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ABSTRACT. This paper presents a suboptimal model predictive control (MPC) algorithm
for constrained nonlinear discrete-time systems with bounded disturbances. By adopting
the existing theorem of “Feasibility implies stability”, the conditions for the novel theorem
of “Feasibility implies input-to-state stability” are givem. The monlinear systems are
controlled by suboptimal control laws (not the optimal ones), which are feasible solutions
of optimization problem in the designed MPC algorithm. By incorporating an appropriate
Lyapunov equation as a constraint in optimization problem, the conditions for “Feasibility
implies input-to-state stability” are constructed, and then the input-to-state stability of
closed-loop system is proven. In order to verify the efficiency of the proposed algorithm,
a numerical example of a 2-order disturbed nonlinear system is given.

Keywords: Suboptimal control, Model predictive control (MPC), Nonlinear systems,
Stability

1. Introduction. Model predictive control is an efficient control strategy for the general
nonlinear systems with constraints and disturbances. However, the computational load
generated from solving the optimization is the main obstacle to enlarge its application
areas [1, 2, 3, 4]. Generally, the computational time can be decreased by improving the
basic hardware configuration of a computer. Nevertheless, for systems like aircraft, it is
costly to improve the hardware configuration because of the restriction of space, weight
and cost. The only way to control these plants (with fast dynamics) is adopting the
fast MPC algorithms promoting the efficiency of on-line computation. The existing fast
MPC algorithms include the off-line MPC [5], explicit MPC [6], set-membership MPC [7],
suboptimal MPC [8, 9, 10, 11] and so on.

In this note, we focus on the MPC algorithms based on the suboptimal control laws, i.e.,
suboptimal MPC. For nominal nonlinear discrete-time systems, a suboptimal dual-mode
MPC algorithm and a suboptimal MPC algorithm with terminal equality constraint are
presented respectively in the Ph.D. Thesis [8]. The corresponding journal version was
published in [12], which introduces a critical theorem called “Feasibility implies stability”
for proving the closed-loop stability. By virtue of this new theorem, the closed-loop sys-
tem under suboptimal MPC is proven to be asymptotically stable in [12]. Comparing the
suboptimal MPC algorithm with general MPC algorithms, the most attractive character
is its short computational time, which allows for controlling the nonlinear systems with
fast dynamics. In [13], a suboptimal MPC based on Euler auxiliary system is presented.

1905



1906 M. ZHAO, M. SHE AND C. JIANG

In [14], a suboptimal MPC algorithm without terminal constraint is proposed, and the
continuous-time nonlinear systems under input constraints are considered. In [15], the
input-affine nonlinear systems with input constraint are considered, and a suboptimal
MPC algorithm resorted to the control Lyapunov function is given. Moreover, the con-
ditions under which the suboptimal MPC is inherently robust is introduced in [16, 17].
Unlike the works in [16, 17], authors in [18] present a novel suboptimal MPC algorithm
that achieves the input-to-state stability for discontinuous nonlinear systems. This paper
considers the disturbed nonlinear systems, but it needs to know the optimal value function
of previous time step. Also in [19], a suboptimal min-max MPC algorithm for constrained
nonlinear systems with disturbances is proposed. Most of extant papers mentioned above
consider the nominal nonlinear systems, i.e., the systems with no disturbances and/or
un-modeled dynamics. In this note, the often faced discrete-time nonlinear systems with
additive disturbances are controlled.

The main contribution of this paper is that a new suboptimal MPC algorithm for
discrete-time nonlinear systems with bounded disturbances is proposed. Unlike the gen-
eral MPC algorithms, the proposed algorithm only requires the feasible solutions of an
optimization problem. Moreover, by virtue of the definition of input-to-state stability, the
theorem of “Feasibility implies input-to-state stability” is given. Then, according to this
theorem, the nonlinear closed-loop system under the proposed suboptimal MPC is proven
to be input-to-state stable. By comparison, the computational time of the presented sub-
optimal MPC algorithm is much shorter than the general optimal MPC algorithms. In
this way, we can expand the application areas of MPC.

This paper is organized as follows. Section 2 describes the controlled discrete-time
nonlinear system with constraints and bounded disturbances. Moreover, the related pre-
liminaries are introduced in Section 2. Section 3 introduces a novel theorem of “Feasibility
implies input-to-state stability”, and the detailed proof is given. In Section 4, by virtue of
the proposed theorem in Section 3, a new suboptimal MPC algorithm is presented, which
achieves the input-to-stability for closed-loop systems. In Section 5, a 2-order nonlinear
system and the corresponding simulation results are given. Section 6 concludes this paper.

Notations: R is the real number, and Rs( is the real number which equals and is
bigger than zero. Z, represents the set of positive integers. I is the identity matrix with
appropriate dimension. x(j|k) is the value of vector x at a future time k + j predicted
at time k. For a vector x and positive-definite matrix W, ||z]|%, = 2T Wz. sup(z) is
the function which obtains the supremum of z. The Id denotes the identity function
from R onto R. Given two sets X and Y, then X ~ Y := {z|lz +y e Xy € Y}. B! :=
{z € R"|||z|| < r} identifies a sphere with radius r > 0.

2. Problem Statement and Preliminaries. We consider the following discrete-time
nonlinear systems:

w(k+1) = f(x(k), u(k)) + w(k) (1)
where z(k) € R* and u(k) € R™ are state and input vector at time k, respectively; w(k) €
R™ is the vector of additive disturbances. The system state and input are constrained by

x(k) € X:= {z(k) e R*| —z < x(k) <z} CR", (2)
u(k) € U:= {u(k) e R"| —u < u(k) <a} CR" (3)

where z € R” and u € R™ are the upper bounds of x and u, respectively. z € R” and
u € R™ are the lower bounds of = and u, respectively. The disturbance w(k) is restricted

by
w(k) € W= {w(k) € R*|[Jw(k)|, < n} (4)
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where p € [1, 00| identifies the type of vector norm, and n > 0 is an appropriate constant.
The following assumptions hold in the paper.

Assumption 2.1. f : R* x R™ — R" is twice continuously differentiable and f(0,0) = 0.
Thus, o € R” is an equilibrium point of the system with u = 0.

Assumption 2.2. X is a closed set, and U a compact, conver set, both of them containing
the origin as interior point.

For disturbed nonlinear system (1), the corresponding nominal model is given by
w(k +1) = f(x(k), u(k)) (5)

Remark 2.1. The nominal model defined above is without any disturbances and uncer-
tainty terms. Also in nominal model (5), the state and input are variables only depending
on the time k. For system (1), by excluding the additive disturbances w(k), the nominal
model (5) is obtained.

Define the local linearization of (5) at origin

_of _of

Assumption 2.3. (A, B) is stabilizable.

Assumption 2.4. The function f(x,u) in nominal model (5) satisfies the Lipschitz con-
dition, i.e., there exists a Lipschitz constant Ly > 0 such that

1f (1, w) = f@2, u)llp < llar = zallp,  Var,22 €X, VuelU (7)

In the sequel, the basic definitions of three comparison functions, which are the critical
tools for analyzing the stability and robustness of nonlinear control systems, are intro-
duced. For more knowledge about them, readers can refer to [22] for details.

Definition 2.1. A function v : Rsg — Rso is a K-function if it is continuous, strictly
increasing and v(0) = 0; it is a Koo-function if it is a K-function and also v(s) — oo as
s — 00. A function B : Rsg X Ryg — Ry is a KL-function if, for each fized t > 0, the
function p(-,t) is a K-function, and for each fived s > 0, the function [(s,-) is decreasing
and f(s,t) = 0 as t — oo.

Consider the following nonlinear system

w(k+1) = f(z(k), w(k)) (8)

where x(k) is the vector of system states, and w(k) is the vector of disturbances. In
addition, it is assumed that f(0,0) = 0.

Remark 2.2. Under a certain explicit feedback control law u(k) = g(z(k)), the disturbed
nonlinear model (1) can be equivalently transformed into Equation (8). On the other
hand, w(k) can be viewed as a new input vector, and the nonlinear system (8) can be
viewed as a special nominal model (5) at the same time.

The basic definitions of input-to-state stable (ISS) and the corresponding ISS-Lyapunov
function are given below [22]. Moreover, a known lemma in [22] is introduced to identify
the sufficient condition for ISS. The following lemmas and definitions on ISS are critical for
proving the new theorem presented in Section 3, namely “Feasibility implies input-to-state
stability”.
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Definition 2.2. The nonlinear system (8) is input-to-state stable if there exists a KL-
function f : Rso X Rsg = Ry and a K-function v such that, for each disturbance w € W
and each x(0) € R™, the following inequality holds:

[l(k, 2(0), w)l| < BUl=(0)]], k) + v <Sup ||w(t)||> (9)

teZ 4

where x(k,x(0),w) is the solution of dynamic model (8) at time k € Z., x(0) is the
starting point of state, and w(t) represents the w at time t.

Definition 2.3. A continuous function V : R" — R s called the ISS-Lyapunov function
for nonlinear system (8) if the following conditions hold:

1) There exist Koo-functions ay, g, such that
ar(llz])) < V(€) < as(|le]]), Vo € R? (10)

2) There exists a Koo-function asg and a K-function o, such that

A~

V(f(z,w)) = V(@) < —as(2]]) + o(||w]) (11)
for all x € R™ and for all w € R™.

Lemma 2.1. If the nonlinear system (8) admits a continuous ISS-Lyapunov function,
then it 1s I1SS.

Proof: The proof can be found in [22].

3. Feasibility Implies Input-to-State Stability. In this section, a new theorem of
“Feasibility implies input-to-state stability”, which corresponds to the robust case of [12],
is given. In [12], the theorem of “Feasibility implies asymptotical stability” is proposed and
the nominal nonlinear system alike to (5) is considered. Resort to the proposed theorem
“Feasibility implies input-to-state stability”, the only feasible solutions of optimization
problem are enough to guarantee the input-to-state stability of closed-loop system. The
proposed theorem is depicted as follows.

Theorem 3.1. If there exists:
1) A continuous function V(-,-) : R* x RN™ — R, which satisfies V(0,0) = 0, and a
K-function oy (-), such that
V(a(k), w(k)) < ai(z(k)]), VYa(k) € R, Yu(k) € R™™ (12)

2) A set Xp C R"™, which is an open set and also a neighborhood of origin, a Ku-
Junction as(-) and a KC-function (-), such that z(k) € Xp and

V((k), (k) = V(z(k = 1), u(k — 1)) < —ax(lz(k = 1D[) +7 (feuzp IIW(t)H)

where {x(k), u(k)} is the realization of controlled system (1) under initial condition
.CU(O) S XF,'

3) A constant r > 0 and a KC-function as(-), such that each realization {x(k), u(k)} of
controlled system (1) under arbitrary x(k) € Xp C B! satisfies:

[u(k)[] < as(ll=(k)[]) (13)
then the controlled system (1) is ISS in Xp.
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Proof: By adopting “Lemma 3.5” in [22] and “Theorem 1” in [12], the proof can be
given as below. Under initial condition z(0) € Xg, control input u(k) and the term
of disturbances w(k), we define the state trajectory of controlled system (1) as z(k) =
z(k,2(0),w). It is easy seen from inequality (12) that there exists V'(+,-) and «; such that
V(z(k),u(k)) < ai(||z(k)]]), and then inequality (13) can be modified into

V(z(k),u(k)) = V(z(k —1),u(k - 1))

< —ou(V(z(k —1),u(k -1))) +v (Sup ||1U(t)||> (14)

teTy

where ay — a9 © afl.
Since inequality (14) holds for all k£ € Z, it can be equivalently written as

V(z(k+1),u(k+1)) = V(z(k),u(k))
S—adV@%%M@D+v<prﬁW> (15)

teZ 4

According to (15), the norm ||(x(k), u(k))|| of controlled system (1) will not decrease
when Ay =V (z(k+1),u(k +1) — V(z(k),u(k)) = 0, and then we have

—adV@%%MMD+7<prﬁW>=0

teZ 4

= V(z(k),u(k)) = ai' oy <Sup IIW(t)H) (16)

teZ

By virtue of (16), the following set is given as

D; := {(x(k), u(k)) |V (z(k), u(k)) < c} (17)
where ¢ = a; ' o Y(supez, [[w(t)|]). Tt is assumed that |[w(k)|| < n,, where 1, = n when
p = 2, and then we have sup,c;, ||w(t)|| = 1, and y(supiez, [[w(t)|]) = v(mp). Finally,
c=ay' ov(n,) is confirmed.

The proceeding steps focus on two cases, i.e., (z(0),u(0)) € Dy and (z(0), u(0)) ¢ Dj.
For the first case of (z(0),u(0)) € D, we need to prove that (z(k),u(k)) € D; for
all £ > 0. The set D, satisfying this condition means that it is an invariant set for
the combined vector (z(k),u(k)). Since (2(0),u(0)) € Dy, we have ay(V (x(0),u(0))) <
Y(supsez, |w(t)|]). Also from inequality (15), we have

V(z(1),u(1)) = V(2(0),u(0)) < —au(V(2(0),u(0))) + v (fé%li ||w(t)||> (18)
and then we get
V(z(1),u(1))
< V(2(0),u(0)) — aa(V(x(0),u(0))) + v (sup ||w(t)||>

teZ 4

= (Id = o) (V(2(0), u(0))) + v <SUP ||w(t)||>

teZ 4

< 0 (o) +7 (sup )

teTy

== (@) +7 (sup (0]

teTy
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=c (19)

By recursion, the inequality V(z(k),u(k)) < ¢ holds for all £ > 0, and then we have
(z(k),u(k)) € ]D)s,‘v’k > 0. Consider the case of (z(0),u(0)) ¢ Ds, that is V(z(0), u(0)) >
c. From inequality (13), we have au(V ((0),u(0))) > vy(sup,cz, [[w(?)]]), and then

V(2(1),u(1)) = V(2(0),u(0))

< — ay(V(z(0) )+ | sup ||w(t) )

(s
< —a4()+7<SUP||w )

teZ 4
=0 (20)
Also by recursion, it is obvious that the value of V' (z(k), u(k)) decreases as the time k in-
creases. That is to say, there exists a time instant j such that the equality V (z(j), u(j)) =
¢ holds, and for any time k € [0, j], the following inequality holds:
V(z(k+1),u(k+1)) — V(z(k),u(k)) <0 (21)

As we can see from “Lemma 3.5” in [22], there exists a KL-function 5 for 0 < k < j+1,
such that

V(xz(k),u(k)) < p(V(x(0),u(0)), k) (22)

Hence, for any k € Z,, we have

V(w(k), u(k)) < max {a41 or (sup ||w<t>||) ,B(V(xm),u(o»,k)} (23)

tEZ+

Equation (23) is equivalent to

1 (k), u(E))I < B (I(2(0), w(0)]|, k) + o 0y (tsup ||w(t)||> (24)

€Ly

V(z(k),u(k)) can be verified as an ISS-Lyapunov function by referring to the concept
of ISS in Definition 2.2. However, it is an ISS-Lyapunov function towards the combination
of state x(k) and input sequence u(k). The next step is to prove the ISS property still
holds for the state x(k) only.

Combining (13) with (24), the following equation is obtained:

[ECRTO
< 3(1=(0), w00+ " o7 (sup (o] )

€74

< Bz + (0|, k) + o " oy (tsup IIw(t)H) BllzO)]

Sy

+as(le )5+ a7 o (s o]

€Ly

= B(Id + a3(2(0)), k) + oy 0y (Sup IIw(t)H) (25)

t€Z+

Letting 3(z(0), k) = B(Id + as)((0), k) € KL, we have

I(@(k), (k)] < B(x(0), k) + oy 07<sup IIw(t)||> (26)

teT
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Since ||(xz(k),u(k))|| > ||z(k)]||, the following equation holds:

lz(k)ll < B(x(0), k) + oy 07<SUP ||w(t)||> (27)

teT

By virtue of Definition 2.2, the controlled system (1) is proven to be ISS.

4. Robust Suboptimal Model Predictive Control Algorithm. Before giving the
proposed suboptimal MPC algorithm, the robust MPC algorithm with tighten constraints
(we call it the constraint-tighten MPC in this note) is introduced. For more details, readers
can refer to [20]. The constraint-tighten MPC is to solve the following optimization
problem:

min Vi (z(k), u(-
u(0]k), ,u(N 1/k) N( ( ) ())

(28)
(29)
L i=0,--,N—1 (30)
(31)
(32)

s.t. x(i + ) fz(ilk), u(i|k)) 29
w(ilk) €

u(ik) € z:O,---,N—l 31
(N|k

ZL‘N| )EXf

with the objective function

Vn(z ZL u(ilk)) + V (z(NIK))) (33)

where z(i|k) is the prediction of x at the future time &k + 4, predicted at time k. z(0|k)
is the current state, which equals z(k). X; is the terminal constraint set which contains
the equilibrium point. The running cost L(-,-) and the terminal cost V'(-) in objective
function Viy(-,-) are defined by

L(x(ilk), u(ilk)) = |l (ilk)[1§ + [luilk)||% (34)
V(z(N[k) = [lz(N|k)|[5 (35)

where the corresponding weighting matrices (), P, R are positive definite.
The tighten constraint on state z(i|k) is given by [20]:

X, =X~C] (36)

where (Cj7 is chosen as

C =Sz eR \||:Jc||ngf_1.77 (37)
By solving the optimization problem (28), the following optimal control sequence is

obtained
u’ (k) = {u"(0[), u*(1[k), ..., u"(N — 1K)} (38)
and the first element u*(0|k) of u*(k) is applied to the system (1).

Proposition 4.1. Suppose Assumption 2.4 holds and the predicted state x(i|k) subjects
to the tighten constraints (36) and (37), then the solution of optimization problem (28)
s the admissible control sequence, that is, the real state of closed-loop system satisfies
the state constraints. Moreover, the difference between the predicted state x(ilk) and the
corresponding real state x(k + i) is bounded by

Ly —1

I l8) —atk+ )l < 77—

n (39)
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Proof: The proof can be found in [20].

Assumption 4.1. The terminal constraint set Xy is a closed set, which contains the
oTigin in its interior.
Assumption 4.2. Suppose that the stage cost function L(x,u) and the objective function
Vn(z, u) fulfill the following conditions:

1) |L(z1,u) — L(za, u)| < Le||z1 — 22|p, Le € (0,00), Vi, 20 € X u € Uy

2) There exist constants a > 0 and § > 1, such that L(z,u) > a||(z,u)||’;

3) Vn(z,uw) < as|z]|.

Assumption 4.3. For nominal nonlinear model (5), there exists a local controller u =
hr(z) € U and a Lyapunov function Vi(z(k)) = x(k)TPxz(k), such that the following
conditions are fulfilled in the set Q = {z € R"|V(z) < (}:
w(k

)
1) Vi(f(x(k), hr(z(K)))) = Vi(z(k)) < =L(z(k), hy ((K))), Ve (k) €
2) There ezists a Lpschitz constant L, € (0,00), such that |Vi(x1) — Vi(x2)| < Ly||lwg —
£U2||p, VZCI,J'Q € Q
3) For all x € Q, we have x € X, hi(z) € U.

Define
u(k) = hy(z(k)) = Fa(k) (40)

where F' is determined such that A + BF' is Schur stable. For the nominal nonlinear
system (5), appropriate & and P should be chosen such that

(A+ BF)'P(A+ BF)— P=—-aP - Q— F'RF. (41)
where a procedure for selecting P, (, & can be found in [21].

Definition 4.1. For nominal nonlinear system (5), the terminal constraint set Xy :=
{x € R*"|Vy(z) < a} is defined as a set in which the arbitrary x(k) € Q, it follows that

f(x(k), hi(z(k))) € X;.

The terminal constraint set X; can be chosen as the one-step forward contractive set
of ). By assuming the contraction rate p € (0,1], i.e., Xy = pQ. Thus, for all z(k) € ©,
we have

v(k+ D) Pk +1) — z(k)T Px(k)

= (Az(k) + Bu(k) + 0(z))" P (Az(k) + Bu(k) + 0(z)) — z(k)T Pz (k)
v(k)" (AxPAx — P +cP) z(k)

(1= () Pr(R)

where Ay = A — BK and 0(z) = f(z, Fz) — (A+ BF)zx.

In order to fulfill the condition x(k+1)TPxz(k+1) —x (k)T Pz(k) < 0, the linear matrix
inequality A% PAg—P+¢P—pP < 0 must be given. By solving the following semidefinite
programming (SDP):

<
<

min p
p
st.0<p<1

AL PAk +cP —pP <0

the optimal contraction rate p* is given. Hence, the terminal constraint set Xy is confirmed
as
r(k+1) € Xy =p*Q:={z e R*|z" Pz < p*¢} (42)



ROBUST SUBOPTIMAL MPC FOR NONLINEAR SYSTEMS 1913

For disturbed nonlinear system (1), a robust nonlinear MPC algorithm based on the
suboptimal control laws is presented. Unlike the algorithm in [12], the controller does
not need to switch between the local controller hy(x) and model prediction controller.
Moreover, the proposed algorithm also fits for controlling the nonlinear systems with
bounded disturbances.

Algorithm 1. (Robust Suboptimal MPC Algorithm)

step 0. Choose the prediction horizon N, admissible invariant set 2, terminal cost
function Vi(z), local controller u = —Kx and terminal constraint set X;.

step 1. Let k := 0. Calculate a feasible solution which satisfies the constraints (30)-
(32), and then the feasible control sequence u(0) = ((0|0),a(1|0),...,a(N —
110)) is obtained; apply the control law u(0) = @(0|0) to the nonlinear system
(1). Let k :=k+1.

step 2. if k > 0, then let u(k) = (a(llk—1),...,a(N — 1|k — 1), hp(2(N — 1]k))).
Calculate a feasible solution which satisfies the constraints (30)-(32) and
Vn(z(k),u(k)) < Vy(z(k —1),a(k = 1))+ ¢ -n—a-||lz(k —1)||7 (where
© > 0 is an appropriate constant), and then the feasible control sequence
u(k) = (a(0|k),a(1lk),...,a(N — 1|k)) is obtained; apply the control law
u(k) = a(0lk) to the nonlinear system (1). Let k := k + 1 and go back to
step 2.

Proposition 4.2. For controlled system (1) subjected to the constraints (2)-(4), the pre-
sented Algorithm 1 admits a feasible set Xp, in which the sufficient condition for the
system state to fulfill the constraints (2)-(4) is

(—«
I e (43)
L’U - Lf

Proof: The proof can be found in [20].

Theorem 4.1. By applying Algorithm 1 to the nonlinear system (1) subjected to the
constraints (2)-(4), and assuming that there exists a feasible solution 0(k) which satisfies
(2)-(4) and Vi (z(k), w(k)) < Vn(x(k—1),a(k—1))+¢-n—a-||z(k—1)||7 for allz € Xp,
then the closed-loop system is 1SS in Xp.

Proof: According to Assumption 4.3, we have that the inequality Vy(z(k),u(k)) <
az||z(k)|| can be fulfilled for any x and u, and then the first term in Theorem 3.1 is proven.
In addition, the objective function Vy(z(k), u(k)) satisfies

Vn(z(k),u(k)) = Va(e(k = 1),ulk 1)) <¢-n—a-[lz(k - D]

and then the term 2) in Theorem 3.1 is proven. For the third term of Theorem 3.1, the
condition ||u(k)|| < as(||x(k)]|) can be fulfilled by adding this condition into optimization
as in [12].

By virtue of Theorem 3.1, the closed-loop system is proven to be ISS in feasible region
Xp.

5. Numerical Example. In order to verify the effectiveness of the proposed control
algorithm, the following disturbed nonlinear system is considered [20].

{xl(k + 1) = 0.55z1 (k) + 0.12x9(k) + (0.01 — 0.621 (k) + z2(k))u(k) + wq (k)

ok + 1) = 0675 (k) + (015 + 2 (k) — 0.825 (k) )u(k) + ws(k) (44)
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where z(k) = [z,(k), z2(k)]" is the vector of state variables, u(k) is the input variable,
and w(k) = [wy(k), ws(k)]" is the vector of disturbances. z(k) and u(k) are confined by
2 < (k) <2, —2< (k) <2, —0.1<u(k)<0.1 (45)

Removing the disturbances in Equation (44), the corresponding nominal model is given
by

z1(k 4+ 1) = 0.552 (k) + 0.1225(k) + (0.01 — 0.62, (k) + x2(k))u(k) 46
Choosing p = oo, the Lipscitz constant L; of the nominal model (46) is confirmed by

‘g _ H{O.55—0.6u 0.12+u H‘

or ||, U 0.67 — 0.8u
= max {[0.55 — 0.6u| + [0.12 + u|, |u| + [0.67 — 0.8u|}
< max {0.55 + 0.6|u| + 0.12 + |u], |u| + 0.67 + 0.8|u|}
<0.85

Then one has Ly = 0.85.

Selecting the stage cost function L(z,u) = 27Qz +uT Ru, where the weighting matrices
@ and R are chosen as

10
Q:[o 1}’ =1

then we have L(z,u) = 2? + 23 + u®. Deducting from the following equation:

we have L, = 4. Accordlng to the value of L(z,u) and letting § = 2, a|(z,u)|” =

a(22 4+ z2 + u?). To satisfy the inequality L(z,u) > a||(z,u)||°, one can choose a € (0,1].
Linearize the nominal nonlinear model (45) around origin, the system matrices A and

B are
0.55 0.12 0.01
A_{0.67 0 }’ B_{O.IE)}

Solve the LQR problem based on the selected weighting matrices () and R, the state
feedback gain K = [0.1273 0.0054] is given. Thus, the local controller can be identified
as hp(x) = —Kz. Moreover, the terminal weighting matrix P is given by

p_ [ 28561 02319
02319 11715

|[221, 225] ||, = max {|221], [222|} < 4

By choosing the terminal cost function as Vy(z) = 2" Pz, the positive admissible in-
variant set 0 := {z € R"|zTPz < 0.6}. Thus, ( = 0.6 and we have that

oV
H —LI = ||[5.91222, + 0.4638,, 0.46381; + 2.3430z,]|| .

oo

< max {5.9122|z1| + 0.4638|x|,0.4638|z1| + 2.3430|z|}
< 2.7023

Then L, = 2.7023. The terminal set Xy is given by
= {z € RV |z" Pz < 0.3889}
that is, a = 0.3889.
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By selecting the prediction horizon N = 5, the upper bound on disturbances is

(—a 0.6 — 0.3889
< - — 0.1497
TSI T 27023 % 0,851

For comparison, the initial state is set as x(0) = [~2,2]" and the parameter ¢ = 20.
Since the essence of disturbances is uncertain, the Mento-Carlo method is adopted to verify
the efficiency of the proposed algorithm. Since the optimal solution can be viewed as the
special form of suboptimal solution, the suboptimal solver “FSQP” in [23] is adopted to
get the suboptimal solution and the optimal solver “FMINCON” in Matlab is utilized
for comparison at the same time. It can be seen from Figures 1-3 that the system,
controlled by the proposed robust suboptimal MPC algorithm, is input-to-state stable.
From Figures 1, 2 and 4, all the hard constraints on state and input variables are not
violated at all. Comparing the proposed suboptimal MPC algorithm based on FSQP with
the FMINCON-based algorithm, we can conclude from Table 1 that the computational
time is extremely decreased.

0.5
= c 22
- N -
0 & 2 =
< = =
o - = - FMINCON |
-0.9 —— FSQP
-
_1.
-15
i) 5 10 15 20
k

F1GURE 1. Trajectories of x; under suboptimal solutions and optimal solutions

2
- = = FMINCON
— FSQP
1.5}F 1
1' [\ b
w
N
X
0.5f W 4
N
\\\\ 2 .
ol N \Q—\ -, - - iy T~
_0_ 1
0 5 10 15 20

FI1GURE 2. Trajectories of x5 under suboptimal solutions and optimal solutions
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2 T
C - = = FMINCON

15} TN ——FSQP

1F RN Ny \\ 3

N
0.5
>
0 -
-0.5 Terminal constraint set

-2 -15 -1 -05 0 05

FI1curE 3. Phase trajectories under suboptimal solutions and optimal solutions

0.1

0.08f
0.06}
0.04f
0.02f
ot
-0.02r
-0.04r
-0.06r

= = = FMINCON |

FiGURE 4. Control inputs v under suboptimal solutions and optimal solutions

TABLE 1. Comparison of suboptimal solutions by FSQP and optimal solu-
tions by FMINCON

u(FSQP) /time(s)

w(FMINCON) /time(s)

1.048 x 107°/0.0051
1.5986 x 10%/0.0051
1.5986 x 1076/0.0057
1.5986 x 10%/0.0048
1.5986 x 107°/0.0061
1.0480 x 107°/0.0068

—3.3857 x 1078/0.0106
2.5749 x 107°/0.0137
—4.0531 x 107?/0.0102
—4.0531 x 107%/0.0103
2.5749 x 1078/0.0107
—3.3857 x 1078/0.0103
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6. Conclusions. In this paper, a robust suboptimal MPC algorithm for nonlinear discre-
te-time systems with bounded disturbances is presented. By satisfying a certain of con-
ditions, the theorem of “Feasibility implies input-to-state stability” is given. That is, by
virtue of this theorem, the closed-loop system under suboptimal control laws is proven to
be input-to-state stable. The advantage of the proposed suboptimal MPC algorithm is its
low computational time. The simulation example confirms the control performance and
shows the advantages. Future work may include the simplification of conditions for the
theorem of “Feasibility implies input-to-state stability”, and the extension of this work to
large-scale systems.
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