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ABSTRACT. The triangular Hermite kernel extreme learning machine methodology is
presented based on Hermite polynomial. It introduces the triangular Hermite function
which has been proved as a valid kernel function into extreme learning machine as kernel
function. The most significant advantages of proposed kernel are that it has only one
parameter chosen from a small set of natural numbers, thus the parameter optimization
is facilitated greatly, and more structure information of sample data is retained. Experi-
ments were performed on bi-spiral benchmark data set as well as a number of regression
datasets from the UCI benchmark repository. Similar or better robustness and gener-
alization performance of the proposed method in comparison to other extreme learning
machine with different kernels and SVM (Support Vector Machine) methods demonstrates
its effectiveness and usefulness.

Keywords: Kernel extreme learning machine, Kernel parameter, Hermite orthogonal
polynomial, Kernel selection, Triangular Hermite kernel function

1. Introduction. Combined the learning principle of support vector machine, Huang et
al. proposed kernel extreme learning machine (KELM) in 2010 [1], which applied the kernel
functions to ELM algorithm [2,3], and where the random hidden layer feature mapping
based ELM is substituted by the kernel mapping. It effectively improves the undesirable
generalization performance and stability caused by the stochastic nature of hidden layer
output matrix and greatly reduces computational complexity. In KELM, optimization of
the number of hidden layer nodes is avoided and the least square optimal solution can be
obtained. Compared with SVM and basic ELM, it can provide more stable and better
generalization performance. Hence, KELM has been widely applied in classification and
regression problems and practical applications [4-14].

It is well known that the learning ability and generalization performance of extreme
learning machine mainly depend on the kernel function; different kernel functions or same
kernel function with different parameters have different influence on the generalization
performance. Besides, the time required for the optimal kernel parameters is different
among various kernel functions, which is relevant to the setting of kernel parameters
and the properties of kernel function. Normally, the selection and optimization of kernel
parameters are much tedious and time-consuming. As an example, [15] pointed out that
the common Gauss kernel function and polynomial kernel function are very sensitive to
the changes of kernel parameters, so the selection range of kernel parameters is large with
small step-size leading to high computation complex issues. Quite a few kernel functions
have been proposed in the literature to address such problems. Based on orthogonal
polynomials, in [16-18], a series of SVM kernel functions is based on generalized orthogonal
polynomials, which shortened the time of parameter optimization; however, the processing
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to the parameter of weight function (Gaussian kernel function) is so simple that the
influence of structure information of sample data on the generalization performance is
neglected. [19] further verified that Gaussian Hermite kernel function achieved the highest
classification accuracy in the binary classification problem compared to the rest of above
orthogonal polynomial kernel functions, but the efficiency of its training is relatively lower
and the robustness, and generalization performance of the algorithm have not been tested
in the regression problems.

Motivated by [16-19], based on Hermite orthogonal polynomials, a mixed kernel function
called triangular Hermite kernel function is constructed by using the product of triangular
kernel and generalized Hermite Dirichlet kernel, which has only one parameter chosen
from a small range of integer numbers, and thus the parameter optimization is facilitated
greatly, and in which more structure information of sample data is retained. It is proved
that triangle Hermite kernel can be used as an allowed kernel function of extreme learning
machine in theory. The effectiveness of the proposed method for binary classification
and regression problems is demonstrated by performing numerical experiments on bi-
spiral benchmark data set and a number of real-world datasets from the UCI benchmark
repository and comparing their results with SVM and other extreme learning machine
with different kernels.

In summary, the main contributions of this paper are highlighted as follows: (a) tri-
angular Kernel function is proposed to retain structure information of sample data; (b)
triangular Kernel function is strictly proved to be a valid KELM kernel based on Fourier
transform; (c) triangular Hermite kernel function is presented by using the product of tri-
angular kernel and generalized Hermite Dirichlet kernel; (d) the feasibility and effective-
ness of proposed method are verified in the binary classification and regression problems
by using the MATLAB; (e) the coefficient of determination is the evaluation criterion for
regression performance instead of the conventional RMSE.

The paper is organized as follows. In Section 2, we briefly introduce the kernel extreme
learning machine and the property of KELM kernel function respectively. The proposed
triangular Hermite kernel extreme learning machine is introduced in Section 3. Results
and discussion are presented in Section 4. We conclude our work in Section 5 followed by
acknowledgment and references.

2. Introduction to KELM and the Property of Its Kernel Function.

2.1. Kernel extreme learning machine. Given a training set X = {(z;, ¢;)|z; € RY,
t; € R i=1,...,N}, hidden node output function G(a;, b;, ), and hidden node number
L, ELM algorithm can be written as follows.

Step 1: Randomly generate hidden node parameters (a;,b;), i =1,..., L.

Step 2: Calculate the hidden layer output matrix H (ensure H to be full rank):

o { h(.ml) 1 [ G(al,.bl,ml) G(aL,.bL,ml) 1

h(:cN)J i [G(ala;?th) G(aL,E)L,wN) JN><L

Step 3: Calculate the output weight vector 3:

B=HT <§+HHT>_ T (2)

where \ is the regularization coefficient, T = [t; -+ ty]mxn-
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The output function of ELM is:

A

If the hidden layer feature mapping h(x) is unknown, it can define a kernel matrix to
replace HH?" using Mercer’s condition. Thus, KELM algorithm is generated as follows:

f(z) =h(z)H" <£ + HHT> B T (3)

Quv=HH": Qprmi = h(z;) - h(z;) = K(x;, x;) (4)
K(xy,z1) -+ K(xzi,xN)
HH" = Qg = : : (5)
K(xy,z1) -+ K(xy,zy)
K(z,x)
h(z)H' = E (6)
K(z,zy)
Finally, the output function of KELM is defined as:
K(wa 1131) I -1
f(z) = f (X + QELM) T (7)
K(z,zy)

2.2. Introduction to the property of KELM kernel function. Some of the well-
known common KELM kernel functions are: (1) Polynomial Kernel K(z,2) = ("2 +

1)", (2) Gaussian Kernel K(x,z) = exp (—M>, (3) Laplacian Kernel K(x,z) =

202

_lz==]]

oxp (122
In addition to the above kernel functions, a new kernel function also can be constructed

according to the property of the kernel function.

Property 2.1. [20] Assume that Ki(x,z) and Ky(x,z) are valid kernel functions on
X x X, then kernel function K(x,z) = K(x, z) + Ky(x, z) and K(x, z) = Ki(x, z) X
Ky(x, z) are also valid on X x X.

Theorem 2.1. [20] Let f : X — R be an integrable bounded continuous function. Then
the necessary and sufficient condition for the translation invariant function K(x,z) =
f(® — 2z) to be a kernel function is: f(0) > 0, and Fourier transform F[K](w) =
(2m)~"/2 [, exp(—iwz) K (z)dz > 0.

Like SVM, a function is an allowed KELM kernel function as long as it satisfies the
Mercer’s condition.
Mercer Theorem [21]. Assume that for X C R", K(z,z) is a continuous symmetric
real value function on X X X such that the following integration should always be non-
negative for every f C Ly(X) : [[y, x K(x,2)f(x)f(z)dedz > 0. Then K(x,z) must
be a valid kernel function.
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3. Triangular Hermite Kernel Extreme Learning Machine
3.1.

The construction of triangular kernel function. Laplace kernel function

T —z

K(z,z) =exp (—M>
o

is also a radial basis function, which is nearly equivalent to the Gaussian kernel

x — z||?
Krpr(x, z) = exp (—u>

202

o. The laplace kernel can be used as an alternative when using the Gaussian becomes too
expensive.

about classification performance, but is less sensitive for changes in the sigma parameter
While z — 0, using the Taylor formula e
as:

—T

1 — x, Laplace kernel can be simplified

Kot = (1= 221 (1 Be21)

8
- ®)
Figure 1 shows the function curve of Formula (8) and Kgpr(x, z) when 0 = 1,2, where
x € [=7,7] and z = 0. Seen from Figure 1, two types of kernel functions are quite
different, K..(x,z) is relatively less sensitive to changes in the parameters o, and a

typical triangle is presented on its function curve, and thus, it is called triangular kernel
function [22].
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FIGURE 1. The graph of Kggr(x,0) and Kuc(x,0), where o = 1,2

Given a sample set X = {x;};',, where T is the sample mean and N is the number
of training samples, in order to further simplify Formula (8), let oy be twice as long as
the maximum distance of all sample points to sample mean such that formula ”m Al <1
holds with probability one. Thus the simplified triangular kernel function is obtalned

Kopvi(a,2) =1 — [z — =]

0o

(9)
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where 0y = 2 % argmax{“m —Z||<rrxeX,x= %vazl a:l}

Formula (9) is a translation invariant function, according to Theorem 2.1, Kr.;(x, 2)
is strictly proved to be a valid KELM kernel function in the following proof.

Proof: K(x) = f(x) =1 — %, it is well known that f(x) is an integrable bounded

continuous function on R™ by function analysis, and f(0) = 1 > 0 such that the Fourier
transform of K (x) is:
n/2/ exp
RTL

) = (2m)” (—iwe)
= (2m) ™/ /R exp(—iwe) (1 — ”%”) d
= (2m) "2 / :O exp(—iwa) (1 - ”%”) dx (10)

+00 +00
—n/2 [/ exp(—iwz) X ldx — —/ exp(—iwx) X ||a:||d:13]
—n/2 |:

FK](w —iwz)K (x)dx

oo

2mo(w) + ] >0

oow?
The proof is completed.

[16-19] constructed the weighting function as Kga,(x, 2) = exp (—M), where d

denotes the dimension of vector &, z. In it since the parameter o of Gaussian kernel
Krpr is directly set with y/d/2, the data structure information is lost although the
parameter optimization is simplified. However, the setting of parameter ¢ in triangular
kernel function proposed in this paper just makes up for the shortcoming of it.

In order to reflect the difference more intuitively between Kqq,(x, 2) and Kr.(x, 2),
Figure 2 shows the graph of above two kernel functions, where z € [—0.5,0.5], [—1,1],
[—1.5,1.5] and [-2,2], 2 =0.2,0.4.

As is shown in Figure 2, where both the vector x and z are one-dimensional (d = 1),
when z takes a fixed value, the graph of kernel function Kgq, (2, 2) is invariably constant,
but the graph of kernel function K7;(x,z) changes as the value interval of x changes.
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FIGURE 2. The graph of Kgu, (2, 2) and Kr,(z, 2), z € [-0.5,0.5], [-1,1],
[~1.5,1.5] and [~2, 2]
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It is well known that the choice of different kernel functions is to select different criteria
to measure the similarity and the degree of similarity [19]. Consequently, for the same
point (z, z), the similarity in different intervals should be different, the value of Kr,;(z, 2)
increases as the expansion of the interval, while the value of K g, (2, 2) in the four intervals
always remain changeless. Therefore, it can be said that the parameter oy of kernel
function Kp.;(x, z) is set to retain more distance similarity information of sample data;
in addition, its computational cost is very low.

3.2. The construction of generalized Hermite Dirichlet kernel. Hermite polyno-

mial [23] is a kind of orthogonal polynomials with respect to the weighting function e~
between the intervals (—oo, +00), which is defined as:

Ho() = (—1)ner - Yy M (oa)r% = 0,12 11

@) = (1) g () = D T @ m=012 (1)

k=0
It satisfies the orthogonal relationship:
+0o0
a? 0, m#£n
[ m@m @ ={ 5y T 12)

o0

and has a recursive relationship:
Hy(z) =1, H(x)=2 (13.1)
H,1(z) =22H,(x) — 2nH,_1(z),n=1,2,... (13.2)

Owing to the orthogonality, variability and universal approximation function capability
of Hermite polynomial, a general Hermite kernel function can be constructed as a good
alternative to other common kernel functions (Gaussian kernel and Polynomial kernel
etc.). For this purpose, let the scalar variable z be replaced by row vector , and z"*!
be substituted as follows correspondingly:

T\n+1/2 .
TSR (:L':L' )n/2 , n=2k+1 k=012, (14)
(xe™)" @, n=2k

where " is the transpose of the .
Therefore, for vector input, it can define the generalized Hermite polynomial as:
Ho(x) =1, H(x)=2=x
T (15)
H,(x) =2xH, (x) —2nH, ((x), n=1,2,...

By using generalized Hermite polynomial, this paper defines generalized nth order
Hermite Dirichlet kernel [16] as:

Kiem(z, 2) = ZHi(m)HiT(Z) (16)

It can evaluate and verify the Mercer Theorem for Ky, (x, 2) as follows by assuming
each element is independent from others:

/XXX K(z,z)f(z)f(z)dedz = //XXX [iHi(ﬂ?)HZT(Z)] f(2)f(z)dzdz

=1

= Z/Xxx Hi(z)H;' (2)f (x) f (2)dzdz
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_ i‘ (/X Hi(:c)f(a:)d:c> (/X H?(z)f(z)dz)
_ i‘ (/X Hi(:c)f(a:)d:c>2 >0 (17)

Therefore, Kpem(x, z) is a valid KELM kernel, and its kernel parameters n can only
be natural numbers, which greatly simplifies the selection and optimization of kernel
parameters.

3.3. Triangular Hermite kernel extreme learning machine. According to Property
2.1, a new KELM kernel called triangular Hermite kernel is constructed which is the mul-
tiplication of triangular kernel and generalized Hermite Dirichlet kernel, which is defined

Kryin(x,2) = (1 — W) ZHi(a:)HiT(z) (18)

Triangular Hermite kernel combines the advantages of triangular kernel and generalized
Hermite Dirichlet kernel, which not only retains more distance similarity information
of sample data, but just chooses natural numbers to its parameter n. Accordingly, it
can greatly shorten the time of parameter optimization. Although it has two kernel
parameters, they can be determined quickly and easily, which greatly reduces parameter
optimization cost.

Figure 3 shows the triangular Hermite kernel output Kp.; y (2, 2) up to 3rd order at
two different coordinate scales of vertical axis, where & changes within the range of [—2, 2]

TABLE 1. List of the triangular Hermite kernel function up to 3rd order

n Triangular Hermite kernel function Kp,;(x, z)
0 1- (1~ [lz - z[|/o0)
1 (1 + 4:czT) (1 = ||l& - 2||/o0)
2 [1 +4- (2]|.'c||2 — 1) (2||zH2 — 1) + 4sz] (1= |le - z||/o0)
3| [1+4@el? - 1) (22117 — 1) + 422" +16 (2l|al|® - 3) (2)j2)? - 3) -@z"] - (1 - L2=21)
4 150 4 150
n=0 n=0
+ n=1 + n=1
3 - — - n=2 —100 3| -—— n=2 —-100
+ n=3 + n=3
. 2,*++ +++++ ++++++++-5o .. 2-.T++ +++++ ++++++++-50 .
R sty A gt e, ]
S Tremmmmartt S 000 T et S 108
g ++++ + g & ++++ + g
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FIGURE 3. The triangular Hermite kernel output Ky g(2, z) up to 3rd
order: = € [—2,2]
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and z is fixed at a constant value. Figure 3(a) shows the kernel function Kry; g(x,0.2),
while Figure 3(b) shows the Kr.; g(x,0.4) value, where the 0 and 1st order correspond
to the left vertical axis, and the 2nd and 3rd order correspond to the right vertical axis.

Finally, this work introduces the kernel Kr.; g(x,z) to KELM algorithm; as a result,
the triangular Hermite kernel extreme learning machine algorithm is obtained as follows:
Given a training set R = {(z;,¢;)|z; € R%,t; € R™,i=1,..., N}, the output function is:

K(x,x)

o= K(:BE, T y) <§ ' QELM) 71 ' "

where K(x;, x;) = (1 - w> > ey Hi(zi) HYf ().

4. Experiments and Analysis. In order to test the performance of triangular Hermite
kernel extreme learning machine algorithms (Tri_-H KELM), this section compares it con-
cerning training accuracy, testing accuracy, parameter optimization time and regression
determination coefficient with other various algorithms in bi-spiral dataset and real-world
benchmark regression data sets. The SVM cost parameter value is 100. Better test results
are given in boldface and the shortest time is in underline on the following tables.

The simulations of [1,4,16-19] on UCI benchmark datasets revealed that the best gen-
eralization performance of SVM and ELM with Gaussian Poly kernel is usually achieved
in a very narrow range [0, 10] and the SVM with orthogonal polynomial kernel is in the
range [0,3]. Hence, Table 2 lists the various algorithms used in the experiments and
the range of corresponding kernel parameter value, which also includes Gaussian kernel
(Gauss), Polynomial Kernel (Poly), Gaussian Hermite kernel (Gau_H) [8] extreme learn-
ing machine algorithms and triangular Hermite kernel support vector machine algorithm
(Tri_H SVM).

TABLE 2. The various algorithms and the range of its kernel parameters

Algorithms | Kernel Parameter Range Step-size
Gauss KELM o 0.4~10 0.2
Poly KELM n 1~10 1
Gau_H KELM n 0~3 1
Tri_H KELM n 0~3 1

Tri-H SVM n 0~3 1

The simulations of different algorithms on all the data sets are carried out in MATLAB
7.0.1 environment running in Core(TM) i5-4670K, 3.40-GHZ CPU with 8-GB RAM.

4.1. Classification performance verification on bi-spiral dataset. The bi-spiral
problem is a typical linear inseparable binary classification problem, which is the touch-
stone to test the generalization capability of pattern recognition algorithm. In this subsec-
tion, the simulations with 2nd order Tri_H KELM have been performed on spiral dataset
with noise and no noise respectively. The feature vector of each sample in spiral dataset
is 2 dimensional. The dataset has 400 training samples for each experiment, which all
contain 200 training samples for each class, while the testing set consists of 200 samples:
100 samples of (+1) class and 100 samples of (—1) class.

The simulation results show that, on spiral dataset with noise, the training accuracy is
100% and the testing accuracy reaches 97%, and when no noise, the training and testing
accuracy both achieve 100%.
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FiGURE 4. The boundary of 2nd order Tri_H KELM on spiral dataset

Figure 4 shows the boundaries of 2nd order Tri_H KELM on spiral dataset with noise
and no noise. It can be seen that 2nd order Tri_H KELM can classify two spirals well
whether with noise or not.

4.2. Regression performance comparison on UCI benchmark data sets. This
subsection selects 5 regression cases from UCI Machine Learning Repository, and data is
described in Table 3. The simulations of different algorithms on all the regression data
sets were carried out. The regression performance of ELM was evaluated by the coefficient
of determination R? which is defined within the interval of [0,1] and is closer to 1, the
better the regression performance is. The simulations results (R? and the parameter
optimization time) are given on Table 4.

TABLE 3. Specifications of regression cases

Datasets | # Training data # Testing data # Attributes
Cloud 682 342 9
Autoprice 106 53 15
Housing 337 169 13
Bodyfat 168 84 14
NIR 50 10 401

As Table 4 shown, in comparison to several other KELM algorithms, Tri_H KELM
obtains the maximum coefficient of determination R? in most regression data sets, and
for itself, it has all achieved the maximum R? with respect to kernel parameter n < 2.
It has better generalization performance for regression problem. Note that, Tri_H KELM
achieves similar regression performance as SVM at much faster learning speeds.

5. Conclusion. In this work, based on Hermite polynomial, a simple novel triangular
Hermite kernel extreme learning machine (Tri_H KELM) has been put forward, which
introduces the triangular Hermite kernel function to kernel extreme learning machine
algorithm. Because the presented kernel has only one parameter chosen from a small
set of integers, the parameter optimization is facilitated greatly. Besides, more structure
information of sample data is retained in the proposed kernel. Firstly, the triangular
kernel function is constructed, and the validity of it is proved by the Fourier transform of
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translation invariant kernel function. Then we construct a generalized Hermite Dirichlet
kernel based on generalized Hermite polynomial, according to Mercer Theorem, it also
proves that it can be used as an allowed KELM kernel. Thus, using the product of
triangular kernel and generalized Hermite Dirichlet kernel, a mixed kernel function called
triangular Hermite kernel function has been constructed and introduced to KELM as
a valid kernel. Numerical experiments have been performed with different algorithms
(Tri_H SVM, Gauss, Poly, Gau_H and Tri_H KELM) on bi-spiral benchmark data set
and a number of real-world benchmark datasets and their results have been compared
with Tri_H SVM and Gauss, Poly, Gau_HKELM for regression and binary classification.
Comparable generalization and robustness performance of the proposed approach with the
rest of the methods considered at a much faster learning speed than Tri_H SVM indicates
its usefulness and effectiveness. Future work will be on the study of Tri_H ELM in its
practical applications and multiple-kernel problems [24-26].
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