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ABSTRACT. Biogeography-based optimization algorithm (BBO) realizes the information
circulation and sharing by using the species migration among habitats and achieves the
global optimization by improving habitat adaptability. Based on the information sharing
strateqy and the population adaptive migration mechanism of BBO algorithm, siz new
high-order nonlinear hybrid mobility models are proposed based on the cosine-four or-
der mobility model and cosine-sixzteen order mobility model. Simulation experiments are
carried out to compare the optimization performances of the proposed hybrid high-order
mobility models on the typical function optimization problems. The simulation results
and analysis show that the proposed improved BBO algorithm has good optimization per-
formance.

Keywords: Biogeography-based optimization algorithm, Mobility model, Function op-
timization

1. Introduction. The function optimization problem is to find the optimum according
to an objective function through some searching strategies [1,2]. The swarm intelligent
optimization algorithms, such as ant colony optimization (ACO) algorithm [3], genetic
algorithm (GA) [4], particle swarm optimization (PSO) algorithm [5], and artificial bee
colony (ABC) algorithm [6], have been applied in the function optimization field suc-
cessfully. BBO algorithm is a new type of swarm intelligent optimization algorithms
and formally put forward by an American scholar Simon in 2008 [7,8], whose basic idea
is based on the species migration to complete the information flow between habitats. It
achieves information sharing, the suitability improvement of habitats and obtains the opti-
mal solution through adjusting immigration rate and emigration rate, migration topology,
migration interval and migration strategies in the process of migration [9].

Compared with other swarm intelligent optimization algorithms, the main advantages of
BBO algorithm are little adjusted parameters, simple implementation, fast convergence
velocity and high searching precision, which has been successfully applied in economic
load assignment [10], combinatorial optimization [11], power distribution of wireless sen-
sor network [12] and function optimization [13], multi-objective path finding in stochastic
networks [14], dynamic economic dispatch [15], quadratic assignment problem [16], loca-
tion area planning [17] and other global optimization problems.

According to the biogeography species distribution, the different linear and nonlin-
ear migration ratio models of biogeography are proposed. Four migration ratio models
(exponential migration, quadratic migration, linear migration and cosine migration) are
proposed in [18]. Two high-order hybrid migration models (cosine-four order mobility
model and cosine-sixteen order mobility model) are proposed in [19]. In order to carry
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out further performance validation on the mobility models close to the nature used in the
function optimization problems, the emigration rate and immigration rate are set as sine,
cosine, linear 4 order and 16 order to produce eight hybrid models to better realize the
information sharing of BBO algorithm. Simulation results show that different migration
strategies have different influences on the optimization performance of BBO algorithm.
Based on the population adaptive migration mechanism of BBO algorithm, six kinds of
high-order nonlinear hybrid mobility model are put forward. Simulation results show that
the proposed algorithm has characteristics of high efficiency. The paper is organized as
follows. In Section 2, the BBO algorithm is introduced. The hybrid high-order mobility
model is presented in Section 3. The simulation experiments and results analysis are
introduced in detail in Section 4. Finally, the conclusion is illustrated in the last part.

2. Biogeography-Based Optimization Algorithm. The BBO algorithm is derived
from the biogeography discipline, which is primarily based on the distribution of species
in nature. A diagram illustrating multiple habitats in biological geography is shown in
Figure 1.

F1GURE 1. Diagram of multi habitats in biological geography

In addition to the relationship among the islands, each island has its own given fac-
tors and survival indicators, which is defined as the habitat suitability index (HSI). A
probability-based migration operator (habitat migration operator) is set up to enable
information sharing among the individuals in the population. The individuals also have
their antagonistic emigration rate p and the immigration rate A so as to control the move-
ment probability of individuals. A model representing the migration of a single species
from an island is shown in Figure 2. Assuming the ratio of emigration and immigration
of the species migration model of a single HS is  and A, respectively, then the number
function of species in the island is established.

It can be seen from Figure 2 that when the number of species is zero, the emigration
rate is zero, and when the number of species reaches the maximum capacity of species
Smax, the emigration rate reaches the maximum value E. Equilibrium is reached at point
Sp when the emigration rate y is equal to the immigration rate A\. Assuming F = I, the
situation depicted in Figure 2 can be simplified by reducing it to that shown in Figure 3
and Equations (1) and (2).

Ey,

Mk = n (1)

et (i) 0

where n = Sj.x and k is the number of species.
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Ficure 3. Simplified species migration model on single island

The BBO algorithm is a method composed by using n habitats with a D-dimension
SI1V fitness vector. H; represents the fitness value of the habitat 7. By comparing the
habitat values of H; with S, the number of all species is denoted as n. Then, the
remaining population of the habitat S; is realized by the successive reduction i according
to H; from good to bad, that is to say S; = Spax — ¢ (i = 1,2,---,n). By the above
calculation, the emigration rate p and immigration rate A of H; can be obtained for the
simplified migration model and the probability P(K;) of species contained in H; can be

calculated by:
P
Mg = M. (1 -5 & ) (3)

Thus, the mutation rate M; of each H; is obtained. The global variables are composed
of the highest emigration rate F, the immigration rate I, the mutation rate M.y, the
number of the elite individuals Z and the global migration rate P q -
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3. Hybrid High-Order Mobility Model.

3.1. Migration ratio model. According to the biogeography species distribution, dif-
ferent linear and nonlinear migration ratio models of biogeography are obtained, in which
four migration ratio models come from [9]; at the same time, other three migration ratio
models (sine migration ratio model, migration ratio model with constant emigration rate
and migration ratio model with constant immigration rate) are newly put forward shown
in Figure 4.

The immigration rate Ay and the emigration rate ;. are the function of species diversity
k in the habitat; I indicates the maximum immigration rate; E indicates the maximum
emigration rate; ko is the number of species at the point of habitat equilibrium, that is
to say the immigration rate is equal to the emigration rate at that point.

3.1.1. Ezponential migration model. As shown in Figure 4(a), the immigration rate A
and the emigration rate py calculated by Equation (4) are the exponential function of
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species diversity k in the habitat at the exponential migration ratio model (expressed as

eBBO).
A = 16_%
4
{ We = Ben ! @)

3.1.2. Quadratic migration model. As shown in Figure 4(b), the immigration rate \; and
the emigration rate u; calculated by Equation (5) are the quadratic function of species
diversity k in the habitat at the quadratic migration ratio model (expressed as QBBO).

vor(Eod)
. E<(’;> ) (5)

3.1.3. Linear migration model. As shown in Figure 4(c), the immigration rate \; and the
emigration rate juy calculated by Equation (6) are the linear function of species diversity
k in the habitat at the linear migration ratio model (expressed as LBBO).

k
et (i) i

k
p = E—
n

3.1.4. Cosine migration model. As shown in Figure 4(d), the immigration rate A, and the
emigration rate py calculated by Equation (7) are the cosine function of species diversity
k in the habitat at the cosine migration ratio model (expressed as ¢cBBO).

e ()
SEG)

3.1.5. Sine migration model. As shown in Figure 4(e), the immigration rate A, and the
emigration rate yy calculated by Equation (8) are the sine function of species diversity &
in the habitat at the sine migration ratio model (expressed as sSBBO).

- % (1 T sin (’jg)) .
-5 ()

Seen from Figure 4(e), the characteristics of this migration ratio model is contrary to
the cosine migration ratio model. When there are fewer or more species in the habitat,
the changes of immigration and emigration rates are relatively fast; while the habitat has
a number of species, the changes of immigration rate and emigration rate are relatively
stable.

3.1.6. Migration model with constant emigration ratio. As shown in Figure 4(f), the immi-
gration rate A, is the linear function of species diversity & in the habitat and the emigration
rate y; remains the constant at the migration ratio model with constant emigration ratio
(expressed as EBBO), which are calculated by Equation (9).
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v [E<1 -3) )

Me = P

Seen from Figure 4(f), when there are no species in the inhabit, it has the largest
immigration rate I and emigration rate is E/2. With the increase of species diversity, the
habitat increasingly becomes crowded, the possibility of immigration becomes smaller,
more and more species move to the adjacent inhabits and the emigration rate keeps

constant. Finally, when species reach saturation state n, the immigration rate is zero.

3.1.7. Migration model with constant immigration ratio. As shown in Figure 4(g), the
immigration rate Ay remains the constant and the emigration rate iy is the linear function
of species diversity k in the habitat at the migration ratio model with constant immigration
ratio (expressed as IBBO), which are calculated by Equation (10).

1
)\k - 5
) (10)
e = E—
n

Seen from Figure 4(g), when there are no species in the inhabit, the immigration rate
is /2 and the emigration rate is 0. With the increase of species diversity, the habitat
increasingly becomes crowded, and the possibility of immigration remains constant. So
the emigration possibility becomes much bigger, namely, more and more species leave to
the adjacent habitats. Finally, when species reach saturation state n, the emigration rate
is the maximum value £.

3.2. Hybrid high-order mobility model. In order to carry out further performance
validation on the mobility models close to the nature used in the function optimization
problems, based on the cosine, sine and secondary model, the arbitrary two methods
are combined to produce the hybrid models. In order to deepen the contrast effect, the
emigration rate and immigration rate are set as sine, cosine, linear 4 order and 16 order to
realize the hybrid models, respectively. Thus, a total of eight kinds of high-order hybrid
migration models are produced.

Based on the cosine-four order mobility model (M4-1) and cosine-sixteen order mobility
model (M4-2) proposed in [18], six high-order hybrid migration models are proposed. They
are listed as four order-cosine mobility model (M4-3), sixteen order-cosine mobility model
(M4-4), sine-four order mobility model (M5-1) and sine-sixteen order mobility model (M5-
2), four order-sine mobility model (M5-3) and sixteen order-sine mobility model (M5-4).
These eight models are shown in Figures 5(a)-5(h). The expression formulas are listed in
Table 1 for the hybrid models.

4. Simulation Experiments and Results Analysis. Under the same simulation envi-
ronment with the software MATLAB and the same parameters initialization for all kinds
of BBO algorithm, the proposed improved BBO algorithm with the hybrid high-order
migration models carries out simulation experiments on six typical function optimization
problems. The experiments for each function are run independently 100 times. Among
them, the Rastrigin, Griewank and Ackley functions are complex nonlinear multimodal
functions, which are used to measure whether the algorithm can avoid prematurity and
the ability to find global optimal solution. The Sphere, Rosenbrock and Step are sin-
gle mode function, which are used to test the algorithm optimization precision and the
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TABLE 1. Expression of hybrid model

Model Expression Model Expression
)\k:§<1+cos<k—ﬂ>> )\k:é<1+sin<k—ﬂ>>
M4-1 N " M5-1 I "
Mk:E<—> Mk:E<—>
n n
I I
)\k—§<1+cos<k—ﬂ>> )\k:§<1+sin<k—ﬁ>>
n n
M4-2 P\ 16 M5-2 O\ 16
Mk=E<—> Mk=E<—>
n n
4 4
M4-3 " M5-3 "
(e () )
= —1\1—cos | — pr=—=1\1—sin | —
2 n 2 n
16 16
M4-4 " M5-4 "
E km E . (kT
pp=—=1_1—cos | — pp=—1_1—sin| —
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TABLE 2. Simulation optimal and average solution for function optimization

Model Rastrigin Griewank Ackley Sphere Rosenbrock Step
Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean
M4 9.84 2032 163 6.86 390 7.32 0.23 296 2264 12531 102 826.18
M4-1 | 11.60 22.71 183 23.83 3.81 591 0.19 6.31 2221 9840 94 881.8
M4-2 | 10.94 20.73 2.11 1245 3.69 6.76 0.24 3.26 21.53 99.56 107 1069.36
M4-3 | 10.85 19.23 1.90 10.63 4.08 6.06 0.21 2.18 24.52 428.92 107 860.38
M4-4 | 799 16.56 1.45 447 370 6.26 0.19 1.94 2463 96.61 71 1104.12
M5 958 17.39 1.68 6.38 380 6.38 0.25 4.08 2298 168.85 104 1366.88
M5-1 | 1094 1811 198 3.96 380 6.54 0.14 275 18.39 71.21 77 739.22
M5-2 | 10.02 19.80 1.71 7.41 4.04 5.34 0.13 3.04 19.21 93.65 97 755.7
M5-3 | 6.90 15.77 1.70 886 3.80 6.31 0.20 2.34 21.07 19791 76 1141.64
M5-4 | 808 21.14 1.52 14.86 395 6.48 0.24 218 23.19 201.56 82 1758.16

convergence property of the proposed algorithms. The optimization curves are shown
in Figures 6-11. The optimal solution and the average solution obtained from function
simulation experiments are listed in Table 2.

All M4 series simulation results are shown in Figures 6(a)-11(a) and M5 in Figures 6(b)-
11(b). It can be seen from the simulation curves that besides Ackley function, the overall
convergence velocity rates of Figures 6(a)-11(a) for other five functions were significantly
higher than Figures 6(b)-11(b). The convergence speed of function Step is the fastest and
it tends to be stable after 20 simulation iterations. The functions Griewank and Sphere
tend to a stable state after 50 iterations. The function Rastrigin after 50 times tends to
a stable state, and iterative Rastrigin function is stable after 80. In Figures 6(a)-11(a),
M4-4 has the best optimization performance and M4 is the worst. In Figures 6(b)-
11(b), the optimization effect of M5-3 is the best and M5-4 is the worst. In conclusion,



Best score obtained so far

Best score obtained so far

IMPROVED

BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM

Rastrigin

(LT T e i
.i lmlﬂi

oegaal H
: hmw,“"” : 1.

|
40 50
[teration

(a) Rastrigin

Rastrigin

60

70

80

20

100

200

100

i
40 50
[teration

(b) Rastrigin

FIGURE 6. Simulation curves on hybrid high times models of BBO

1969



1970 J. WANG AND J. SONG

Griewank

! ! ! ' ! ! ! .l

Best score obtained so far

i i I Poey : ' : sbaasa i
10 20 30 40 50 60 70 80 90 100
[teration

(a) Griewank

Griewank

Best score obtained so far

lteration

(b) Griewank

FiGURE 7. Simulation curves on hybrid high times models of BBO



Best score obtained so far

Best score obtained so far

IMPROVED BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM

Ackley
|

20

lteration
(a) Ackley
Ackley

lteration
(b) Ackley

FiGURrE 8. Simulation curves on hybrid high times models of BBO

1971



1972

Best score obtained so far

Best score obtained so far

120

100

120

100

J. WANG AND J. SONG

Sphere
—\:‘ """"" T Femm T F=====""-- ‘|E """""" === F===="""" =" M4
::‘ Md-1
e e M4-2
N S SO SRS SO SN NS SN SR [P *--- M4-3
;: M4-4
i |

. | | | | |
i | TNIaat s esecperaisteschtusnessesiestast s boncssssrebrssessresbe .
10 20 30 40 50 60 70 80 90 100
lteration
(a) Sphere
Sphere
— - b b= b ;— ----------- Ao b I LEEEEE [ M5
3 M 5-1
O L e N M5-2
N SO SOOI SRS SOOIt RO SRR SUNUUUTNY MUUNON (o - M5-3
i M5-4
A

lteration
(b) Sphere

F1GURE 9. Simulation curves on hybrid high times models of BBO



IMPROVED BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM

Rosenbrock
T T T T T T
i ] i i ] i i i M4
e A [ T [ [ T T [ — M4-1
; i | : : | : : A M4-2
4000 [-veesersdeeeneeees foemaeeees o oo oo o e o * M43

Best score obtained so far

10 20 30 40 50 60 70 80 90 100
lteration
(a) Rosenbrock
Rosenbrock

3000

2500

2000

Best score ohtained so far

1000

enreie suiea S SRS SRS SO S
40 50 60 70 80 90 100
lteration

(b) Rosenbrock

FiGure 10. Simulation curves on hybrid high times models of BBO

1973



1974 J. WANG AND J. SONG

Best score obtained so far

: e T e T?.'_f#: e VPUUL FR | i |
10 20 30 40 50 60 70 80 90 100
[teration
(a) Step
x 10° Step

Best score obtained so far

lteration
(b) Step

FiGURE 11. Simulation curves on hybrid high times models of BBO



IMPROVED BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM 1975

simulation results and analysis show that the sine functions (M5-1 and M5-2) have better
optimization performance than other high-order nonlinear hybrid mobilities. On the other
hand, it can be seen from Table 2 that the optimal and average solution by adopting sine
function as the immigration rate or emigration rate are better than cosine function. Also
M5 and M5-3 all obtain the optimum for Rastrigin function and Rosenbrock function.
This shows the superiority of sine function. In addition, the emigration rate of M5-1 is
linear four-order and the immigration rate of M4-4 is linear sixteen-order. These two
models obtain the optimal solution at the most times, which shows that the linear higher
order migration model has important influence on the performances of solving the function
optimization problems.

5. Conclusions. In this paper, six new high-order nonlinear hybrid mobility models are
proposed based on the cosine-four order mobility model (M4-1) and cosine-sixteen order
mobility model (M4-2) proposed in [19]. Simulation results and analysis show that the
proposed improved BBO algorithm based on six high-order nonlinear hybrid mobility have
good optimization performance than other two high-order nonlinear hybrid mobilities. In
future, research on other migration models and hybrid BBO algorithm combining with
other swarm intelligent optimization algorithms will be carried out and the research results
are applied in the industrial process control fields.
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