt

y; = tanay kol o At + ky;- for a given *y' and At.
k+1,,1 tk-+1

) Yy
Proof: If j' = & = f(y)), [ dy'= [ f(y')-dt. Thus,
kyi tk

byl
= / FO) - dt +Fyf (6)
tr

The application of the integral mean value theorem T2 on the curve 3'(¢) in the closed
interval [ty, 51 1] implies that there is at least a number ¢} in [tg, tx41] so that

) st [ g -a= [ ) de )

By P4 ¢(t¥) = tana, *a’. Therefore, replacing the greatness ¢*(¢¥) in Equation (7) and
this in Equation (6), results in:

Equation (8) is the discrete general solution and exact to the ordinary differential
equations system (1.a). Note that this is a fairly simple expression. It is nothing more
than Euler simple step integration structure. However, instead of using instantaneous
derivatives functions, it uses mean derivatives functions.

It has been mathematically proved that Equation (8) can be obtained from differential
and integral mean values theorems by starting with the equation y = f(y). It is important
to note that Equation (8) is a discrete equation and not a continuous one. Besides to this,
if the discrete value of At varies, the mean derivatives functions values also vary. One
should also note that Equation (8) can be used with control independent variables (e.g.,
v = f(y,u)) in the function of tana;*a’. In such a way, Equation (8) can have several
practical applications in fuzzy control or neurocontrol (see [18]).

Nevertheless, empirically establishing mean derivatives functions is not a trivial task,
because some kind of universal approximator of functions is needed for that, such as
artificial neural networks or fuzzy systems. This section is ended with the enunciation of
two more useful theorems (see [24]).

Theorem 2.4. (T4). The definition of the secant between two distinct and any points,
separated by the finite distance At on the continuous curves y;(t), forj =1,2,...,nis also
an ezxact general solution and discrete to the system of autonomous ordinary differential
and nonlinear equations § = f[y(t)].

k41,0 _

yj -
tana; kag--At+ky;, forj =1,2,...,n there is always an instantaneous derivative function
v = f(y) associated to them.

Theorem 2.5. (T5). For sequences of discrete points represented by equations
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3. Mean Derivatives Methodology with Step Variation through a Parabolic
Interpolation. In this section, it is proposed of an approximate method to obtain an
approximate continuous general solution for nonlinear dynamic systems. The continuous
solution is obtained by the interpolation of endless parables, one for each discrete interval
[tk, tks1]. Theorems T6 and T7 are used with the purpose of demonstrating this.

Theorem 3.1. (T6). The value of §(t;) is given by tana, *o}.
Proof: According to Theorem T2, there is a value gj(t;) such that, yi(t}).At =

tht1 let1

[ yt)ydt= [ dy’ Lt = Yi(tksr) — y5(te) = "yt —*y and thus,
123
. By kyi
U;(tg) = ’A — = tana, ‘o] (9)
Corollary 3.1. (C1). The following relation is valid,
e d
it (05) = i 1) (10)

Equation (10) simply states that the instantaneous variation of g (t;) at ¢f instant is

equal to the instantaneous variation value of (t;) at ¢} instant. This derives immediately
from Property 2.3 (P3).

Theorem 3.2. (T7). The value of §i(t7) is given by tana, ¥l = L tany, ol

Proof: By applying the differential mean value theorem on the curve y(t), one has
Yo (b)) —yi(ty)

y; (ty) = 72— = tany, ko/ Differentiating both sides of this equation in relation
the instant ¢, it will result in Lg(t;) = yj (tr) = 4i(t7) = 4 tana, Fol. Only to simplify
the notation, the definition tanAtk\Iﬂ = tanAtka] is glven

With an 1mmed1ate analysis of the theorems and corollary and definition shown in this
section, it is possible to build Table 1 with the coordinated points in question.

TABLE 1. Four coordinate points within the interval [ty, tx. 1]

n | Time | y(t), 9(t) and §(t) Determining Form

1| t ks Instant initial

2| tpe Py Given by Euler integrator with mean derivatives
3| tf | yity) = tana, "o Provided by universal approximator used
A4ty | Fi(t) = tana, F T Given by Theorem 3.2

It is important to note that the instants ¢} and ¢} are confined in the interval [ty, t5i1].
However, it is impossible to determine where exactly these values are because Theorems
T1 and T2 omit this information. Even so, they are not necessary if one desires to
interpolate only a parable on the given interval [ty, tj1].

The following paragraphs develop an analytical method to find a parable on the interval
[tk, tr+1] considering the only points (fg,*y%), (fes1, *'yt) and (t;,774(t;) = tana, *¥%),
where the two main issues are: 1) it is demonstrated that it is not necessary to know the
value of ;; 2) how it is possible to find out the value of the variable tana, *®’.

The first step is to find out the coefficients ay, B, and 74 of the equation of the parable
given by y(t) = agt®+ Byt + k. In general, these coefficients are functions of the following

variables: ay = fi (ty, i1, "yl MYk tana, Fal, tana, F %), B = fo(te, ter, Fyl Y,
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tanae P, tana, F0H) and vy = fs (b, tegrs Pyl Py tana Fod, tana, \If;) The letter k
pres- ent in the coefficients ay, B, and 7, means that it a parable is needed for each
interval [ty, tx1]. These coefficients can be obtained by simply solving the linear system
given below.

yp = ity + Btk + (11.a)
Pyt = ap i+ Brtipr + (11.b)
tana, FU% =2 oy (11.c)

The equations from (11.a) to (11.c) can also be developed in the vector form, like:

k, i

Yj ot 1 o,

lyi o = e e 1 Q B (12)
tanAtk\If;- 2 0 0 Tk

The linear system given by Equation (12) can be solved by Cramer’s method, in this
way, the coefficients are determined by ar = D1/D, B, = D2/D and Tk = D3/D where

th  te 1 By tr 1 ti Byl 1
D=ty tyr 1|, Dy = Pyt e 1), Do = |ty Fyp 1, and
2 0 0 tanAtk\I!;- 0 0 2 tanAtk\Ifg 0

th "y
Ds; = tzﬂ (7 k“yj . The expressions given by D, D;, Dy and D3 can be
2 0 tanAtk\If}

simplified as follows:

D=-2-At (13.2)

Dy = —At - tana, "W’ (13.b)

Dy = At - (tggr + By) - tana, "0h—2- (Fhyr —Fyt) (13.c)

Ds; = At - (—tk “tpaq - tanAtk\Ifé- + 2ty - tanAtka; S ky;-) (13.d)

Thus, the solution to the linear system given by Equation (12) is given by:

1 .
Q. = 5 . taHAtk\I]; (14&)
k i 1 k1t
Br. = tana; "o — 3 (trs1 + tx) - tanpy W’ (14.b)
1 kgt k i k.
Ye = 5 . (tk . tk-i—l . tanAt \Ifj—2 . tk . tanAt CY]- + 2. yj) (140)
k

where the value of y; (t7) = tana, ag- can be previously known through a supervised
training by using a universal approximator for functions. However, the most pertinent
question related to equations from (14.a) to (14.c) is how to determine the value of
tana; k\If; This can be done from previous knowledge of the value of tana, kag-. Because

of Theorem 3.2 (T7), tanAtk\If; = %tanmko@ for j = 1,2,...,n. Nevertheless, if the
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chain rule (e.g., [5-7]) is used, in this latter expression, the following result is obtained:

d t ki 8tanmka§- dFyt Otana; kaj- d*y?
ap nar T Okt dt byl dt
. _ d*yj
atanAtka;- Otan Atka; dt
ok yi okys, i (15)
dt
) . tan®g@: .
dtanaFal  Otana, *o an. ! 0 tana, "o} i
= oy . oy . L= BT o tan”f
! " tan® 0!,
for j =1,2,...,n. The last expression can be simply given by:
d ~ Otanafal .
p tanAtka;- = ﬁ otan®9’ forj=1,2,....n (16)

The operator o is just the usual scalar product. The vector form of Equation (16) can
be expressed by:

L. Otanafal .
taHAtkCYZ = Tytl . tankﬁz (17&)
where,
tanaFal
b tanAtkdé
tana, Q' = _ (17.b)
tana,Fal
[ Otanafai  dtanafo;  Otanafad
oFy) Ok oFy,
_ OtanaFab,  OtanaFal OtanFad
Oranstal | TToRT oy o, (17.0)
Dy . . , . '
Otanafa),  dtanafe;,  Otanafag,
L oMyl ok Oy
tan®gi
. tan® g}
tan® 0 = . (17.d)
tan®g?

Note that the vector tan*#’ is the instantaneous derivatives function. However, there is
another problem here, because it is also necessary to train a new universal approximator
of functions to learn this instantaneous derivatives function. An explanation on how to
determine empirically the instantaneous derivatives functions, that is, the vector tan*é’,
can be found in [12,13]. However, in order to avoid this new problem, it is possible to
approximate these instantaneous derivatives through mean derivatives when the interval
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At = ty 11—ty tends to zero. For doing so, it is sufficient to simplify expressions (16),
(17.a), and (17.d) as described below.

k

~ Otanpfal
__tanAJkﬁ ~ J

i = oty otanafal  forj=1,2,...,n (18)
So, the vector form of Equation (18) is:

Otana,Fa’
By

tanAfdl

1

- tana, "o (19)

Expression (19) can be considered as the simplest equation to find the value of tana, ’“\Il;
However, this expression can be applied only in the case where At = tp,4 — t, — 0.
However, if two universal approximators are used, one to represent the mean derivatives
function and the other to represent the instantaneous derivatives function, the integration
step At = ty,1 — t; may be slightly bigger. For very large integration steps, the parable
does not fit on the real solution. Furthermore, for At > 1, the supervised learning becomes
more difficult. Another important issue is how to determine the values of the derivatives
%‘yfo‘l, given by Equation (17.c). For example, if one uses a neural network with MLP
(multilayer perceptron) architecture to represent the mean derivatives functions, then
the calculation of the derivatives in (17.c) should be obtained by the backpropagation
algorithm. Nevertheless, in the latter, instead of calculating the partial derivatives of the
network output with respect to the connection weights, one should calculate the partial
derivatives of the network output with respect to inputs. Figure 1 graphically illustrates
the difference between mean derivatives functions and instantaneous derivatives functions.

yi(t) A

k-i-lyr'

Mean Derivative

Instantaneous
=~ Derivative
in k y

= tanp, o

/ /

B
L. b1t

FIGURE 1. Graphical representation of the mean derivatives tana; *a’ and
of the instantaneous derivatives tan*§" = f(*y* ¥u), for the dynamic system

J=fy)
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I T T T T
50
R T :
S
B (r) b 7
tan mk,‘P}? fly(ty)] = ¥(ty)
Vi Ctprg(@) . B P }
) k-i I R | ;
}-j{tk} L ,z'/ : D T
dt P gl dt
} -
.
}j{r¥{+[lt} :f::i:::::f:::i::zlf_f_:j;'—b";
Vi(ty) .
itk tie tydt th ty ty 20 b= b dt =t At +dt
t +HAt
At KT

FIGURE 2. Geometrical meaning of the variable tan, * ¥’

Another important information is the fact that the variable tana, k\Il; has a geometric
interpretation. Figure 2 illustrates this. Based on this figure, one can establish the
variable tana, "¥’ in the following way:

g (G +dt) — g () _ dj(t;)

’ E
kgt — 15 — =11 = = 77 (+* ) —
tanay \Ilj—ézﬁ%)éb (%Lr% o =— =g (ty), toy 1,2,...En)
20

In summary, the numerical determination of equation and computational (17.a) de-
mands the knowledge of mean derivatives functions and of instantaneous derivatives ones.
In the pioneer and important work of Wang and Lin [12], it presents a way of empirically
establishing the instantaneous derivatives functions. In order to perform that, these au-
thors have inserted a Feedforward neural network inside a Runge-Kutta 4-5 integration
structure. By proceeding in such a way, they have proved that the neural training con-
verges to instantaneous derivative functions. Nevertheless, the proposed method is a little
complex from a mathematical and computational perspective.

4. Conclusions. From what has been stated in the previous sections, one takes up the
following conclusions.

1) It can be shown that there is an approzimate continuous solution for Euler discrete
solution with mean derivatives proposed in this article. The continuous approach can be
achieved by a parabolic interpolation on the interval [ty, ¢z, 1]. There are endless parables,
one for each initial condition on the interval [ty, ¢ 1]. It can be mathematically proven
that the parabolic interpolating function passes through at least one internal exact point
within the interval [tg,?r1] of the real solution y(¢). Unfortunately, this approximate
continuous solution cannot be applied to dynamic systems with control variables. In
addition to this, in order that the parable properly accommodate on the exact solution,
the step of integration At cannot be too large.
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2) The general solution given by the mean derivatives functions in Euler integrator
(see Equation (8)) for the nonlinear autonomous ordinary differential equations system is
discrete and exact. However, the empirical determination of mean derivatives functions
through any universal approximator of functions (e.g., artificial neural networks and fuzzy
systems) is approximated, but it is always within a desired error.

3) Interpolation or estimation of mean derivatives functions up to the infinite is impos-
sible; therefore, there is a restriction imposed to finite domains.

4) We have that the values of tana; **'a’ to 1 = 0,1,..., (L — 1) exist and are unique;
thus, tana,**a’ is a static function with the same qualitative properties of the in-
stantaneous derivative function ¥+lgi = f(k+lyl k+ly)  In fact, it can be shown that

ﬁmo tana Kyt = f(FHyi FHly). Tt is also important to realize that the instantaneous
_)

derivative function 7' = f(y*,u) does not depend on At, but tana,**'a? does. This latter
property implies that the mean derivatives methodology has a fixed integration step while
the method of instantaneous derivatives, firstly proposed by Wang and Lin [12] may have
variable integration step.

5) Empirically establishing mean derivatives functions values and instantaneous deriva-
tives function values for practical engineering problems, as well as to test the parable
interpolation proposed here for the mean derivatives method is not part of the scope of
this work. Therefore, the main focus of this work has a purely mathematical nature.
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