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ABSTRACT. The multidimensional system finds various real time applications and mod-
eling of these systems are very important to understand the system dynamics. This paper
presents stability analysis of two-dimensional (2-D) discrete systems described by Roesser
model with time varying state delay and input saturation. Dynamic output feedback com-
pensator is used and static anti-windup gain is given which stabilizes the above system.
An optimization algorithm is proposed to mazximize the domain of attraction for 2-D dis-
crete systems using linear matriz inequality (LMI). Some numerical examples are also
provided to show the effectiveness of the proposed theory.

Keywords: Two-dimensional discrete systems, Anti-windup, Delay-dependent stability,
Linear matrix inequality

1. Introduction. Over the past few decades, considerable attention has been dedicated
to the study of multidimensional systems (m-D) due to their interdisciplinary applications.
The model of n-dimensional system has been studied in [1-6]. The real time applications
of two-dimensional (2-D) systems have been investigated for several areas such as robot
navigation [7], mapping in landslide areas [8], real time clinical experiments [9], visual-
ization of magnetic field [10], video application [11], 2-D controller design [12], Roesser
model based distributed grid sensor network [14], direction control in sheet metal process
[15], self-purification phenomena with modeling the river pollution process [16,17], optical
fiber network [18], magnetics [19] and photovoltaic applications [20]. A 2-D elevator traf-
fic system is presented in [21] which is based on the assumption that the elevator vehicle
can move in both directions (i.e., horizontal and vertical) on external fagade of multi-
story buildings and effect of time delay to turn round the vehicle. The stability analysis
of m-D systems has drawn the attention of many researchers [3-6,12-14,21,22]. Several
case studies of m-D discrete systems like grid sensor networks, and robot manipulator are
discussed in [22].

A common problem associated with physical systems is the nonlinearity in the form of
saturation, dead-zone, backlash, overflow, etc., which degrade the systems performance.
Most of the works have been carried out for continuous and discrete time systems subjected
to input saturation nonlinearity in one dimensional (1-D) systems [23-29] whereas a few
papers deal with the case of 2-D systems [30,31].

Time delay is another cause of system instability and poor behavior. Several global
asymptotic stability conditions [32-40] have been given on digital filters with state de-
lay combined with quantization/overflow nonlinearities. Stability analysis of 2-D state

1943



1944 V. C. PAL, R. NEGI AND H. KAR

delayed systems with input saturation nonlinearities is a very challenging task. The sta-
bility problem of 1-D time delayed systems in presence of input saturation has been studied
with constant time delay [41-44] and time varying delay [45-48]. The sufficient conditions
for asymptotic stability of 2-D discrete systems with state delay and state saturation
have been derived in [49-53]. The problem of stability analysis and [ gain control for
2-D nonlinear stochastic systems with time varying delays and actuator saturation have
been investigated in [54]. The H,, stabilization problems of 2-D discrete switched delayed
systems with input saturation has been studied in [55]. An approach for the design of
observer based output feedback H,, controller for 2-D uncertain discrete systems with
time-varying state delay and actuator saturation has been presented in [56]. The inte-
grated fault detection problem for 2-D discrete systems with time varying state delays has
been considered in [57]. [58] discusses the developments of a data acquisition system for
2-D position sensitive micro pattern gas detectors. By combining Kalman-Yakubovich-
Popov lemma with frequency-partitioning idea, less conservative stability conditions have
been derived for 2-D continuous-discrete systems [59]. The anti-windup approach is con-
sidered to be an effective and powerful tool to tackle the effect of actuator saturation
in continuous and discrete time systems in more practical perspective [23-27,29,31]. The
ant-windup problem for 2-D discrete system described by Fornasini-Marchesini second
local state space (FMSLSS) model with saturating control has been investigated in [31].

Motivated by preceding discussion, in this paper, we consider the problem of anti-
windup design for 2-D discrete system described by Roesser model with input saturation
and time varying state delay. This paper aims at providing a technique to compute the
anti-windup gain of the 2-D dynamic compensator such that closed loop system is asymp-
totically stable. The rest of the paper is organized as follows. In Section 2, problem is
formulated. In Section 3, static anti-windup gains are calculated using dynamic output
feedback compensator and an algorithm is proposed for enlarging the domain of attrac-
tion. To validate the presented results, several numerical examples are given in Section 4.
In Section 5, a conclusion is given.

2. Problem Formulation. The following notations are used throughout the paper:

g set of m x n real matrices

R set of m x 1 real matrices

0 null matrix or null vector

I identity matrix of appropriate dimension

I, n X n identity matrix

Amax (£2) maximum eigenvalue of any given matrix

QT transpose of matrix

* symmetric entries in a symmetric matrix
diag{ai,as,...,a,} diagonal matrix with diagonal elements a;, as, ..., a,
S direct sum

Consider a 2-D discrete system with delay given by Roesser model [13,51]

(261D ), [0 ] ay [ 200 ) my o

- x"(i, §) ]
1,J)=C | .0 1b
y(i, ) [ z¥ (i, 7) (1b)
where i € z,, j € z; and z, denotes the set of nonnegative integers. The x"(i, j) € R"

and x’ (7, j) € R™ are the horizontal and the vertical states, respectively. The u(i,j) € RP
and y(i,j) € R? are the input and measured output vectors, respectively. Matrices A, =
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{ A Ap A1 Ao
Ay Ay Agpr Ag
and C € R are known constant matrices representing a nominal plant. We assume
that the delays involved in system (1) are interval-like time varying state delays such that

dpr, < dp(i) < dpp, dor, < dp(j) < dpr (1c)

where dp;, and d,;, are constant positive integers representing the lower delay bounds along
horizontal and vertical directions, respectively; d,y and d,y are constant positive integers
representing the upper delay bounds along horizontal and vertical directions, respectively.
It may be mentioned that such type of modeling of time varying delays has been widely
used in the literature [38,49,50,54-57].

Let a linear 2-D dynamic compensator stabilizing the system given by (1a) and (1b)
and meeting the desired performance specifications in absence of actuator saturation be

:| c %(n+m)><(n+m)’ Adp — |: ] c §R(n+m)><(n+m), Bp c R(nt+m)xp

ze(i+1,) | Z 4 | ®e(ind) ¥
{ zi(ig+1) | = A aing) | B ) (%)
¥ mh(i.i)} [ wh(i.i)]
Viii,j)=C, | T\bI) | L p.o| T\ 21
i) =0 26 "(i.J) )
where 2 (i, j) € R and 22(i, j) € R™ are horizontal and vertical states of the controller

respectively, u.(i,7) = y(i,j) € R? is a controller input vector and V,(i,j) € R? is a
controller output vector. The matrices A, € RMetme)xnetme) B ¢ Rnetme)xa O ¢
Rrx(retme) and D, € RP*? are constant matrices of the desired controller. The input
vector u(i, j) is subjected to amplitude constraint defined as

—uoy < ugy (i, J) < uoq) (3)
where uggy > 0,1 =1,2,...,p denote the control amplitude bounds. Therefore, the actual
control signal injected to the system (1) can be written as

- - xh(i, §) ] {wh(i 7) D
u(t, 7) = sat(V.(z, = sat | C. el + D.C ol 4
(4,7) (Ve(i, 5)) ( { (¢,7) z’ (i, 7) (4)

L.

where the saturation nonlinearities are characterized by
—uoq) i Vegy < —uoq)
sat(Ve(i,7)ay = 8 Vewy  if —uogy < Vey < gy , 1=1,2,...,p (5)
uoy  if Vi) > uoq
The actuator saturation causes windup of the controller and to mitigate its undesirable
effect an anti-windup term E.(sat(V.(i,7)) — V.(i,j)) can be added to the controller

[27], where E. is anti-windup gain. Thus, considering the dynamic controller and the
anti-windup strategy, the closed loop 2-D system can be represented by

{wW+Lﬂ]:AJwWJW+AM[MO—%@m]

x'(i,5+ 1) x"(i,7) (1,7 — dy(j))

' B, <sat <Cc [ zhg f; ] +D.C [ 2}18 ﬁ D) (6a)
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Let us introduce the elementary matrix

I, 0 0 O
0 0 I, O

=191, 0 o0 (8)
0 0 0 I,

Using (6)-(8) and the relation IT"! = TIT, the closed loop system of the plant and the
controller can be expressed as

S0 B [ B0 |

(B + RE) (K [ S D 9)
where

£, g) = [ =" (,5) =5 )", €65 =[5 =65 ]

Ay O
Ad:H{ Odp O]HT (10)
[ A,+B,D.C B,C.leer 1 [B, - 0
A_H[ B& " ]H, B=I| ' |, R=II| "
K=[DcC C. |IO" (11)
Y(Veli, 7)) = Veli, j) — sat(Ve(i, j)) (12)
The boundary conditions of system (9) are assumed to satisfy
sh(z j)=hij, YO< <, —dyr <i<0
Ehi,j)=0, Vji>r, —dy <i<0
£U(Z j)—’U”, VOSZ.STZ; _deSJSO (13)
€'(1,j) =0, Vi>ry, —dyy <j<0

where r; and 7, are finite positive integers, h;; and v;; are given vectors.

Remark 2.1. The boundary conditions (13) play a key role in the derivation of the
stability criterion for 2-D systems. With the suitable choice of r1 and ro, it is not difficult
to define the boundary conditions of dynamic compensator such that (13) holds.

The following definition and lemmas are needed in the proof of main result.

Definition 2.1. [12] The system (9) with the boundary conditions (13) is asymptotically
stable if
lim x, =0 (14)
£—00
where x¢ = sup {[|€(@, /)| : i +7 =0, 0,5 > 1} and €(i,5) = [ €'7(i,5) €7(0.5) ] .

Lemma 2.1. [60] For any positive definite matriz W € R™™ two positive integers
and ly satisfying 1 < Iy <y, vector function w € R™, one has

(lg—ll—i—l)ZwT(i)Ww(i) > (Zw(i)) w (Zw(i)) (15)

Consider a matrix G € RP*(tminetme) and define a polyhedral set

e {€ € RinFminetme) _y0) < (Kgy — Gy) €6, 5) < uoay,l =1,2,...,p}.
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Lemma 2.2. If &€ € / then
0 = 297 (KE(i, 7)) D [$(KE(i, j)) — GE(4,5)] <0 (16)

where D s positive definite diagonal matriz.

Proof: The proof of Lemma 2.2 directly follows from [31,46].

In the following section, we aim to determine the anti-windup gain matrix E, such that
the asymptotic stability of closed loop system (9) is guaranteed for time varying delays
satisfying (1c). An optimization procedure is presented in order to maximize the estimate
of the domain of attraction associated to it.

3. Main Results. The main result of the paper may be stated as follows.

Theorem 3.1. For given positive integers dyy,, dyr, dpg and dyg, if there exist matrices
G € Rpx(vitminetme)  ff ¢ Rnetme)xp diagonal positive definite matriz L € RP*P,
positive deﬁm’te symmetric matrices Pt € Rovtne)x(nine) = pv o gmtme)x(mime)  Qh ¢
%(n-i—nc) (n+nc) Qv € %m—l—mc m-l—mc) Wh € %n-i—nc n-l—nc) W ¢ %(m-l—mc)x(m—l—mc),

R,=R'® R v k=1,2,3 and Xy, k =1,2,3,4 satisfying

'Y, RyD}A; G RY ~RT AT AT D,(A-I)7 Dr

x  -Q 0 0 0 A7 A7 D, AT 0

* * —2L 0 0 —-(BL+RH)' —(BL+ RH)T (-Dy(BL+ RH))" (-D,(BL + RH))"

* * x —-W — R RY 0 0 0 0

* * * * -R, 0 0 0 0 <0

* * * * * —2X,+ X\ PX, 0 0 0

* * * * * * —2X5 + X0Q X, 0 0

* * * * * * —2X;3+ X3R; X3 0

* * * * * * * —2X,+ Xy Ry X, J

(17)
P KT GT
. 5 >0, [=1,2,...,p (18)
%o
where

P:Ph@Pv, Q:Qh®Qv; szh®wv

R' R! R R}
h _ 1 2 2(n+ne)X2(n+ne) v 1 2 2(m+me)x2(m+me)
O<R [RQTRQ]ER , 0< R {RgTRg]EgR
(19)
Y =-P+W+DQ+D;R+(A—I)"D;R;, + D;Ry;(A—1)— Ry
| (dhg — dpr) T, 0 _[dwgI, O
Da= |: 0 (de - de)In o Du= 0 dyn I, (20)

then, for the gain matriz E, = HL™" the ellipsoid ¢(P) = {5 € Ruimtnctme, ¢ pe < 1}
is a region of asymptotic stability for the system (9). Further, an estimate of the domain
of attraction for system (9) is

F(ﬁrhaﬁrv) = [ Eh ()\max (Ph) (th + 1) max (Qh) + th)\max (Wh)
+0. 5(th — dpr + 1) (dhir + dnr) Amax (Q") + 2d jr(diir + 1) Amax (R"))
()\max PU (de + 1) max(Qv) + de)\max(Wv)

+0. 5(de vL + 1)(de + de))\max(Qv) + 2d3H(de + I)Amax(Rv))]
1 (21)

IN

where

o s (zush <—ah,j>u)
=0

—dpg <a"<0
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By, = max (Z €. —av>||>
=0

—dyr<av<0

Proof: The proof of Theorem 3.1 is based on standard Lyapunov theory. It consists
of several steps. First, we select a 2-D quadratic Lyapunov function v(£(4,7)). Second,
we estimate the forward difference of the Lyapunov functional along the trajectories of

the system (1) i.e
determined.
Define

8" (r, j)
n"(r,j) =

, Av(€(4,7)). Third, the condition under which Awv(&(i,

:Sh(r+1aj)_£h(raj)a 5”(2',15):5"(@',154_1)—
[ &7 (r,5) 6" () 1", n'(i,t) = [ €76t 6T(,1) ]

Now, consider a 2-D quadratic Lyapunov function [51]

where

v (€(i,5)) =" (€"(i,5)) + v (£°(i, )

(Z 7)P"e" (i, 7)
vy (€0, 0) = ) €7(r ) QMEMr, j)
r=i—dy (i)
—1
vi (€M 5) = Y &7 ) WhEr(r,j)
r=i—dpg
—dp1, i—1

VEED) = DD D T )Q e ()

s=—dpg r=1+s5

vl (€"(i,)) = dnm Z ZU (r, ) R'n"(r, j)

s=—dpg r=i+s
5

V(€7 (5, 5)) = ) vi(€°(,))
k=1
v (€Y (i, §)) = €7 (i, ) P €" (i, j)
J
vi(€°(,5) = > €7(i,5)QE" (i, s)
s=j—dy (])
j—1
Vi€, 5) = Y €7 (i, )WUE (i, 1)
t=j—dyg
—dyr,
(€, 0) = Y §js”th%vzﬂ

s=—d,pg t=7+s

BEGT) = dr S Y 0GR (01)

s=—dyg t=j+s

j)) < 0 is
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Taking the forward difference of Lyapunov functional along trajectories of system (9), we

obtain
5

Av(E(,5)) =Y Avg(€(i, 1)) (37)
where -
Avy (&(i,5)) = Avl (€"(i, ) + Av}(€°(3, 5)) (38)
Avt (€"(i,5)) = o} (€"(i+1,5)) — o} (£"(7, 7))
Avy(€"(i, 7)) = v} (€"(i,j + 1)) — v} (£"(i, §)) (39)

+ [ €M — dp(i), §) €7(, 5 — dv(j)) | AFPAE(, j)
FLEG-ii)d) €70 - i) | Afpaa| (0
+ [ €70 —dn(i),7) €7(i,j —du(j)) | Ay P(—B — RE)%(KE(i,j))
+ " (K¢€(i,j))(—B — RE,)" PAE(i, j)
+4"(KE(i, j))(~B — RE.)" PA [ § 8,}%?(3]))) }
+v9"(K&(i,j))(—B — RE.)" P(—B — RE.)y(K&(i, j))
—&7(i, ) PE(i, ) (41)
Avs(€(i, ) = vl (£"(5,5)) + Avi(€"(i, ) (42)
Avy (8", 7)) = vy (6" +1,4)) — vb (£"(4, 7))
Avy (€7(1, 7)) = vy (§"(4,5 + 1)) — vy (§"(4, 7)) (43)
| € +1,9) Eh(i+1,75)
AUZ(&(ZJ)) - {5 (Z j—|—{) ] Q [ SU(Z ]+{) :|
(i —dn(@),5) 1" - [ € — dn(i)
{ Y(i,j —d (j)} { (i, —d } (44)
_ T T T €h( (Z)v.])
= €70,J)ATQAE(.§) + €71, /) ATQAs [5( o

¢"(i,j))A"Q(—B — RE.)y(K (
[ €M (i — dn(i),5) €7(i,j—d
[

J
( »(9))

EM (i — dn(i), ) €7 (6,5 — du(j))
+ [ € (i — da(i), 0(7))
)

)

13

+ )

+ | ATQAE(, j)
T ( (Z) J)

* }AQAd[ £'(i,j—d (]))}

] AYQ(—B — RE,)%(K£(i, 5))

i),7) €7, j—
+ " (KE(i, j)
+ ¢ (KE(i, )

RE )TQAS(Z 7)

(-B -
(-B - RE,)"QA, {gh dhc(;)(’jj%]
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+v9"(K&(i,j))(—B — RE.)"Q(—B — RE.)y(K&(i, j))
(i —dn(i), 1) 1" A [ &€ — du(i), J)
[sm j—d,(7) ] Q [ £(ij —dy(7) ] (45)
Avy(€(i, 7)) = Avh (€"(, 7)) + Avs(€°(, 1)) (46)
Avy (&"(i,5)) = vk (€M +1,5)) — vk (€"(i, 7))
Avg(£°(i, 7)) = v3(§°(i, 5 + 1)) — v3(£"(4, 7)) (47)
(&9 ] e [ €6 5)
(i —dnim,§) | v [ € — dnmr, 5)
- { € (i, j — dor) ] w { € (i,j — dun) ] (48)
o [ &M= dum, i) 1T o, [ € — dum, j)
- (Z,j)Wﬁ(Z,j) - |: fv(l,j _ de) :| |14 |: £U(Z,] _ de) :| (49)
Avy(€(i, 7)) = Av} (€"(4, 7)) + Av} (€7(i, 5)) (50)
Avy (&"(i,5)) = v (€M +1,5)) —vi (£"(4,5))
Avy(£°(i, 7)) = vi(§°(i,j + 1)) — vi(€"(4, 7)) (51)
Auvy(€ _f Z &M (r, ))Q"E"(r,§) — _iL Z&hTTJ )Q"E"(r, 7)
+_ZL Zg (i, £)Q€" (i, 1) — _ZLZS (1,6)Q°€" (i, 1) (52)
£"(i,4) (dner — dn) Inn 0 £"(i,7)
[ (il ) ] [ 0 (durt — dos) Lo, ] Q [ £ (i) } (53)
Avs(&(i,5)) = Avl (€"(i, 7)) + Avl(€Y(3, 5)) (54)
Avl (&"(i, 7)) = vl (€"(i +1,5)) — vl (£"(i,5))
Avg(£°(i, 7)) = vs(§°(i, 5 + 1)) — v (€"(4, 7)) (55)
Av5(€(' 7))
—thZ E T]thT] thz nhTT]thTJ)
+d,,HZ Z T, )R (i, 1) — dyir i in"th)Rn(zt)

[ o 2[5 s

—dyr Y, 0", 5+ )R (i) +1) (56)

t=—dypm
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Using Lemma 2.1, it follows from (56) that
Avs(&(i, 7))

T

o o T 0')) \ T w0n))
S e A ) B e A | S
7 7 L:% n"(i, 1) t:g% n"(i, 1)
< €00 DIRE() + €7 00)(A - I DiREe(i) + | 0 ) | ATDRRIe()
+ 97 (KE(i,j))(—B — RE.)" DRI &(i, j) + €" (i, j) Dy Ro(A — I)&(i, j)
T(: \ 2 f(l_dh()) T(; 2 _ i T N\D2RaS(i. i
DA § T M) | € ) DR B - RE)E(RE(0) + 87 1) DiRuS )
i i B 2_)1 ¢"(r,4)
s 8 e 8 oeran || ot S || o
r=i—dpn t=j—dyn 1 tz% £UT(7, t)
. i &"(r,7)
[ﬁhT(l 1) §hT(lfth 7) {”T(’i,]) £”T(l 77(1“{) ] [ _13}21 7135T } :;:ffhn ;
L=/§iun€ (Z t)

LB e e[ ][

: : 7@
r=t—dpn t=j—dyu

¢
¢
+[€7G.9) ~ €7 — du ) s”(z',j)fs”(i,j—dm)]{’ffg 2{3} [5}’&?:1)*5}1(?;‘1@”] (58)

where
5=1[6"(i,j) 67(i5) ] (59)
Employing (37)-(58) and Lemma 2.2, one has
Av(&(i, 7))
Y., R;D?A, R,D?(-B- RE.)+G'D RY —RY
£ —-Q 0 0 0
<WGp| o+ 2D 0 0 | i)
* * * -W —-R; R!
* * * * —R;
T par o | EGHLD T [ € +1,5)
sh(i+1,j>r [ah(iﬂ,j)]
.. P .. 60
* [ £°(i,j +1) €7 +1) (602)
where

= [ €7(,j) €T(i,j) »T(KEG,7) €5(i.5) €G,j) "

€ling) = [ €7 (i —d(i),j) €7, —d(j) "
ni,g) = [ €7 — dum,j) €70, j —dum) |" (60b)
&ii=| T €T T e (600

Inequality (60a) can be rewritten as

Av (€3, 7)) < 1" (i, 5) pm(i, 5) (61)
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where
¢11 ¢12 ¢13 Rg _Rg
* G ¢o3 0 0
d=| *x x o3 0 0 (62)
* * x -W-R; RY
* * * * —-R;
¢ =Y +ATQA+A"PA+(A-1)"D;R3(A - I) (63a)
¢ = RyD}A;+ ATPA;+ ATQA, + (A-I)"D:R;A, (63b)
¢13 = —RyD}(B+RE.)+G'"D—-A"P(B+ RE, - A"Q(B+ RE,)
—(A-I)"D}R;(B + RE,) (63c)
b = —Q+AJPA;+ AlQA,+ AID} Ry A, (64a)

¢23 = AEP(_B - REC) + AgQ(_B - REC) + AngZLR?)(_B - REC) (64b)
¢33 = 2D+ (B+ RE.)"P(B+ RE,) + (B+ RE.)"Q(B + RE,)
+(B+ RE,)"D}!R;(B + RE,) (65)

Note that, if ¢ < 0, then Av(&(4,7)) < 0 for p(i,j) # 0. In view of Schur’s complement,
condition ¢ < 0 is equivalent to

Yy R,D?A, G'D RY —-RY AT AT D,(A-1)7T DY

* -Q 0 0 0 AT AT DAY 0

* * —2D 0 0 —(B+RE)T —(B+RE,)" (-D,(B+ RE,)T (-Dy(B+ RE,))T

* * x -W-R; RY 0 0 0 0

* * * * —-R, 0 0 0 0 <0

* * * * * —p! 0 0 0

* * * * * * -Q! 0 0

* * * * * * * —R;l 0

* * * * * * * * fR;1 ]
(66)

Pre-multiplying and post-multiplying (66) by diag(I,I, D', I,I,I,I,1,I), we obtain
Yy, RoD}A, G* RY —RY AT AT D,(A-I)T Df

* -Q 0 0 0 AT AT D, AY 0

* * —2L 0 0 —(BL+RH)" -(BL+RH)" (-Dy(BL+ RH))T (-D,(BL + RH))T

* * x —W — Rz RY 0 0 0 0

* * * * -Ry 0 0 0 0 <0

* * * * * —P! 0 0 0

* * * * * * -Q!' 0 0

* * * * * * * —R;l 0

* * * * * * * * ngl ]
(67)

where
D'=L E.=HL' (68)

For any matrices 0 < Xy, k = 1,2, 3,4, we have [46,62]
—-P'< 22X, + X, PX,, —-Q'<-2X,+X,QX,
~R;' < 2X3+ X3R3X;, —R,' < 2X,+ X R, X, (69)

In view of (69), it is clear that (67) holds if (17) is satisfied.

Next, it remains to show that the set (P) = {& € Rrminetme, ¢TPg <1} is included
in polyhedral set ¢ as defined in (16), if (18) holds. It can be proven that e(P) =
{€ € Rriminetme, ¢TPg <1} is equivalent to [61]

P — (K(l) —G(l))T (K(l) —G(l)) uaﬁ) >0, [=1,2,...,p (70)
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which implies
.. T _ ..
€"(i,9) (P~ (Ko — Go)" (Kq) — Gu) uydy) €(,7) > 0 (71)

The equivalence between (71) and (18) follows trivially from Schur’s complement. This
completes the proof of Theorem 3.1.

The proof for the estimate of domain of attraction (21) directly follows from [46,54]
and detail of the proof is omitted for brevity.

Remark 3.1. Theorem 3.1 can be used to determine the asymptotic stability of 2-D
discrete system described by Roesser model with actuator saturation and time varying
state delay. Note that, the conditions (17) and (18) are in LMI setting, and hence,
computationally tractable.

Remark 3.2. In Theorem 3.1, a sector condition (see (16)) is used to characterize the
actuator saturation nonlinearities. By contrast, [54-56] deal with the design of state feed-
back controller where convex hull approach is adopted for the characterization of saturation
nonlinearities. In [54-56], the stability conditions are expressed as a conver combination
of 2P (where input u(i,j) € RP) LMIs. Therefore, as compared to [54-56], the present
approach is beneficial in terms of computational complexity.

As a direct consequence of Theorem 3.1, we have the following corollary for the global
asymptotic stability of system (9).

Corollary 3.1. The system (9) is globally asymptotically stable provided there exists a
matriz H € RMetme)xe o diggonal positive definite matrizc L € RP*P, positive definite
symmetric matrices PP € Rnine)xntne) = pv c gpmtme)x(mime) Oh o gntne)x(ntne)
Qv c %(m+mc)><(m+mc)’ Wh c %(n+nc)><(n+nc)’ Wv ¢ %(m+mc)><(m+mc)’ Rk: — RZ, D Rz;
k=1,2,3 and X, k =1, 2,3,4 satisfying the following LMI

Y, R,D}A; KT RT ~RY AT AT D,(A-I)" DT
- Q 0 0 0 AT AT D,A] 0
* * —2L 0 OT —(BL+ RH)T —(BL+ RH)" (-D,(BL + RH))T (-D,(BL + RH))”
£ « -W - Ry R} 0 0 0 0
* * * * ’ —-R, 0 0 0 0 <0
* * * * + —2X,+ X, PX, 0 0 0
* * * * * * —2X5 + X0QX, 0 0
* * * * * * * —2X3+ X3R3X3 0
* * * * * * * * —2X,+ XyRy X, |
(72)
where
Y,=-P+W+D,Q+D;R,+(A-1)"D;R,+ D;R;(A—1I) - R;
P:Ph@PU, Q:Qh@Qv, W:WhEBWv
R' R!
h _ 1 2 2(n+nc)X2(n+mne)
v R11} R12} 2(m+me)x2(m+me)
0<R—{R5T R,é]eﬁk
_ | (dhg —dpo)I, 0 [dwyI, 0O
Dd N |: 0 (de - de)In ’ Dh N 0 deIn (73)

Proof: Choosing G = K, one can see that (16) is automatically met for all £&. Sub-
stituting G = K into (17), we obtain the global stability condition (72). This completes
the proof. O
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Maximization of Domain of Attraction
An optimization procedure to maximize the estimate of domain of attraction may be
stated in the form of following theorem.

Theorem 3.2. Consider the closed loop system (9) with the boundary conditions (13),
then the maximized domain of attraction can be estimated if the following conver opti-
mization problem
minimize r,
where
r = ’I“{L + (th + 1)7“£Z + thTgl + 05(th — dhL + 1)(dh[{ + dhL)"“Z
+2d3 g (dppr + Vel + 1)+ (1 + dyg) 7y + dypry

subject to (17)-(19) and

" —Ph">0, 7I-P">0, P'\T-Q">0, XI-Q" >0, r'T-W">0

il -W">0, r"T-Q">0, ri{T-Q">0, P!IT-R">0, r'T-R" >0 (75)

has a feasible solution for the weighting parameters r®* > 0, i = 1,2,...,5, r¥ > 0,
i=1,2,...,5, positive definite symmetric matrices P*, P*, Q", Q', W", W', R", R,
Xy, k=1,2,3,4, matrices H, G and a diagonal positive definite matriz L.

In this situation, an anti-windup gain E. = HL ' provides a maximized estimate of

domain of attraction given by ', 5.,) = 1.

Proof: If the conditions given by (75) hold true, then rT > .. (Ph), il >
)\max(Pv)a TgI Z )\max (Qh)a 7"1QJI Z )\maX(Qv)a T:I)}I Z )\max (Wh); 7"§I Z )\max(wv)a
TZI > )\max (Qh)a TZI > )‘max(Qv)a TgI > )\max (Rh), TgI > )\max(Rv)-

Thus, if we minimize r given by (74), estimate of domain of attraction is being maxi-
mized. In other words, the optimization procedure in Theorem 3.2 orients the solutions
of (17)-(19) in order to get the domain of attraction as large as possible. O

4. Numerical Examples. In this section, several numerical examples are given to illus-
trate the effectiveness of the proposed approach.

Example 4.1. Consider a closed loop 2-D system in Roesser model with time varying
delay (1a) and (1b) and stabilizing controller (2a) and (2b) with the following parameters

0.215 0.08 | 0 01 0 10.05 08 0
A= 02 -004,001 1, Ag=| 01 002, 0 |, By=| —001 001
001~ 0.01 ' ~0.1 0.03 70.1270.03 | 0.001° 0.002
1 0 o0 [ -0051; 0 o5 0
C_[o 0.1 0.01]"40_{ 0 3—0.501]’30_{0 0.6 |
~0.4958 0 —0.011 0
Ce= { 0 —0.51 ] De= { 0 —0.527]

The control bound uy = [ 11 }T and delay ranges are defined as dp;, = 1, dpg = 3,
dyr, = 1, dyy = 3 in this example. Using MATLAB LMI toolbox [66], it is verified that
(17)-(19) and (75) are feasible for following values of unknown parameters

189.5312  0.5397  —28.0442
P = 0.5397  121.7596 -—13.0162 |, P" = [
—28.0442 —13.0162 148.1501

104.0758 —0.4987
—0.4987 133.0361
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—0.0013  0.0038 0 3.1998

In this case, the gain of stabilizing anti-windup compensator is given by E, = HL ' =

{ —0.0057 0.0055 ]

o { —0.0186 —0.0175 ] - {3.2415 0 ]

—0.0004 0.0012

Example 4.2. The present approach (Theorem 3.1) can be applied to the control of sev-
eral dynamical processes. It is known that some dynamical processes in heat exchangers,
air drying, water stream, heating and gas absorption, etc. can be expressed by Darbouz
equation [63-65]. In this example, we shall demonstrate the application of Theorem 3.1
for the control of processes which can be expressed by Darboux equation.

Consider the Darboux equation [63-65] given by

s(x,t)  0s(x,t) 0s(z,1)
ot o T o

+ aps(x,t) + ags(x,t —d) + bf (z,t) (76)

ds(z,t
y(z,t) = ¢ S(ai’ ) _ azs(x,t)| + cas(x,t) (77)
with the initial conditions s(x,0) = p(x), s(0,t) = q(t), where s(x,t) is an unknown

function at space x € [0,xf] and time t € [0,00]; f(z,t) is the input function subjected to
saturation; y(x,t) is the measured output; ai, as, ay, aq, b, ¢ and ¢y are real constants.
Define

r(z,t) = w — ags(x,t) (78)
then (76) can be transformed into an equivalent system of the form:
or(x,t)
o | a1 aas +ag r(z,t) g B b
Os(x,t) | [ 1 s ] |:S(l‘,t):|+|: 0 ]S(x,t d)+{0 f(z,t) (79)
ot
with initial condition
0s(x,t dq(t
r(0,1) = (at ) - a5(0, 1) = % — asq(t) = 2(t) (80)

Let r(i, ) = r(iAz, jAL) 2 zh(i, 1), s(i, ) = s(idz, jAL) 2 2¥(i, 5), f(z,t) = u(i,j) and
or(z,t) r(i+1,7)—r@,j) 0s(x,t) _s(i,j+1)—s(i,j)

or Az ’ o At (81)
Now, taking
e =16 ] 2

(79) leads to

Rt B R el e

0 aq l‘h(l—dh(l),]) bAx .o
*[0 0 } {x”(z’,j—dv(j)) ] +[ 0 ]“(”) (83)

with the initial conditions
z"(0,7) = 2(jAt), z°(i,0) = p(iAz) (84)

Note that, the discrepancy between the partial differential equation (PDE) model of (76)
and its 2-D difference approzimation depends on the step size Ax and At.
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Let the 2-D plant with delay be expressed in the form of (6) with

—0.05 0.08 0520 0
AP‘{ 0.2 0.04]’ Adp_{ 0.1 0.05]

0.08 0 -1 —0.20
B, = { —0.01 0.01 ]  O= { 0 —0.1 ]
The dynamic output feedback controller for the above plant is given by

4 _[02321 053] L _[-0045 —0.05
¢~ | —0.16 0.084 [* ¢7 | 0.0836 0.10

~1.014958 0.036 ~0.15  —0.09
Ce= { 2.0 0 ] D= { 18.05 —30.05]

It is verified that (17) and (18) are feasible for control bound ug = [ 1 1 ]T and delay
range dpp, = 1, dpy = 2, dy, = 1, dyg = 43. The values of unknown parameters are

ph— 157.4179 10.1323 pv— 170.4225 0.1865
| 10.1323 117.9968 |’ | 0.1865 222.9363

L _ [00004 0 g _ [ —0-0004 —0.0074
| 0 21349 [ 7| 0.0001  0.0180

and the stabilizing anti-windup gain is E, = HL ' = [ —1.2264 - —0.0035 ]

0.1581  0.0084

Example 4.3. Consider the 2-D discrete time system in Roesser Model setting (1) and
the stabilizing controller (2) with

0.05 0.08 | 0 0.1 0 10.05 0.8 0
Ap=| 02 -0.04 001 }, A=) 01 002, 0 |, By=| —001 0.01
0.01 001 1 =0.1 0.03 "0.127 0:03 0.001" ~0.002
1 0 o0 [ -0051;, 0 o5 0
C_[o 0.1 0.01]"40_{ 0 3—0.501]’30_{0 0.6]
—0.4958 0 —0.011 0
Ce= { 0 —0.51 ] D.= { 0 —0.527]

For given control bound wy = [ 11 ]T and delay range dnpr, = 1, dpg = 2, dyp = 1,
dyg = 3, it is found that the condition stated in Corollary 3.1 is feasible for

[195.1879 —4.3330 —10.7384-|
Ph:[ —4.3330 162.7806 —19.6112

181.6109 —0.8438]
—10.7384 —19.6112 164.6883

J , Pr= [ —0.8438 184.7405

0.0047 —0.0019 0 12.3038

and the anti-windup gain of stabilizing compensator is obtained as
0.0016 —0.0017 ]

H— { 0.0208 —0.0214 ] - { 12.8220 0 ]

— -1 _
E.=HL " = [ 0.0004 —0.0002
Therefore, Corollary 3.1 ensures the global asymptotic stability of closed loop system under
consideration.

Figure 1 shows the trajectories of states variables of the closed loop system with two
horizontal states and one vertical state of 2-D plant and it is seen that all the three states
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FIGURE 1. Trajectories of the horizontal and vertical state variable (Ex-
ample 4.3)

Ui, J)

FIGURE 2. Control effort (Example 4.3)

are converging to zero with €"(i, j) = { and

0 7>20 0 7>20
time varying delay as dy(i) = 1+ sin (%), dy(j) = 2 +sin (%7) The control efforts are
bounded in Figure 2 for given values ug = [ 11 ]T. The effect of anti-windup controller

can be seen from Figure 2 that the control efforts are bounded within defined limit, i.e.,
+1.

6 0<7<20 . 6 0<7<20
S7 > 7£u(2,]):{ >) >

5. Conclusion. In this paper, an anti-windup strategy has been applied to 2-D discrete
system in Roesser model when subjected to input saturation and time varying delay.
Delay-dependent stability criterion for the said system has been established in LMI form.
An algorithm is proposed to maximize the domain of attraction. Several examples are
provided to demonstrate the applicability of the presented result.

Acknowledgments. The authors wish to thank the Editors and anonymous reviewers
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